

GPB Document Control #P0392

Stanford University

Gravity Probe B Relativity Mission W. W. Hansen Experimental Physics Laboratory Stanford, California 94305-4085

Detector Package Assembly (DPA) Acceptance Test Procedure

Approval:

John H. Goebel Date Telescope Readout Electronics Responsible Engineer

Paul D. EhrensbergerDateTelescope Readout Electronics Integrated Product Team Leader

Ben Taller Quality Engineer

Bob Schultz Lead System Engineer

Mac Keiser Chief Scientist Date

Date

Date

John P. Turneaure Hardware Manager

Date

NOTE: IF ANY PART OF THIS DOCUMENT IS HARD TO READ, PLEASE REQUEST FOR HARD COPY.

January 24, 2010

1.	Introduction
1.1	Definitions
1.1.1	Kapton Thermal Isolator
1.1.2	Circuit Assembly Pedestal
1.1.3	Detector Mount Assembly
1.1.4	Flexible Cable Assembly
1.1.5	Detector Package Assembly
1.2	Purpose
2.	Test Summary and Objectives
2.1	DPA Acceptance Test Summary and Objectives
2.2	Characterization Test Summary and Objectives
3.	Test Articles
4.	Test Equipment
5.	Test Fixtures
6.	Test Instrumentation
6.1	Hardware
6.2.	Software
6.2.1	Software Definition
6.2.2	Software Specification
6.2.3	Software Configuration Control
6.3	Listed Equipment
7.	Required Tests
7.1	Test Setup
7.1.1	Test Environment
7.1.2	Test Setup Checklist & History
7.2	Optical Responsivity Test Criteria
7.3	Input Referred Noise Test Criteria
7.4	Input Leakage Current Test Criteria
7.5	Temperature Stability Test Criteria
7.6	DMA Power Dissipation Test Criteria
7.7	Temperature Coefficient of Pointing Bias Test Criteria
7.8	Thermal Alignment, Decentering, Measurement Criteria
8.	Measurements
8.1	General Description
8.2	Control Points
8.3	Test Procedure

- 8.3.1 **Optical Responsivity**
- 8.3.2 Electrical Leakage Current
- 8.3.3 Noise
- 8.3.4 **Temperature Stability of the DMA**
- 8.3.5 **Power Dissipation**
- 8.3.6 **Temperature Coefficient of Pointing Bias Circuit**
- 8.3.7 Thermal Alignment Shift, Decentering
- 9. Data Collection
- 9.1 Data Format
- 9.1.1 **A file named Header**
- 9.1.2 **A file name Mean.**
- 9.1.3 **A file named Frame**
- 9.1.4 **A file named RGA output**
- 10. Pass-Fail Criteria
- 11. **Qualified Personnel**
- 11.1 **Test Director**
- 11.2 **Qualified Test Personnel**
- 11.3 **Quality Control Personnel**
- 11.4 **Government Mission Assurance Representative**
- 12. Test Report
- 13. Certificates
- 13.1 **Test Certificate Completion and Acceptance**
- 13.2Test Compliance with PLSE 13, Pt. 3
- 13.3 Traveler
- 13.4Test Results and Summary
- 13.5 **Test Discrepancies**
- 14. **Disposition of materials and discrepancies**
- 15. Safety

Appendicies

- A SIA Specification (PLSE-12 [F277277] §3.7.1) Verification Matrix
- B Detector Package Assembly Requirements Verification Documents Checklist

1. Introduction

This document pertains to the flight acceptance test procedures for the GPB guide star telescope's optical radiation detectors. The test procedures specified are in accordance with the SIA Specification Matrix (PLSE-12 [F277277] ° 3.7.1).

Reference Materials						
Item	PLSE 13°	Control Document	Release Date	RE		
Telescope Drawing Tree		23200-118	8/8/97	Huff		
DPA Mechanical Drawing	3.2.3.3	25712-101	11/26/97	Sullivan		
	.14	25712-102	"	"		
		25712-103	"	"		
		25712-104	"	"		
		25712-201	66	66		
		25712-202	66	66		
		25712-203	66	"		
		25712-204	66	66		
DPA Manufacturing Plan				Goebel		
DPA Manufacturing Readiness				Ehrensberge		
Review				r		
Telescope Readout Electronics	3.2.4.1			Farley		
(TRE) Mechanical Design	.1					
Telescope Readout Electronics				Farley		
(TRE) Electrical Design						
Telescope Readout Electronics				Farley		
Manufacturing Plan						
SIA Mechanical Drawing Tree		23200-106	11/18/96	Turneaure		
SIA Readiness Review						

1.1 **Definitions**

1.1.1 Thermal Isolator

The Thermal Isolator (TI) is a component of the Detector Mount Assembly used in the Gravity Probe B General Relativity Experiment. The TI is photolithographically produced and bonded into a DMA. It serves the function of thermal isolation in a vacuum between the detector platform, which must operate above 30 K in temperature, and the cryogenic heatsink,

which is at 2.1 K. It also serves as a flexible printed circuit to carry signals between the detector platform and the warm electronics outside the cryogenic vessel. The size of the DMA is similar to that of a gambling die.

Reference Materials							
Item Control Release RE							
	Document	Date					
Thermal Isolator	25408-201	7/03/97	Sullivan				

1.1.2 Circuit Assembly Pedestal

The Circuit Assembly Pedestal (CAP) contains the Cold Telescope Readout Electronics (CTRE) that convert the optical signal presented by the telescope to electronic signal that can be used for tracking purposes by the Science Readout Electronics (SRE).

Reference Materials

Item	Control Document	Release Date	RE
Circuit Assembly Pedestal	25701-102	2/21/98	Sullivan

1.1.3 **Detector Mount Assembly**

The Detector Mount Assembly (DMA) is a subassembly of the Detector Package Assembly (DPA). The DMA consists of a Detector Platform, TI, Titanium base, and Connector Plug Assembly. The DMA provides the mechanical, electrical, and thermal configuration to interface the Optical Detectors and Preamplifier Electronics with the rest of the telescope.

Reference Materials							
Item Control Release RE							
	Document	Date					
Detector Mount Assembly	25681	10/30/97	Sullivan				

1.1.4 Flexible Cable Assembly

The Flexible Cable Assembly (FCA) transports the electrical signals from a single DMA forth and back to the Science Probe wiring and thereby to the Warm Telescope Readout Electronics (WTRE) that is external to the Science Probe and Science Dewar. A full set of cables consists of four unique layouts, one for each DMA in a full complement of four DMAs configured in two DPAs.

Item	Control	Release	RE
	Document	Date	
Flexible Cable Assembly	25674-101	9/16/97	Sullivan
"	25674-102	"	"
"	25674-103	"	"
"	25674-104	"	"
"	25674-201	"	"
"	25674-202	"	٠٠
"	25674-203	66	"
"	25674-204	66	"

1.1.5 **Detector Package Assembly**

The Detector Package Assembly consists of two DMAs, two FCA's and a titanium housing that presents the telescope optical beams to the photodetectors with the aid of a lens and beamsplitter.

Reference Materials							
Item	Control	Release	RE				
	Document	Date					
Detector Package Assembly	25712-101	11/26/97	Sullivan				
	25712-102	"					

1.2 Purpose

This acceptance test plan is intended to pass on the functionality of the DPA test article(s) for flight operation after launch on a Delta II launch vehicle. The DPA test article(s) to be used in the test plan are to be engineering prototypes and flight qualifiable units. These DPA's will be considered acceptable for integration with the Science Probe and Flight Telescope if they pass all procedures specified in this document.

2. Test Summary and Objectives

2.1 **DPA Acceptance Test Summary and Objectives**

The objectives of the tests are to:

- 1. Measure and certify the optical responsivity of the DPA.
- 2. Measure and certify the electronic noise level of the DPA.
- 3. Measure and certify the sense node leakage current of the DPA.
- 4. Measure and certify the heater control and power dissipation performance of the DPA.
- 5. Measure and certify the temperature coefficient of bias of the preamplifer circuit.

Tests are to be performed to meet the verification and specification requirements that flow down from T-003, that is specifically SIA Specification Matrix (PLSE-12 [F277277] ° 3.7.1) and their subsequent embodiment in the TRE Spec [PLSE-13 Pt 3]. The conversion of the Science requirements into Engineering parameters is derived in 3.2.15.1, an attached document to PLSE 13, pt3, and are specified in Section 3.2.3.1, Telescope Readout Electronics (Appendix A). The relevant line items thereof are:

SIA Specification (PLSE-12 [F277277] §3.7.1) Verification Matrix

Section	Title	Text
3.7.1.6.1.2.2	Signal Interfaces	
		The ST shall output to the Telescope Readout Electronics eight optical signals as listed below.
		Positive Pitch Axis
		Alternate Positive Pitch Axis
		Negative Pitch Axis
		Alternate Negative Pitch Axis
		Positive Yaw Axis
		Alternate Positive Yaw Axis
		Negative Yaw Axis
		Alternate Negative Yaw Axis
		The detailed electrical interface to the probe with identification of the electrical function is given in Section 3.7.6.2.2.

DPA Requirements (extracted from TRE Spec [PLSE-13 Pt 3])

Paragraph	Title	Text & Comments	Method	Verification Plan
3.2.5.3	Platform Temperature Variation at Roll Frequency, as defined in T003, 7.6.2	$\leq 2 \text{ mK}$	A,T	Payload level verification
3.2.6.1	Total Telescope Detector Power (All Detectors)	<6 mW (1.5 mW/platform)	Т	P392: Power Dissipation Test
3.2.18	TRE Detector Performance Requirement			
3.2.18.1	External Quantum Efficiency at 400 to 900 nm wavelength	>70%	S,A,T	<u>P0392</u> : Optical Responsivity test one fight unit will be tested over several wavelength and use similarity for other flight units. S-Doc TBS
3.2.18.2	External Quantum Efficiency at 550nm wavelength	>70 %	Т	<u>P0392</u> : Optical Responsivity test
3.2.18.3	I_Dark	<0.01 fA@80 K	Т	<u>P0392</u> : Electrical Leakage Current Test. Measure w/o light and at V_detB=4.0V @T_op 80
3.2.18.4	Diameter of Photoactive Area	0.8 mm	Ι	<u>P332</u>

3.2.18.6	Operating	80 K ± 10	Т	P0392 : Temperature Stability T
	Temperature (Si	1	'	Measure without light and at
	JFETs)		'	V_detB=4.0V @80 K with all
	, 		'	components
3.2.18.7	Random Noise	<50 e rms/(0.1 sec	Т	P0392: Noise test
	, 	read)	'	
3.2.18.8	Temperature	< 440 e/(read)/K	A,T	P0392: Temperature Stability Te
	Coefficient of Bias		'	

2.2 **Characterization Test Summary and Objectives**

The characterization test that are to be conducted are aimed at understanding the contribution of several testable parameters to the pointing bias variation.

The TRE ETU is able to drive a limited set of parameters, that are summarized in the table below. These are described in the manual describing using the TRE Support Systems prepared by Bob Farley, dated Dec 1997.

Controllable	TRE ETU	ETU Input	TRE ET	'U Input	ETU
Parameter	Commamd	Test Signal	Command	d Address	Output
	Parameter		Ra	nge	Signal
Name	Name	(V/sec)	Voltage	Hex	(V/sec)
			Limits	Limits	
+ Direction	CLAMP	Dynamic	Gain	00_FF	
Clamp Voltage			Depend	—	
- Direction	CLAMP	Dynamic	Gain	00_FF	
Clamp Voltage			Depend	—	
Direction	CLAMP	Dynamic	Gain	00 FF	
Clamp Voltage			Depend	—	
+Reference or	SBIAS	Dynamic	20 mV	00 FF	
Reset Level	(OFFSETS)				
-Reference or	SBIAS	Dynamic	20 mV	00 FF	
Reset Level	(OFFSETS)			—	
Reference or	SBIAS	Dynamic	20 mV	00 FF	
Reset Level	(OFFSETS)			_	
Diode Bias	PBIAS	Dynamic	-7_0 V	00_FF	

ETU Controllable Parameters That Affect Flight Telescope Pointing Bias Variation

Voltage	(BIAS)				
Heater Voltage	HEAT	Dynamic	0_10V	00_FF	
Control	CONTROL	Static	N/A	N/A	N/A

3. **Test Articles**

The test articles are to be engineering units and flight hardware. These articles are to be supplied by Stanford University, Gravity Probe B, Telescope Readout Electronics, Cryogenic Optical Telescope Sensor Group. The test articles will be housed in a red cryogenic dewar with a big white S on it. The articles will be mounted in a clean can with external electrical connectors and an optical port. The test articles will be subjected to appropriate tests, electrical and optical, that characterize the test articles.

4. **Test Equipment**

The optical testing will be at Stanford University in the detector acceptance test facility located in Cedar Hall, room 13. The following test equipment can be found there.

- 4.1 Calibrated Light Source NBS traceable, 100 W Lamp
- 4.2 Quadrupole Mass Spectrometer, SRS Model RGA100
- 4.3 TurboMolecular Vacuum Pump, Varian Model 300HT
- 4.4 Vacuum Readout Varian Digital Model Sentorr BA2C

5. **Test Fixtures**

A test fixture will be built to accommodate the test article, cabling and optical fixtures. The test fixture will be mounted on the Optical table to ensure accurate positioning and reproduceablity for measurement of each DPA

- 5.1 Vibration Isolator Table, Newark Model RS1000
- 5.2 Calibrated Optical Filters, OCLI Catalog #Invisiglass

- 5.3 Calibrated Optical Filters, OCLI Catalog #340nm BP
- 5.4 Calibrated Optical Filters, OCLI Catalog #460nm BP
- 5.5 Calibrated Optical Filters, OCLI Catalog #550nm BP
- 5.6 Calibrated Optical Filters, OCLI Catalog #670nm BP
- 5.7 Calibrated Optical Filters, OCLI Catalog #850nm BP
- 5.8 Calibrated Optical Filters, OCLI Catalog #Quartz
- 5.9 Clean Test Dewar, IR Labs Model HDL-8, IR Lab S/N 3017
- 5.10 Clean Test Can, IR Labs Model NAHF14ZA
- 5.11 Neutral density filter, "Swiss Glass" 2"X3" microscope slide, Baxter Healthcare Corp. Cat # M6142.
- 5.12 Various optical component supports, baffles, and mirrors
- 5.13 Alignment telescope

6. **Test Instrumentation**

Hardware available to conduct the test are listed here. Items listed for tests are incorporated in the traveler with calibration information and GPB reference number.

6.1 Hardware

6.1.1	Photodiode, NBS traceable, Silicon. Serial #D213			
6.1.2 software.	Data logging system, Macintosh 9500 with LabView 4.1			
6.1.3	Readout Electronics Unit, Engineering Protoytpe, Lockheed Model EU-003			
6.1.4	Enginnering Test Unit of the Warm Flight-like Telescope Readout Electronics with control computer.			
6.1.5	Spectrum Analyzer, H-P Model 35567			
6.1.6	Lamp Power Supply, H-P Model HP659B			
6.1.7	Digitizing Oscilloscope, Tektronix Model 744A			
6.1.8	Digitizing Oscilloscope, Tektronix Model 420A			
6.1.9	Precision Digital Voltmeter H-P Model 3458A			
6.1.10Multi	plexed Digital Voltmeter H-P Model 3457A			
6.1.11 Voltage Calibration Source, Datel DVC-8500				
6.1.12Electrometer, Kiethley 6517				
6.1.13Capacitance Meter, Kiethley 595				

6.1.14 Semiconductor Parameter Analyzer H-P Model 4156A

- 6.1.15 Multimeter Fluke Model 8842A, 2ea
- 6.1.16Programmable Power Supply, H-P Model 6626A
- 6.1.17 HeNe alignment Laser, Hughes Model 3599H
- 6.1.18 Pyroelectric Power Meter, Laser Precision Model Rk-1500
- 6.1.19Digitizing Oscilloscope, Tektronix Model 540A

6.2. Software

Software used to conduct the tests is described below.

6.2.1 Software Definition

LabView 4.1 virtual instrument (VI) data collection software will be written to control the test instruments and acquire the data. The Mac OS 7.5.3 and a PowerPC CPU Mac 9500/132 with National Instruments GPIB/PCI control card will be used.

A VI will be written for each test procedure and documentation generated to control the data collection procedure.

- 1. <u>OpticalResponse.</u> This will control the testing procedure for the optical responsivity of the DPA.
- 2. <u>Noise</u> This will control the testing procedure for the electronic noise level of the DPA.
- 3. <u>LeakCurrent</u> This will control the testing procedure for the sense node leakage current of the DPA.
- 4. <u>TemperatureTest</u>

This will control the testing procedure for the heater control and power dissipation performance of the DPA.

- 5. <u>PowerDissipation</u> This will measure the power dissicpation of the DMA and the corresponding operating temperature.
- 5. <u>ThermalStability</u> This will measure the preamplifier's temperature stability.
- 7. <u>LakeShore</u> This will monitor the germanium thermometer during the test
- 8. <u>RGA</u> This will monitor the vacuum system during the test.

6.2.2 Software Specification

1. <u>OpticalResponse</u>

The vi used will be: *"detector.vi single-ended"* which is based on single-ended output of the Engineering Readout and Control Electronics. This software will log the outputs of all four detector channel, XP, XN, YP, and YN. It will also log the two housekeeping channels with ground subtraction and be synchronized by the ATC Strobe.

2. <u>Noise</u>

The vi used will be:	"detector.vi	differential" which is
	based on the	differential output of the
	Engineering	Readout and Control
	Electronics.	This software will log

the outputs of two of the four detector channel, XP and YP using the SIGHI and SIGLO readouts. It will also log the two housekeeping channels and be synchronized by the ATC Strobe.

3. LeakCurrent

The vi used will be:

"detector.vi differential" which is based on the differential output of the Engineering Readout and Control Electronics. This software will log the outputs of two of the four detector channel, XP and YP using the SIGHI and SIGLO readouts. It will also log the two housekeeping channels and be synchronized by the ATC Strobe.

4. <u>TemperatureTest</u>

The vi used will be:	"detector.vi single-ended" which is
	based on single-ended output of the
	Engineering Readout and Control
	Electronics. This software will log the
	outputs of all four detector channel,
	XP, XN, YP, and YN. It will also log
	the two housekeeping channels with
	ground subtraction and be
	synchronized by the ATC Strobe. The
	two housekeeping channels contain the
	essential information to measure the
	thermal parameters.

5. PowerDissipation

The vi used will be:	"detector.vi	single-ended"	which is
	based on sir	ngle-ended out	put of the

Engineering Readout and Control Electronics. This software will log the outputs of all four detector channel, XP, XN, YP, and YN. It will also log the two housekeeping channels with ground subtraction and be synchronized by the ATC Strobe. The two housekeeping channels contain the essential information to measure the thermal parameters.

6. <u>ThermalStability</u>

The vi used will be:	<i>"detector.vi differential"</i> which is based on single-ended output of the Engineering Readout and Control Electronics. This software will log the outputs of all four detector channel, XP, XN, YP, and YN. It will also log the two housekeeping channels with ground subtraction and be synchronized by the ATC Strobe. The two housekeeping channels contain the essential information to measure the
	essential information to measure the
	thermal parameters.
T 1 01	

7. <u>LakeShore</u>

The vi used will be: "LakeShore.vi" which measures the output of the Germanium thermometer. "LakeShore.vi" is subvi of a *"detector.vi* single-ended" and *"detector.vi* single-ended". The software will monitor the thermometer temperature reported by the as No heater is connected to controller. the heater control circuit.

8. <u>RGA</u>

The vi used will be: *"RGA Communication.vi, RGA command.vi, and Sentorr.vi"* which measures the output of the SRS RGA and Sentorr Vacuum sensor electronic readout module. The software will monitor the two thermocouples and the ionization gauge of the Sentorr unit and the most common gas species from the RGA, e. g., H₂0, O₂, N₂, CO₂, etc.

6.2.3 Software Configuration Control

Copies of the custom software will be filed with the document configuration control librarian of the GPB Project at Stanford University. Currently that person is Mae Sato. All changes made shall be documented and updated copies of the test software deposited with the librarian.

Item	Version	Name	Date	Status
#			Modified	
1	7.5.3	Mac OS	4/21/95	Stable/Commercial
2	4.1	LabView for Mac	12/31/97	Stable/Commercial
3	7.1.3	GPIB Driver NI-488	2/17/97	Stable/Commercial
4	6.22	DOS	5/31/94	Stable/Commercial
5	3.4	SQUID	12/20/97	Stable/Custom
6	1.0	OpticalResponse =	1/13/98	Subject to
		"detector.vi single-ended"		modification
7	1.0	Noise =	1/14/98	Subject to
		"detector.vi differential"		modification
8	1.0	LeakCurrent =	1/14/98	Subject to
		"detector.vi differential"		modification
9	1.0	TemperatureTest =	1/13/98	Subject to
		"detector.vi single-ended"		modification
10	1.0	Power Dissipation =	1/13/98	Subject to
		"detector.vi single-ended"		modification
11	1.0	Thermal Stability =	1/13/98	Subject to
		"detector.vi single-ended"		modification
12	1.0	LakeShore =	1/13/98	Subject to
		"LakeShore.vi"		modification
Item	Version	Name	Date	Status
#			Modified	
13	1.0	RGA =	1/13/98	Subject to
		"RGA Communication.vi"		modification
		and "RGA Command.vi"		
		and "Sentorr.vi"		
11	3.0.4	KaleidaGraph	6/17/94	Stable/Commercial

Software Inventory and Status

12	3.1	Mathcad	1/11/93	Stable/Commercial
13	3.5.4	WordPerfect	5/29.96	Stable/Commercial

6.3 Listed Equipment

Listed here are the Database Reference Numbers of equipment to be maintained in calibration for the purposes of testing in this program. The ETU is not listed because it is Ground Support Equipment which consists of separate components of unlisted equipment. Some of its components need calibration that is handled through internal calibration procedures, e. g., the A/D converter. The ETU oscilloscope is used for monitoring purposes only. The Mac/LabView data acquisition system is not listed as no calibration is possible or relevant. It logs data acquired by the Tek oscilloscopes and the LakeShore temperature controller.

Item	S/N	DRN	Property Stanford/HEPL LockMar/HP NASA ARC	Calibration Certificate	Last Cal. Date
NIST 100 W tungsten filament calibration lamp GE 30/T24/13	EPIR-1086			NBS Special Publ. 250-1	1984
NIST Silicon Photodiode Hamamatsu Model S2281	S/N D213	61	911652 2/ 02195-2	NIST844/ 257722-97	9/31/97
Tek 744A Oscilloscope	B041929	60	911557 6/ 02119	NASA ARC 365670 M112884	2/09/98
Tek 420A Oscilloscope	B051297	64	911747 1/ HL02263-1	NASA ARC 365669 M112883	2/09/98
Tek 540A Oscilloscope	B011828	65	LM/HP LP 014280 00/ 801229	H1-21 GBTEA	2/25/98
Silicon Diode Thermometers	BC557T Philips Hamburg Slice #20	62	Stanford University PO U3XD E487740	Inst. Of Cryogenics	7/96

Database Reference Numbers

Germanium Resistor	23531-101		N/A	N/A	N/A
Thermometers					
HP 3458A	2823A16067	57	902266 9/	NASA ARC	2/10/98
Multimeter			020447	365672	
				M112885	
LakeShore	17483	63	NASA ARC	NASA ARC	2/11/98
DRC93CA			007217	365671	
Controller					
Alignment Telescope	71 5180	71	MPT 027152 00	Lockheed	9/07/95
Kueffel and Esser			7-7507-02	Y506	

7. **Required Tests**

- 7.0.1. Illuminate the DPA photodiodes with a known quantity of optical radiation ~100 time greater than that of a bright star observable in flight at a wavelength of 670 nm. Measure the responsivity of the detectors to the radiation. If possible illuminate the photodiodes with a quantity of radiation similar to that anticipated by the actual guide star, nominally IM Peg. Measure the responsivity of one of the flight articles at wavelengths of 460, 550, 670, and 850 nm.. Measure the responsivity using the unapertured filament and with a small pinhole aperture
- 7.0.2. Measure the detector referred input noise across the frequency spectrum of 0 to 2500 KHz of the DPA detectors with and without optical radiation in the amount appropriate to 7.0.1.
- 7.0.3. Measure the leakage current of the detector input node without optical radiation at the anticipated flight operational temperature, nominally 80 K.
- 7.0.4. Measure the temperature stability of the DPA's DMA. Measure this in open loop and closed loop control using the DMA thermometer and housekeeping electronics.
- 7.0.5. Measure the power dissipation of the DPA's DMA. Measure this in closed loop control using the DMA thermometer

and housekeeping electronics. Measure the power dissipation of the DMA.

- 7.0.6. Measure Temperature Coefficient of Bias's dark current as in 7.0.3. This is accomplished by measuring the dark current at two temperatures differing by 10 K near the desired operating temperature..
- 7.0.7. Measure the Lateral Shift of the DMA alignment fiducial with respect to the DPA entrance aperture when cooled to LN_2 and LHe temperature.

7.1 Test Setup

Electrostatic discharge and overstress precautions will be adhered to as outlined in document P0357. Wrist-straps will be worn when making electrical connection to the dewar with the flight electronics. Wrist-straps will be worn then assembling the DPA and the clean can.

The DPA test article is to be mounted in the clean can of the clean dewar which is attached to the vibration isolation table via a mounting fixture with test equipment. The flight-like warm electronics will be connected. The Lakeshore Controller is to be connected to the dewar through one of the spare electrical connectors. The Engineering Test Unit rack will be connected. The Mac/LabView data system will be connected to necessary test equipment via the GPIB bus and the appropriate test equipment connected to the engineering rack. All grounds will be connected and checked. Equipment will then be turned on and allowed to stabilize. The optical source will be turned on and calibration checked with the calibrated optical radiation detector.

The LakeShore controller is to monitor the Ge thermometer continually. The RGA and Varian Sentorr Units are to monitor the vacuum throughout the test. By the way, there is a room temperature thermometer mounted on the room wall.

7.1.1 **Test Environment**

The DPA test article will be mounted in a clean can in a clean room of cleanliness class 100. It shall remain in the clean can for the duration of the test and be delivered for integration while confined to the clean can. The clean can consists of machined aluminum structure with a glass window and hermetically sealed electrical connections to the external environment. A porous plug will be incorporated to evacuate the clean can and filter any particulate material.

The clean can will be mounted in a clean test dewar. The cleanliness level of the test dewar will be class 10,000. A turbomolecular pump will be used to evacuate the dewar in order to minimize contamination by pump oils.

The test dewar will be used in a normal laboratory environment of no specified cleanliness class. The dewar will be mounted on an standard optical table on which the test beam of light is generated and injected into the dewar window; and thereby into the clean can window; and thereby into the DPA. Normal room temperature and humidity will be suitable for this experiment.

Step #	Title	Date & Operator	QA Rep
1	Vacuum System Running		
	Dewar Vacuum Monitors		
	Thermocouple #1		
	Thermocouple #2		
	Ionization Gauge		
	RGA		
2	Dewar on test stand		
3	Connect Vacuum system		
4	Open vacuum valve to Pump		
5	Open vacuum valve to Dewar		
6	Wrist strap on		
7	ETU off		
8	Connect ETU Cables A & B		
9	Connect LakeShore Cable		
10	Power up ETU		

7.1.2 Test Setup Checklist & History

11	Power up Lakeshore	
12	Connect Mac/Labview/Tek	
	scopes to ETU patch panel	
13	Check detector operation warm	
14	Start to Record ramp &	
	housekeeping data with	
	Mac/Labview/Tek	
15	Wait at least 2 hours	
16	Optically measure the position of	
	the Detector fiducial with respect	
	to the DPA Aperture before	
	cooling.	
17	Agree on readiness to cool	
18	Make a Recording of ramp &	
	housekeeping data with ETU	
19	Liquid N ₂ fill	
20	Adjust balancing during cool	
21	Continue to Record ramp &	
	housekeeping data with	
	Mac/Labview/Tek	
22	Wait at least 3 hours	
23	Optically measure the position of	
	the Detector fiducial with respect	
	to the DPA Aperture before	
	cooling.	
24	Agree on readiness to cool	
25	Make a Recording of ramp &	
26	housekeeping data with ETU	
26	Liquid He fill	
27	Adjust balancing during cool	
28	Continue to Record ramp &	
	housekeeping data with	
- 20	Mac/Labview/Tek	
29	Wait at least 3 hours	
30	Optically measure the position of	
	the Detector fiducial with respect	
21	to the DPA Aperture.	
31	Make a Recording of ramp &	

	housekeeping data with ETU	
32	Start tests of responsivity	
33	Start large aperture filament test	
	of responsivity	
34	Conclude large aperture filament	
	test of responsivity	
35	Start small aperture filament test	
	of responsivity	
36	Conclude large aperture filament	
	test of responsivity	
37	Conclude test of responsivity	
38	Start test of leakage current	
39	Conclude test of leakage current	
40	Start test of noise	
41	Conclude test of noise	
42	Start test of temperature stability	
43	Conclude test of temperature	
	stability	
44	Start test of power dissipation	
45	Conclude test of power	
	dissipation	
46	Start test of temperature	
	coefficient of bias	
47	Conclude test of temperature	
	coefficient of bias	
48	Optically measure the position of	
	the Detector fiducial with respect	
	to the DPA Aperture before	
	warming.	
49	Agree on conclusion of tests	
50	Make a Recording of ramp &	
	housekeeping data with ETU	
51	Begin to warm up dewar	
52	Vacuum System Running	
	Dewar Vacuum Monitors	
	Thermocouple #1	
	Thermocouple #2	
	Ionization Gauge	

	RGA
53	Record Thermometers
	Ge Thermometer
	Si Diode #1
	Si Diode #2
54	Close vacuum valve to Pump
55	Close vacuum valve to Dewar
56	Wait for temperature to attain
	310 K on the detector Platform
57	Optically measure the position of
	the Detector fiducial with respect
	to the DPA Aperture before
	cooling.
58	Disconnect Vacuum system
59	Bleedup Dewar vacuum pressure
60	Dismount Dewar

7.2 **Optical Responsivity Test Criteria**

Optical responsivity tests are intended to determine if the detectors of the DPA assembly have an external optical quantum efficiency of at least 70 %. The following guideline is to be used:

Table 7A				
Optical Responsivity Test Criteria				

Wavelength	550 nm
Input Optical Flux	70,000 photons/sec
Star	IM Peg
Preamp Reset Rate	10 Hz
Minimum Output Current	49,000 electrons/sec

7.3 Input Referred Noise Test Criteria

The DPA test article is to have the output noise level of the readout electronics measured and scaled to reflect the system gain. The input referred readout noise in the absence of light is not to exceed the values in table 7B in the frequency ranges specified when exercised by the TRE warm electronics.

The noise spectral specifications have been translated into units of e⁻/read for inclusion in PLSE-13, Pt 3.

Table 7BInput referred noise measurement Criteria

Maximum Noise	50 e- rms/(read)
---------------	------------------

7.4 Input Leakage Current Test Criteria

The DPA test article is to have the output voltage ramp of the readout electronics measured and scaled to reflect the system gain. The input referred leakage current in the absence of light is not to exceed the values in table 7C in the reset period of 100 ms when exercised by the TRE warm electronics.

Table 7CInput Referred Leakage Current Measurement Criteria

Maximum Leakage Current 10 aA @ T_{op}

7.5 **Temperature Stability Test Criteria**

The DPA test article is to be allowed to operate in an uncontrolled temperature stability test. Then DPA test article is to have the closed loop thermal control applied. The controlled temperature stability is expected not to exceed the value in table 7D.

Table 7DTemperature Stability Test Measurement Criteria

Maximum Temperature Drift

T_{op} 2 mK

7.6 **DMA Power Dissipation Test Criteria**

The DPA test article is to be allowed to operate at a stable uncontrolled operating temperature, 80 K 20K. Then DPA test article is to have the closed loop thermal control applied. The power dissipation is expected not to exceed the value in table 7E.

Table 7EDMA Power Dissipation Test Measurement Criteria

Maximum Power Dissipation

<1.5 mW @ T_{op}

7.7 Temperature Coefficient of Pointing Bias of the Preamplifer Test Criteria

The DPA test article is to be allowed to operate at a stable uncontrolled operating temperature, 80 K 20K. Then DPA test article is to have the closed loop thermal control applied. The power dissipation is expected not to exceed the value in table 7F.

Table 7FDMA Temperature Coefficient of Pointing Bias Measurement
Criteria

Maximum Temperature Coefficient	< 440 e ⁻ /(read)K
of Pointing Bias	

7.8 Thermal Alignment, Decentering, Measurement Criteria

The DPA test article is to operate stabily at approximately 310, 90 K and <10 K. That is power dissipation is to be minimal during this test at the Liquid Helium temperature. The thermally induced decentering is expected not to exceed the value in table 7G.

Table 7GThermal Alignment, Decentering, Measurement Criteria

Maximum Decentering

∭500 ⊢ m

8. Measurements

The following is a description of the measurement procedures for each of the parameters listed in Section 7. You must have a copy of the ETU operation manual and an approved operator of that equipment. Be sure to have completed all steps in the table of section 7.1.2 the Test Setup Checklist & History that preceed commencement of testing. The detector thermometer should be operating at 80 K $\boxed[10]{10}$ K except where the procedure requires a different temperature.

8.1 General Description

Measurements of the Optical Responsivity are to be taken for a minimum time period of 5 minutes, sustained illumination. This measurement is to be repeated a minimum of 10 times using a shutter at alternating periods of 5 minutes. The measurement will be made by peaking the beam of light in the X-Y, q, w coordinates of the detector plane. The image of the lamp filament will be larger than the detector area, the detector being of dimension 0.5 mm.

Measurement of the electrical noise level of the detector readout will be made continuously and sampled periodically over a period of 1 hour. Independent spectra gathered at random times shall total no less than 30 in number.

Measurement of the leakage current will be made by averaging the difference of detector pairs until sufficient time has passed to measure 10 aA with a minimum S/N of 10.

Measurement of Temperature Stability will be made over a minimum period of 1 hour. A sufficient number of samples will be collected to measure, with a S/N better than 10. Drift shall not exceed 2 mK.

The power dissipation is to be logged during operation of the stability tests, but will extend the range of temperatures measured from 70 to 90 K.

Measurement of the temperature coefficient of bias will be made by averaging the difference of detector pairs until sufficient time, estimated to be one hour, has passed to measure 440 e^{-1} (read)K with a minimum S/N of 10.

All tests are to be conducted at 70, 80, and 90 K.

8.2 **Control Points**

Each test procedure will incorporate calibration checks on the optical and electrical equipments. Optical calibration will be accomplished by the measurement of the light source with a calibrated detector. Voltage calibration will be checked with a precision calibrated voltage source. Calibration certificates will be obtained and records kept of the instrumentation used in each test. A qualified representative of the quality control representative should be present during each test procedure.

8.3 **Test Procedure**

Detailed test procedures are given here for each of the tested parameters. It is assumed that the testing is done sequentially. If not, then the setup

instructions of Section 8.3.1, with the exception of the lamp warmup, apply to all tests.

8.3.1 **Optical Responsivity**

Slowly warm up the tungsten filament calibration lamp by increasing the lamp supply current to 40.00 A. The power supply should be set to regulate to constant current. Periodically monitor the lamp supply voltage at the lamp base and record the result in the log book. Wait for a period of at least 3 hours for the lamp to stabilize before collecting valid data.

Balance the currents in the JFET pairs using the procedure "Balancing the TRE Detector Modules" in the ETU module. Record the Oscilloscope voltage scales and the ETU CLAMP and OFFSET settings.

Check the alignment of the optical system with the HeNe alignment laser so that the laser beam illuminates the alignment fiducial. Adjust the optical components so as to illuminate the fiducial. Record any adjustments.

Turn off the laser and examine the color of the tungsten filament by looking down the optical train. Record the color.

Insert the optical filter in front of the baffle tube with a black foam spacer to seal light leaks.

Examine the color of the tungsten filament by looking down the optical train. Record the color.

Tilt the dewar in the q, w directions to illuminate one of the detector pixels, either the X or Y pixel. Peak up the signal. Measure the tilt angle with the inclinometer and the position angle. Record the result.

Go back and check that the ETU Clamp has not drifted. If it has, then you did not wait long enough after the liquid helium fill. Kick yourself and record the result in the log book.

Using an opaque shutter, make and break the optical beam with a period of 10 minutes and a 50/50 duty cycle. This should continue for a period of time not less than 1 hour. Record the value of the mean slope from the Mac

data logging system. Note any drifting or spiking or inadvertent interruptions in the data taking sequence. Such events are not necessarily cause to abort the testing. Check with the test director when such circumstances arise.

Tilt the dewar to illuminate one of the other pair of detector pixels, either the Y or X pixel. Peak up the signal. Measure the tilt angle with the inclinometer and position angle. Record the result.

Go back and check that the ETU Clamp has not drifted. If it has, then you did not wait long enough after the liquid helium fill. Kick yourself and record the result in the log book.

Using an opaque shutter, make and break the optical beam with a period of 20 minutes and a 50/50 duty cycle. This should continue for a period of time not less than 2 hours. Record the value of the mean slope from the Mac data logging system. Note any drifting or spiking or inadvertent interruptions in the data taking sequence. Such events are not necessarily cause to abort the testing. Check with the test director when such circumstances arise.

The recorded slope is in V/sec. The conversion factor to quantum efficiency is $(3.62 \times 10^6 \text{ e-/sec})/(1.11 \times 10^7 \text{ ph/sec}) = 0.326 \text{ e-/ph}$ per V/sec of slope. This is shown in the Mathcad document: *Lamp Emission GPB*. A number of assumptions and measurements are taken into account knowing the optical setup and components. So if anything changes, you better record it and measure it. The optical setup is referred to as the setup for good reason.

Repeat the procedure at temperatures of 80 and 90 K. You don't have to wait 3 hours for the dewar to stabilize. Just enter a new parameter into DTEMP.

Now change the optical setup by placing the pinhole aperture at the lamp filament so that the detector signal is maximized. Repeat the measurement procedure above at a temperature of 80 K. You should expect to receive a lot less signal in proportion to the arial ratio of the filament projected on the detector to the pinhole area, taking into account the magnification of the lens.

8.3.2 Electrical Leakage Current

Block the optical beam completely at the baffle tube entrance and check for optical leaks around the dewar using a flashlight. Correct as necessary. Note any corrections and record the results in the log book. The electrical leakage tests are ready to test when no discernable signal can be detected from the flashlight.

Set the Engineering Test Unit control command to 1500 for each of the DMAs under test and center the output of the detector amplifiers so that they are midrange and stable. Record the Oscilloscope voltage scales and the ETU CLAMP and OFFSET settings.

Record the value of the mean slope from the data logging system. This is in V/sec. The conversion factor to leakage current is 3.62×10^6 e-/sec per V/sec of slope.

Repeat the procedure at temperatures of 80 and 90 K. You don't have to wait 3 hours for the dewar to stabilize. Just enter a new parameter into DTEMP.

8.3.3 Noise

Block the optical beam completely and check for optical leaks using a flashlight. Correct as necessary. Note any corrections and record the results in the log book. The electrical leakage tests are ready to test when no discernable signal can be detected from the flashlight.

Balance the currents in the JFET pairs using the procedure "Balancing the TRE Detector Modules" in the ETU module.

Set the Engineering Test Unit CONTROL word for the X and Y channels to 1500. Record the Oscilloscope voltage scales and the ETU CLAMP and OFFSET settings.

Set the Temperature reference of the Engineering Test Unit, DTEMP command, so as to bring the temperature servo-amplifier output into range and approximately center it. Choose a temperature of 70 K. Look up the setting for the temperature command word on the ETU. Engage the local temperature control servo with the ETU.

Record the value of the mean slope, and the standard deviation of the slopes and the variance of the slopes. The conversion factor to current is 3.62 x 10^6 e-/sec per V/sec of slope. One read of the TIA corresponds to 100 ms. 10 e-/sec corresponds to 1 e-/read.

Repeat the procedure at temperatures of 80 and 90 K. You don't have to wait 3 hours for the dewar to stabilize. Just enter a new parameter into DTEMP.

8.3.4 **Temperature Stability of the DMA**

When the dewar is thermally stabilized for no less than 3 hours after filling with liquid helium, the test may commence.

The RGA vacuum monitor must be running during the observation period. The dewar vacuum valve must be open so as to exhaust the vacuum space to the RGA and turbomolecular pump

Set the Temperature reference of the Engineering Test Unit, DTEMP command, so as to bring the temperature servo-amplifier output into range and approximately center it. Choose a temperature of 70 K. Look up the setting for the temperature command word on the ETU. Engage the local temperature control servo with the ETU.

Balance the currents in the JFET pairs using the procedure "Balancing the TRE Detector Modules" in the ETU module.

Begin logging data for a period of at least one hour. During the observation period, the temperature servo-amplifier must not require recentering.

The recorded values of the temperature servo-amplifier should be scaled by the gain corrected voltage sensitivity factor (-576.6/227.27) K/V = 2.537 K/V. This is the differential data collection program. For the single ended case the factor is 5.17 K/V.

Repeat the procedure at temperatures of 80 and 90 K. You don't have to wait 3 hours for the dewar to stabilize. Just enter a new parameter into DTEMP.

8.3.5 **Power Dissipation**

When the dewar is thermally stabilized for no less than 3 hours after filling with liquid helium, the test may commence. The power dissipation will be logged by the computer. The bias voltages and heater voltage reported by the housekeeping channel of the TRE forward electronics are used calculate the dissipation.

Turn off the current to the JFETs, which is the same as tuning off the detector power enable on the ETU.

Choose a temperature of 70 K. Look up the setting for the temperature command word on the ETU, and enter specified HEX value from table in the ETU manual. Engage the local temperature control servo with the ETU. All the time you should be recording data with the Mac/LabView system. Wait 20 minutes and choose another temperature of 50 K. Repeat the process until in 10 K increments until 110 K is achieved.

Repeat the procedure at temperatures of 80 and 90 K. You don't have to wait 3 hours for the dewar to stabilize. Just enter a new parameter into DTEMP.

8.3.6 **Temperature Coefficient of Pointing Bias**

When the dewar is thermally stabilized for no less than 3 hours after filling with

liquid helium the test may commence.

Choose a temperature of 70 K. Look up the setting for the temperature command word on the ETU. Engage the local temperature control servo with the ETU. Set the Temperature reference of the Engineering Test Unit, DTEMP command, so as to bring the temperature servo-amplifier output into range and approximately center it.

Block the optical beam completely at the baffle tube entrance and check for optical leaks around the dewar using a flashlight. Correct as necessary. Note any corrections and record the results in the log book. The electrical leakage tests are ready to test when no discernable signal can be detected from the flashlight.

Set the Engineering Test Unit control command to 1500 for each of the DMAs under test and center the output of the detector amplifiers so that they

are midrange and stable. Record the Oscilloscope voltage scales and the ETU CLAMP and OFFSET settings.

Record the value of the mean slope from the data logging system. This is in V/sec. The conversion factor to leakage current is 3.62×10^6 e-/sec per V/sec of slope.

Repeat the procedure at temperatures of 80 and 90 K. You don't have to wait 3 hours for the dewar to stabilize. Just enter a new parameter into DTEMP.

Record the values of the mean slope from the data logging system. This is in V/sec. The conversion factor to leakage current is 3.62×10^6 e-/sec per V/sec of slope.

8.3.7 Thermal Alignment Shift, Decentering

At room temperature, liquid nitrogen temperature, and liquid helium temperature, use the alignment telescope to determine the position of the alignment fiducial on the detector chip with respect to the entrance aperture of the DPA. This test can be accomplished during the initial cooldown and repeated, reversed in temperature change rate, upon warmup.

Insert the pellicle beamsplitter into the optical beam. Remove the filter from the optical beam.

With the calibration lamp illuminating the DPA entrance aperture as in the responsivity tests, adjust the illumination intensity with apertures or reflectors for appropriate contrast so as to make the detector alignment fiducial observable with the alignment telescope.

Measure the relative position of the fiducial with respect to the DPA. Record the result. Make three independent measurements. Restore the responsivity measurement setup for further measurements. Repeat as often as necessary.

9. **Data Collection**

Data will be collected and a test record kept of measurements and data files. It is essential that time of collection be recorded. A computerized record of the test article performance will be kept by the Engineering Test Unit and the Mac/LabView Data logging system. Each DPA will have a separate and individually titled notebook that will become the official record of the testing. A traveler will record the history of test article handling. Serial numbers and calibration dates of all measurement equipment used to characterize the test article will be recorded. Test articles will have all relevant identification numbers recorded in the Traveler that will uniquely identify the test article.

9.1 Data Format

Data will be collected and a test record kept of measurements and data files. The files will be written in ASCII format and the file will be in spreadsheet format that is compatible with Kalidagraph 3.0.

Three files folders will be generated for each measurement session. These folders will be stored in a separate folder labeled with the DPA # in the Mac File system.

9.1.1 A file for Header

The Header file will record the housekeeping measurements, the measured level of a single ramp, the measured slope of the ramp, and a single measured squared error of a single ramp fit to a linear ramp or each of the detectors. This is the same ramp that is recorded in the Frame file. Other pertinent measurements like the time of day will be recorded in this file. The time stamp of the Frame file is recorded here. The LakeShore Controller temperature reading from the Ge thermometers goes here

9.1.2 A file for Mean.

The Mean file will contain the mean level of the ramp, the mean slope of the ramp, and the mean squared error of the ramp fit to a linear ramp for a series of 100, or other chosen number, readings of the oscilloscope or each of the detectors.

9.1.3 A file for Frame

The Frame file will contain the digitized signal of the ramp waveform for each of the detectors for the first ramp in each of the series of 100 ramps that are acquired in the mean file. This is repeated until the stop number 1000, or other chosen number, is attained. The time stamp of the Frame file is entered into the Header file

9.1.4 A file for RGA output

The RGA output file has a record of the vacuum system duing the data collection proceedures. It is required for diagnostic purposes.

10. Pass-Fail Criteria

Failure is based on performance limits derived from the system design through a model of the telescope control system.

- 1) The optical quantum efficiency shall be greater than 70 %
- 2) The noise level shall be less than $50 e^{-1}$ rms/read.
- 3) The leakage current shall be less than 10 aA in each frequency range.
- 4) The temperature stability shall be less than 2 mK over the period of an hour.
- 5) The power dissipation shall be less than 1.5 mW per DMA, or 3.0 mW per DPA.
- 6) The temperature coefficient of bias of the detector circuit shall be less than 440 e⁻/(read)/K
- 7) The thermal shift in alignment, the decentering, shall be less than $500 \neq m$

DPAs that do not meet these specifications shall have a discrepancy report prepared, reviewed and approved with the disposition of the DPA recorded.

11. **Qualified Personnel**

11.1 Test Director

The qualified test director is Paul Ehrensberger, the Integrated Product Team Manager of the Telescope Readout Electronics (TREIPTL).

11.2 **Qualified Test Personnel**

Equipment	Personnel	
Macintosh Data System	Ali Kashani, John Goebel	
Data Analysis	Dave Meckfessel	
Engineering Test Unit	Bob Fujimoto, Howard Demroff, Bob Farley	
	Paul Ehrensberger	
Optics and Alignment	John Goebel	
Cryogenics	Gene Tam, John Goebel, Paul Ehrensberger,	
Vacuum Equipment	John Goebel, Nick Scott, Ali Kashani	
Oscilloscopes	Howard Demroff, Ali Kashani, John Goebel	
Optical Alignment	Mark Sullivan, Jeff Young, John Goebel	

11.3 **Quality Control Personnel**

A quality control witness will be present during testing. The Quality Control Representative, Ben Taller, or his duely appointed representative, Ken Coleman, will be present at of the commencement of testing of flight articles, and during the testing of each flight article until the completion of testing.

11.4 Government Mission Assurance Representative

The government mission assurance representative testing, Ed Ingraham from Office of Naval Research, will be notified at least 48 hours prior to the commencement of testing of flight articles.

12. Test Report

A test report describing test preparation, conduct, data and results will be written and submitted for inspection. The software used to analyze and write the report is specified in section 6.2.3. The handling history will be recorded in section 13.1 and accompany the part as the traveler. The test results will be summarized in section 13.2. Any test discrepancies will be noted in section 13.3.

13. Certificates

13.1 **Test Certificate Completion and Acceptance**

A test certificate annointing compliance with the certified test procedures will be submitted with a signoff sheet for authorized approvals.

Gravity Probe B Relativity Mission

Detector Package Assembly

Test Completion and Acceptance Certificate for DPA #_____

DPA	S/N	Rev

Approval:

John H. Goebel Telescope Readout Electronics Responsible Engineer	Date
Paul D. Ehrensberger Telescope Readout Electronics Integrated Product Team Leader	Date
Ben Taller Quality Engineer	Date
Bob Schultz Chief System Engineer	Date
John P. Turneaure	Date

Hardware Manager

13.2 Test Compliance with PLSE 13, Pt. 3

This document certifies that the test article has been tested in accordance with PLSE 13, pt. 3. The relevant paragraphs are listed and compliance with the pass/fail criteria noted.

DPA	S/N	Rev

DPA Requirements (extracted from TRE Spec [PLSE-13 Pt 3])

Paragraph	Title	Pass/Fail
3.2.5.3	Platform	
	Temperature,	
	Variation at Roll	
	Frequency	
3.2.6.1	DPA Power	
	Dissipation	
3.2.18.1	External Quantum	
	Efficiency at 400 to 900 nm wavelength	
3.2.18.2	External Quantum Efficiency at 550 nm	
	wavelength	
3.2.18.3	I_Dark	
3.2.18.4	Dimaeter of Photoactive Area	
3.2.18.7	Operating Temperature (Si JFETs)	
3.2.18.7	Random Noise	
3.2.18.8	Temperature Coefficient of Bias	

13.3 Traveler

The history of handling the DPA during the testing will accompany the test article. Handling procedures will be reported in the traveler.

DPA	S/N	Rev

Station	Action	Condition	Handler	Date
DPA receipt				
DPA				
incorporation				
into clean can				
Clean Can				
incorporation				
into dewar				
Dewar				
incorporation				
into Test Setup				
Dewar				
disassembly				
Clean Can				
disassembly				
DPA extraction				
DPA delivery				

13.4 Test Results and Summary

DP A	S/N	Rev
11		

Test Article	Identification
---------------------	----------------

Start Date			
Completion Date			

Magnetic Screening

DMA #DMA#Cable #Cable #CAP #CAP #

Pass/Fail

Date

Measurement Equipment & Calibration

Item	Manufacture & Model	Calibration Date	Database
			Reference Number
Lamp			
Photodiode			
Oscilloscope			
Oscilloscope			
Optical Filter			
Alignment			
Telescope			
ETU			
Temperature			
Readout Unit			

Test Results

Procedure	Measure	Error	Criteria	Operator & Date	Pass & Fail
Quantum			≥ 70 %		
Efficiency					
Leakage Current			< 10 aA		
Noise			$< 50 e^{-}$ rms/read		
Power Dissipation			< 1.5 mW		
Temp Stability			T _{op} 2 mK		
Alignment Shift			$Z_0 $ 500 \dashv m		
Temperature			< 440 e ⁻ /(read)/K		
Coefficient of					
Pointing Bias					

13.5 Test Discrepancies

Test Discrepancies

Procedure	Discrepancy	Operator/Date

13.5 Bias Test Report

Controllable	TRE ETU	ETU Input	TRE ET	'U Input	ETU Output
Parameter	Commamd	Test Signal	Command	d Address	Signal
	Parameter		Rai	nge	
Name	Name	(V/sec)	Voltage	Hex	(V/sec)
			Limits	Limits	
+ Direction	CLAMP			00 FF	
Clamp Voltage				_	
- Direction	CLAMP			00 FF	
Clamp Voltage				_	
Direction	CLAMP			00_FF	
Clamp Voltage					
+Reference or	SBIAS			00_FF	
Reset Level	(OFFSETS)				
-Reference or	SBIAS			00_FF	
Reset Level	(OFFSETS)			_	
Reference or	SBIAS			00_FF	
Reset Level	(OFFSETS)				
Diode Bias	PBIAS			00_FF	
Voltage	(BIAS)			_	
Heater Voltage	HEAT			00_FF	
Control	CONTROL			N/A	N/A

ETU Controllable Parameters That Affect Telescope Pointing Bias Variation

14. **Disposition of materials and discrepancies**

Tested parts will be delivered to the integration product team for incorporation in the Science Probe or storage in an appropriate secure clean facility. Rejected parts will be dealt with as required by Quality Plan P0108. Any discrepancies will be reported in the traveler and data report.

15. Safety

Qualified laboratory personnel will conduct these tests. They are required to have undergone laboratory safety training and be up to date. The HeNe laser is class IV, so formal training is not necessary. The optical setup will capture reflected laser beams to avoid injury concerns, either real or imaginary. Experience with handling high pressure gas cylinders and cryogenic fluids is necessary. Safety training for falling objects in case of earthquake is necessary. Safety training in handling of electrical and electronic equipment is necessary.

Appendix A

Detector Package Assembly Verification Matrix

Paragraph	Title	Specification PLSE-13 Part #. Text & Comments	Method	Verification Plan	
3.2.5		See attached Doc. Text File	Wiethou	v critication i fan	1
3.2.3	Telescope Detector Mount Assembly	for an overview of this			
	Mount Assembly	section.			
3.2.5.1	First Natural	$f_0 \ge 100 \text{ Hz}$	S,T	P0358 DMA	
5.2.5.1	First Natural Resonance	-	5,1	vibration test	
	Vibration	Protoqual @ LN ₂ 77K		procedure	
	Environment			S-Doc TBS	
3.2.5.2				3-D0C 1 D5	
5.2.3.2	Detector Alignment				
	w.r.t Focused Image Position				
3.2.5.2.1	Pitch/RollTip/Tilt	< 5 dagraag	I, T	Inspect van den dete	
5.2.5.2.1		\leq 5 degrees \leq 10 arcmin	1,+	Inspect vendor data	
	Yaw	$\leq 10 \text{ arcmin}$ $\leq 30 \text{ arcmin}$			
3.2.5.2.2	Defocus	<u>≤30 arcmin</u> <u>≤ 200 micrometers</u>	I, T	Inspect vendor data	
5.2.5.2.2	Delocus	$\leq 500 \ \mu m$	1, 1	hispect vendor data	
3.2.5.2.3	Decenter	<u>≤100 μm</u> ≤500 μm	I, T	Inspect vendor data	
3.2.5.3	Platform				
3.2.3.3		$\leq 2 \text{ mK}$	A,T	Payload level verification	
	Temperature Variation at Roll			vermeation	
	Frequency, as				
	defined in T003,				
	7.6.2				
3.2.5.4	Number of	20	Ŧ	P151-Detector-	
5.2.5.4	Electrical Leads	20	I	Mount Subassembly	
	Lieethear Leads			Inspection	
3.2.5.5	Electrical Lead	$\leq 100 \Omega$	A ,T	P151- Detector	
5.2.5.5	Resistance	_ 100 \$2	73,1	Mount Subassembly	
	Resistance			Build	
3.2.5.6	Base Temperature			Build	
3.2.5.6.1	Base Operational	2-6 K	Т	P0392: Duration of	
5.2.5.0.1	Temperature	2.0 K	1	testing	
3.2.5.6.2	Base Test	2 - 290 K	Т	P0392: Duration of	
5.2.5.0.2	Temperature	2 270 K	1	testing	
3.2.5.6.3	Base Bakeout	340 K	N/A	P0151	
5.2.5.0.5	Temperature		11/11	1 0101	
	(survive)				
3.2.5.7	EMI	TBD	Ŧ	EMI test booth and	
J .2.J.T			T	GTU-2	
3.2.6	Detector Thermal			0102	
5.2.0	Output				
3.2.6.1	Total Telescope	4 mW (1 mW /platform)	A ,T	P392: Power	
5.2.0.1	rotal relescope		73 , 1	1 372. FUWEI	

Telescope Readout Electronics Specification PLSE-13 Part #3

	Detector Power (All Detectors)	6 mW (1.5 mW/platform)		Dissipation Test
3.2.7	Detector Base Operational Temperature Range			
3.2.7.1	Operational Temperature range at 10 fA, 10 pA, and 1 microAmp Photo Current Levels	6K - 2K	ŦN/A	Testing in cryo- telescope facility and GTU-2 S Doc TBS Header
3.2.7.2	Operational Temperature Range at 10 pA Current Level	300K - 2.0 K	ŦN/A	Testing in cryo and room temperature telescope facilities S-Doc TBS Header

3.2.13	Telescope to	Large Picture available in	A		
	Telescope Detector	Doc. Text File.			
	Interface	Assuming:			
		65-50% Strehl ratio			
		0.4 - 1.0 micron			
		wavelength			
		>=70% photons shall fall			
		on the detector			
		53-21% transmission			
		efficiency			
		-/+ 60 arcsec ST field of			
		view			
		Worst case Guide Star			
		(V711 TAURI)			
		80% photodetector			
		efficiency			
		Expected photo-current = 12			
		fA per detector when			
		telescope is centered			
		Minimum Scale Factor≥ =			
		18*10^(-18) Amp/marcsec			
		per detector			
3.2.18	TRE Detector				
	Performance				
	Requirement				
3.2.18.1	External Quantum	>70 80 %	<u>S</u> ,A,T	P0392: Optical	
	Efficiency at 400			Responsivity test	
	to 900 nm			one fight unit will	
	wavelength			be tested over	
				several wavelength	
				and use similarity	
				for other flight	
				units.	
				S-Doc TBS	

0.0.10.5	D 10	5 000 m		
3.2.18.2	External Quantum Efficiency at 550nm wavelength	>70 80 %	A ,T	P0392: Optical Responsivity test
3.2.18.3	I_Dark	<0.01 fA@ <u>T_op80 K</u>	A ,T	P0392: Electrical Leakage Current Test Measure w/o light and at V_detB=4.0V @T_op-80 K
3.2.18.4	Diameter of Photoactive Area	TBD (.5 to .8 mm) 0.8 mm	I, A,T	P332
3.2.18.5	Sense Node- Capacitance	< 20 pF	A,T	P0392
3.2.18.6	Operating Temperature (Si JFETs)	4 0 K < T_op < 120 K 80 K±10 K	A ,T	P0392 : Temperature Stability Test Measure without light and at V_detB=4.0V @ <u>80</u> K with all components
3.2.18.7	Sense Node Referred Random Noise	<50 e rms/(0.1 sec read)	A,T	P0392: Noise test
3.2.18.8	<u>Temperature</u> <u>Stability</u>	<440 e/(read)/K	<u>A,T</u>	P0392: Temperature coefficient of Stability Test
3.2.18.8	Transistor Gain	> .3 E 3 mhos	A,T	$\begin{array}{c} \frac{\text{Measure without}}{\text{light and at}} \\ \hline V_{\text{DetB}} = 4.0 \ V \\ \hline @ \ T_{\text{op}} \end{array}$
3.2.18.9	Transistor Gain- Matching	< 5%	A,T	Measure without light and at V_DetB = 4.0 V @ T_op
3.2.18.10	Vgs Matching	<1%	A,T	$\frac{\text{Measure without}}{\text{light and at}}$ $\frac{\text{V}_{\text{DetB}} = 4.0 \text{ V}}{\text{@} \text{T}_{\text{op}}}$
3.2.18.11	Vgs Temperature Coefficient Matching	< <u>1</u> %	A,T	$\frac{\text{Measure without}}{\text{light and at}}$ $\frac{\text{V}_{\text{DetB}} = 4.0 \text{ V}}{\text{@ T}_{\text{op}}}$

Appendix B

Detector Package Assembly Requirements Verification Documents Checklist

CLU	г гаска	ge rabrica	ation & Assem	lDIY						
	Docu	Revisio	Author	Title	Writt	In	Approval	Dwg	Flow	Verif
	ment	n Date			en	Databas	Status	Ref	Ref	Ref
						e				
Ī	P0151	11/26/9	Р.	Procedure for			Approved			
		7	Ehrensberge	Detector Package						
			r	Assembly						
				Fabrication						
Ī	P0219	5/19/97	P.	Telescope Detector		N/A	Approved			
			Ehrensberge	Circuit Assembly						
			r	Fabrication						
	P0332	11/18/9	H. Demroff	Incoming	\checkmark	N/A	Approved		\checkmark	\checkmark
		7		Inspection and test						
				procedure for FLT						
				Rev D TRE circuit						
				on Sapphire carrier						

Detector Package Fabrication & Assembly

Detector Package Test

Docu	Revisio	Author	Title	Writt	In	Approval	Dwg	Flow	Verif
ment	nDate			en	Databas	Status	Ref	Ref	Ref
					e				
P0392	1/27/9	J Goebel	Detector Package	\checkmark		In-Review			
	8		Assembly (DPA)						
			Acceptance Test						
			Procedure						
P0358	1/28/9	J. Goebel	Telescope	\checkmark		Draft			
	8		Detector Mount						
			Assembly Vibration						
			testing						

			Additional Docun	nents					
Docu	Date	Author	Title	Writt	In	Approval	Dwg	Flow	Verif
ment				en	Databas	Status	Ref	Ref	Ref
					e				
P0057	9/29/94	J Lockhart	GP-B Magnetic			Approved			
А			Control Plan -						
			Science Mission						
P0059	6/19/94	M Keiser	GP-B	\checkmark		Approved			
С			Contamination						
			Control Plan						
			(Probe B)						
P0080	9/5/97	J Lockhart	Cryogenic	\checkmark					
			Magnetic Screening						
			Procedure						
P0357	2/10/98	H Demroff	Procedure for DPA	\checkmark		Approved			
			Electrostatic						
			Discharge						
			Precaution						
23200	12/12/9	B Taller	DRAWING TREE,	\checkmark		Approved			
-119	7		DETECTOR						
С			PACKAGE KIT,						
			SM						
25712	11/26/9	M Sullivan	DETECTOR	\checkmark		Approved			
-101	7		PACKAGE KIT,						
			CHANNEL A						
25712	11/26/9	M Sullivan	DETECTOR	\checkmark		Approved			
-102	7		PACKAGE KIT,						
			CHANNEL B						