# GRAVITY PROBE B PROCEDURE FOR SCIENCE MISSION DEWAR

## Internal Guard Tank Fill – Guard Tank Vent Line Connected

To be performed at Vandenberg Air Force Base building 1610

THIS PROCEDURE CONTAINS NON-HAZARDOUS OPERATIONS

## P1029

June 16, 2002

| Written by                             |             | Checked by                          |       |
|----------------------------------------|-------------|-------------------------------------|-------|
| Ned Calder<br>Cryogenic Test           | _Date       | Dave Murray<br>Cryogenic Test       | _Date |
| Approvals:                             |             |                                     |       |
| Dorrene Ross<br>Quality Assurance      | _Date       | Harv Moskowitz<br>LMMS Safety       | _Date |
| Rob Brumley<br>Payload Technical Manag | _Date<br>er | Mike Taber<br>Payload Test Director | _Date |
|                                        | Date        |                                     |       |

NASA/KSC Safety

## **REVISION RECORD**

| REV | ECO | PAGES | DATE |
|-----|-----|-------|------|
|     |     |       |      |

## **Table of Contents**

| A. | SCOPE                                                                                 | 2        |
|----|---------------------------------------------------------------------------------------|----------|
| В. | SAFETY                                                                                | 2        |
|    | B.1. Potential Hazards                                                                | 2        |
|    | B.2. Mitigation of Hazards                                                            | 2        |
|    | B.3. Mishap Notification                                                              | 3        |
| C. | QUALITY ASSURANCE                                                                     | 3        |
|    | C.1. QA Notification                                                                  | 3        |
|    | C.2. Red-line Authority                                                               | 3        |
|    | C.3. Discrepancies                                                                    | 4        |
| D. | TEST PERSONNEL                                                                        | 4        |
|    | D.1. Personnel Responsibilities                                                       | 4        |
|    | D.2. Personnel Qualifications                                                         | 4        |
|    | D.3. Required Personnel                                                               | 4        |
| Ε. | REQUIREMENTS                                                                          | 5        |
|    | E.1. Electrostatic Discharge Requirements                                             | 5        |
|    | E.2. Lifting Operation Requirements                                                   | 5        |
|    | E.3. Hardware/Software Requirements                                                   | 5        |
|    | E.4. Instrument Pretest Requirements                                                  | 6        |
|    | E.5. Configuration Requirements                                                       | 7        |
|    | E.6. Optional Non-flight Configurations                                               | 8        |
| F. | REFERENCE DOCUMENTS                                                                   | 8        |
|    | F.1. Drawings                                                                         | 8        |
|    | F.2. Supporting documentation                                                         | 8        |
|    | F.3. Additional Procedures                                                            | 9        |
| G. | OPERATIONS                                                                            | 10       |
|    | G.1. Pre-Operations Verifications                                                     | 10       |
|    | G.2. Verify Purity of All Sources of Helium Gas                                       | 10       |
|    | G.3. Verify Configuration Requirements                                                | 10       |
|    | G.4. Establish Gas Module Configuration and Record Initial Conditions                 | 13       |
|    | G.5. Verify SMD in Standard Configuration<br>G.6. Check Initial pressure in Fill Line | 14<br>14 |
|    | G.7. Raise Pressure in Fill Line by opening RAV-1                                     | 16       |
|    | G.8. Set up Data Acquisition                                                          | 16       |
|    | G.9. Prepare to Transfer                                                              | 17       |
|    | G.10. Initiate Transfer                                                               | 18       |
|    | G.11. Terminate Transfer to Guard Tank                                                | 19       |
|    | G.12. Condition Dewar Fill Line and Fill Cap Assembly.                                | 20       |
|    | G.13. Configure the DAS and Liquid Level Sensors                                      | 22       |
|    | G.14. Verify Final Configuration                                                      | 23       |
| Н. | PROCEDURE SIGN OFF                                                                    | 23       |
| I. | APPENDIX 1- PRE OPERATIONS CHECKLIST                                                  | 27       |
| J. | APPENDIX 2- POST OPERATIONS CHECKLIST                                                 | 28       |
| K. | APPENDIX 3– CONTINGENCY RESPONSES                                                     | 29       |

## List of Abbreviations and Acronyms

|        | Gauge x of Gas Module auxiliary<br>section                 | MT                | Main Tank                                                            |
|--------|------------------------------------------------------------|-------------------|----------------------------------------------------------------------|
| AMI A  | American Magnetics Inc.<br>Advanced Technology Center      | MTVC<br>MTVC-G    | Main Tank Vent Cap<br>Main Tank Vent Cap pressure                    |
| AV-x ۱ | Auxiliary<br>Valve x of Gas Module auxiliary<br>section    | MTVC-RV<br>MTVC-V | gauge<br>Main Tank Vent Cap relief valve<br>Main Tank Vent Cap valve |
| Bot E  | Bottom                                                     | NBP               | Normal boiling point                                                 |
|        | Data acquisition channel number<br>Data Acquisition System | ONR<br>PFCG       | Office of Naval Research<br>Fill Cap assembly pressure<br>Gauge      |
| EFM E  | Exhaust gas Flow Meter                                     | PFM               | Pump equipment Flow Meter                                            |
|        | Gauge x of Gas Module exhaust section                      | PG-x              | Gauge x of Pump equipment                                            |
|        | Electrical Module                                          | PM                | Pump Module                                                          |
|        | Relief valve of Gas Module exhaust section                 | psi               | pounds per square inch                                               |
|        | Valve number x of Gas Module<br>exhaust section            | psig              | pounds per square inch gauge                                         |
|        | Fill Cap Valve                                             | PV-x              | Valve x of the Pump equipment                                        |
|        | Full Integrated System Test                                | QA                | Quality Assurance                                                    |
|        | Gaseous Helium                                             | RAV-x             | Remote Actuated Valve-x                                              |
|        | Gas Module                                                 | RGA               | Residual Gas Analyzer                                                |
|        | Gravity Probe-B                                            | SMD               | Science Mission Dewar                                                |
|        | Ground Support Equipment                                   | STV               | SMD Thruster vent Valve                                              |
|        | Guard Tank                                                 | SU                | Stanford University                                                  |
|        | Guard Tank Vent Cap                                        | SV-x              | SMD Valve number x                                                   |
|        | Guard Tank Vent Cap pressure gauge                         | TD                | Test Director                                                        |
|        | Guard Tank Vent Cap relief valve                           | TG-x              | Gauge x of Utility Turbo System                                      |
|        | Guard Tank Vent Cap valve                                  | TV-x              | Valve x of Utility Turbo System                                      |
|        | Guard Tank vent pressure gauge                             | UTS               | Utility Turbo System                                                 |
|        | Guard Tank vent relief valve                               | Vac               | Vacuum                                                               |
|        | Guard Tank vent valve                                      | VCP-x             | Vent cap pressure gauge                                              |
| Ν      | Vent line heat exchanger in Gas<br>Module                  | VCRV-x            | Vent cap relief valve                                                |
|        | Quick connect o-ring vacuum flange (xx mm diameter)        | VCV-x             | Vent cap valve                                                       |
| LHe L  | Liquid Helium                                              | VDC               | Volts Direct Current                                                 |
| LHSD L | Liquid Helium Supply Dewar                                 | VF-x              | Liquid helium Fill line valve                                        |
| Liq L  | Liquid                                                     | VG-x              | Gauge x of Vacuum Module                                             |
| LL L   | Liquid level                                               | VM                | Vacuum Module                                                        |
|        | Liquid level sensor                                        | VV-x              | Valve x of Vacuum Module                                             |
|        | Lockheed Martin Missiles and Space                         | VW-x              | Valve x of Dewar Adapter                                             |
| LMSC L | Lockheed Missiles and Space Co.                            |                   |                                                                      |

## LIST OF SPECIFIC HEADING DEFINITIONS

Each type of alert message will precede the procedural step to which it applies

- 1. **NOTE:** Used to indicate an operating procedure of such importance that it must be emphasized
- 2. CAUTION: Used to identify hazards to equipment
- **3. WARNING**: Used to identify hazards to personnel

## A. SCOPE

This procedure describes the steps necessary to transfer normal boiling point liquid helium from the Main Tank to the Guard Tank of the Science Mission Dewar. This procedure requires that the Guard Tank vent line is connected to the Gas Module. The steps include;

Raise internal fill line pressure to Main Tank pressure – open RAV-1.

Increase Main Tank pressure - close vent valve, turn on heater.

Initiate transfer - open RAV-2.

Terminate transfer - close RAV-1 and RAV-2.

Reestablish Main Tank venting.

The Main Tank vent line may either be connected or disconnected from the Gas Module.

## B. SAFETY

## B.1. Potential Hazards

Personal injury and hardware damage can result during normal positioning, assembly and disassembly of hardware.

Liquid helium used in the SMD represents a hazardous material for the personnel involved in the operations. Cryogenic burns can be caused by contact with the cold liquid or gas, high pressures can result if boiling liquid or cold gas is confined without a vent path, and asphyxiation can result if the vent gas is allowed to accumulate.

The SMD Safety Compliance Assessment, document GPB-100153C and the Missile System Prelaunch Safety Package discuss the safety design, operating requirements and the hazard analysis of the SMD.

## B.2. Mitigation of Hazards

B.2.1. Lifting hazards

There are no lifting operations in this procedure

## B.2.2. Cryogenic Hazards

. In addition, the GP-B cryogenic team provides an oxygen deficiency monitor that alarms when the oxygen level is reduced to 19.5%. Evacuate the building to the fall back area building 1605. Additional temperature and pressure alarms, provided by the DAS, warn of potential over-pressure conditions. Emergency vent line deflectors are installed over the four burst disks to direct any flow to an outside area.

Only authorized and trained personnel are allowed in VAFB facilities without escort. All personnel working on platforms at a height 30 inches or more off the floor are required to have an approved air tank (emergency breathing apparatus) within easy

reach. Note that tank need not be kept available when working from ladder. In the unlikely event of a large LHe spill all employees have been instructed to evacuate the room and contact NASA and VAFB safety.

The following additional requirements apply to all personnel involved directly in cryogenic operations. Gloves that are impervious to liquid helium and liquid nitrogen are to be worn whenever the possibility of splashing or impingement of highvelocity cryogens exists or when handling equipment that has been cooled to cryogenic temperatures. Protective clothing, nonabsorbent shoes and full-face shields with goggles/glasses are to be worn whenever the possibility of splashing cryogens exists.

#### B.2.3. Other Hazards

All tools or other items used with the potential to damage the SMD or Probe shall be tethered.

## B.3. Mishap Notification

B.3.1. Injury

In case of any injury or illness requiring emergency medical treatment **DIAL 911** 

B.3.2. Hardware Mishap

In case of an accident, incident, or mishap, notification is to proceed per the procedures outlined in Lockheed Martin Engineering Memorandum EM SYS229 and Stanford University GP-B P0879. Additionally, VAFB NASA Safety and 30<sup>th</sup> Space Wing Safety will be notified as required.

B.3.3. Contingency Response

Responses to contingencies (e.g., power failure) are listed in Appendix 3.

## C. QUALITY ASSURANCE

#### C.1. QA Notification

The NASA program and the NASA safety representative and SU QA shall be notified 24 hours prior to the start of this procedure. Upon completion of this procedure, the QE Manager will certify his/her concurrence that the effort was performed and accomplished in accordance with the prescribed instructions by signing and dating in the designated place(s) in this document.

#### C.2. Red-line Authority

Authority to red-line (make minor changes during execution) this procedure is given solely to the TD or his designate and shall be approved by the QA Representative. Additionally, approval by the Payload Technical Manager shall

be required, if in the judgement of the TD or QA Representative, experiment functionality may be affected.

## C.3. Discrepancies

A Quality Assurance Representative designated by D. Ross shall review any discrepancy noted during this procedure, and approve its disposition. <u>Discrepancies will be recorded in a D-log or a DR per Quality Plan P0108</u>. Any time a procedure calls for verification of a specific configuration and that configuration is not the current configuration, it represents a discrepancy of one of three types. These types are to be dealt with as described below.

- 1. If the discrepancy has minimal effect on procedure functionality (such as the state of a valve that is irrelevant to performance of the procedure) it shall be documented in the procedure, together with the resolution. Redlines to procedures are included in this category.
- 2. If the discrepancy is minor and affects procedure functionality but not flight hardware fit or function, it shall be recorded in the D-log. Resolution shall be in consultation with the TD and approved by the QA representative.
- 3. All critical and major discrepancies, those that effect flight hardware fit or functions, shall be documented in a D-log and also in a Discrepancy Report, per P0108.

## D. TEST PERSONNEL

## D.1. Personnel Responsibilities

The performance of this procedure requires a minimum complement of personnel as determined by the Test Director. The person performing the operations (Test Director or Test Engineer) is to sign the "Completed by" sign-off. Any other qualified person or QA person who can attest to the successful performance of this procedure may sign the "Witnessed by" sign-off. The Test Director will perform Pre-Test and Post-Test Briefings in accordance with P0875 "GP-B Maintenance and Testing at all Facilities." Checklists will be used as directed by P0875

## D.2. Personnel Qualifications

The Test Director must have a detailed understanding of all procedures and facility operations and experience in all of the SMD operations. Test Engineers must have SMD Cryogenic operations experience and an understanding of the operations and procedures used for the cryogenic servicing/maintenance of the Dewar.

## D.3. Required Personnel

The following personnel are essential to the accomplishment of this procedure:

| FUNCTIONAL TITLE | NUMBER | AFFILIATION |
|------------------|--------|-------------|
|------------------|--------|-------------|

| Test Director/Test Engineer | 1 | Stanford |
|-----------------------------|---|----------|
| GP-B Quality Assurance      | 1 | Stanford |

#### E. REQUIREMENTS

#### E.1. Electrostatic Discharge Requirements

Any person who comes in contact with the SV must use a grounding wrist strap that has been tested that day. Appropriate attachment points are positioned around the SV. Wrist Straps will be checked using a calibrated checker prior to use.

#### E.2. Lifting Operation Requirements

There are no lifting operations in this procedure

#### E.3. Hardware/Software Requirements

- E.3.1. Commercial Test Equipment
  - No commercial test equipment is required for this operation.
- E.3.2. Ground Support Equipment

The Ground Support Equipment includes the Gas Module, the Electrical Module. The Gas Module provides the capability to configure vent paths, read pressures and flow rates, and pump and backfill vent lines. The Pump Module provides greater pumping capacity than the Gas Module, together with additional flow metering capabilities. The vent output of the Gas Module flows through the Pump Module. The Electrical Module contains the instruments listed in Table 1, and provides remote control of valves in the Gas Module, Pump Module, and SMD.

E.3.3. Computers and Software:

The Data Acquisition System (DAS) is required for this procedure. The DAS reads and displays pressures, temperatures, and flow rates and monitors critical parameters. No additional computers or software are required.

- E.3.4. Additional Test Equipment
- E.3.5. Additional Hardware

|     | Description                             |
|-----|-----------------------------------------|
| Mai | n Tank vent cap assembly – See Figure 2 |

E.3.6. Tools

| De                        | escription              |
|---------------------------|-------------------------|
| Torque Wrench,<br>5 in-lb | 1-1/4-in socket, 60 +/- |
| Cal Due Date:             | S/N                     |

## Expendables

## WARNING Ethanol is highly flammable and vapor/air mixtures are Explosive. Exposure hazards include: Inhalation (headache/fatigue), skin (dryness, eyes (redness/pain/burning)

| Description                 | Quantity | Mfr./Part No.                           |  |
|-----------------------------|----------|-----------------------------------------|--|
| Ethanol                     | AR       | N/A                                     |  |
| 99.999% pure gaseous helium | AR       | N/A                                     |  |
| Vacuum Grease               | AR       | Dow Corning High Vacuum<br>or Apiezon N |  |

## E.4. Instrument Pretest Requirements

The GSE instruments required to perform this procedure are listed in Table 1, together with their serial numbers, where available. Instruments that are required to have current calibrations are indicated in the Cal-Required column. Instruments that do not require calibration are those not used to verify performance requirements and are not connected to flight instrumentation. The status column is to be filled in with the due date of the instrument calibration sticker and verified to be in calibration by QE or QE designee.

| No. | Location | Description                                             | Name       | Serial No.  | Cal<br>Required | Status<br>Cal due<br>date |
|-----|----------|---------------------------------------------------------|------------|-------------|-----------------|---------------------------|
| 1   | DAS      | Power Supply, H-P 6627A                                 | -          | 3452A01975  | Yes             |                           |
| 2   | DAS      | Power Supply, H-P 6627A                                 | -          | 3452A01956  | Yes             |                           |
| 3   | DAS      | Data Acquisition/Control Unit<br>H-P 3497A              | -          | 2936A245539 | No              | -                         |
| 4   | DAS      | Digital Multimeter<br>H-P 3458A                         | -          | 2823A15047  | Yes             |                           |
| 5   | EM       | Vacuum Gauge Controller<br>Granville-Phillips Model 316 | EG-1a, -1b | 2827        | No              | -                         |
| 6   | EM       | Vacuum Gauge Controller<br>Granville-Phillips Model 316 | AG-2a, -2b | 2826        | No              | -                         |
| 7   | EM       | Vacuum Gauge Controller<br>Granville-Phillips Model 316 | EG-3       | 2828        | No              | -                         |
| 8   | EM       | MKS PDR-C-2C                                            | EG-2, FCG  | 92022108A   | No              | -                         |
| 9   | EM       | Flow meter – Matheson 8170                              | EFM-1      | 96186       | No              | -                         |
| 10  | EM       | Flow meter totalizer<br>Matheson 8124                   | EFM-1      | 96174       | No              | -                         |
| 11  | EM       | Liquid Helium Level Controller                          | LLS Main   | 96-409-11   | No              | -                         |

| No. | Location | Description                                                                                             | Name                | Serial No.  | Cal<br>Required | Status<br>Cal due<br>date |
|-----|----------|---------------------------------------------------------------------------------------------------------|---------------------|-------------|-----------------|---------------------------|
|     |          | American Magnetics, Inc. 136                                                                            | Tank                |             |                 |                           |
| 12  | EM       | Liquid Helium Level Controller<br>American Magnetics, Inc. 136                                          | LLS Guard<br>Tank   | 96-409-10   | No              | -                         |
| 13  | EM       | Liquid Helium Level Controller<br>American Magnetics, Inc. 136                                          | LLS Well            | 96-409-9    | No              | -                         |
| 14  | EM       | Liquid Helium Level Controller<br>American Magnetics, Inc. 136                                          | LLS Axial<br>Lock   | 96-409-12   | No              | -                         |
| 15  | EM       | Pressure Controller – MKS 152F-92                                                                       | EV-7a, -7b          | 96203410A   | No              | -                         |
| 16  | EM       | Power Supply<br>HP 6038A                                                                                | H08D Tank<br>Heater | 96023407A   | Yes             |                           |
| 17  | EM       | Power Supply<br>HP 6038A                                                                                | H09D Tank<br>Heater | 3511A-13332 | Yes             |                           |
| 18  | EM       | Power Supply<br>HP 6038A                                                                                | RAV Power<br>Supply | 3329A-12486 | Yes             |                           |
| 19  | EM       | Vac Ion Pump power supply<br>Varian 929-0910, Minivac                                                   | SIP                 | 5004N       | No              | -                         |
| 20  | EM       | Flow meter totalizer<br>Veeder-Root                                                                     | PFM-1               | 576013-716  | No              | -                         |
| 21  | GM       | Pressure Gauge, Heise                                                                                   | AG-1                | CC-122077   | No              | -                         |
| 22  | GM       | Pressure Gauge, Marshall Town                                                                           | AG-3                | N/A         | No              | -                         |
| 23  | GM       | Main Tank Heat Exchanger:<br>a) Thermocouple, b) Current meter,<br>c) Temperature set point controller  | -                   | C-19950     | No              | -                         |
| 24  | GM       | Guard Tank Heat Exchanger:<br>a) Thermocouple, b) Current meter,<br>c) Temperature set point controller | -                   | C-09920     | No              | -                         |
| 25  | VM       | Vacuum Gauge readout,<br>Granville-Phillips 316                                                         | VG-3<br>VG-4        | 2878        | No              | -                         |
| 26  | VM       | Vacuum Gauge readout,<br>Granville-Phillips 360                                                         | VG-1, VG-2<br>VG-5  | 96021521    | No              | -                         |

## E.5. Configuration Requirements

E.5.1. Main Tank

Liquid in the Main Tank must be at its normal boiling point (NBP)

E.5.2. Guard Tank

The Guard Tank may contain liquid or be depleted.

E.5.3. Well

The Well is evacuated.

E.5.4. SMD Vacuum Shell

The Vacuum Shell pressure must be less than 5x 10-5 torr. Document P1015, *Connect Vacuum Module to SMD*, contains the procedure for connecting to and pumping on the SMD vacuum shell.

## E.5.5. Alarm System

- 1. The DAS alarm system must be enabled and contain the following alarm set-points:
  - a. Top of lead bag temperature set (CN 40 and CN 41) at T  $\leq$  6.0 K.
  - b. Relative Guard Tank Pressure (CN 46) set at  $P \ge 0.3$  torr.
- 2. The DAS watchdog timer and alarm are enabled.
- E.5.6. GSE and Non-flight Hardware
  - 1. The ion-pump magnet is installed.
  - 2. GSE cabling must be connected between the SMD and the Electrical Module (P/N 5833812) and between the SMD and the Data Acquisition System (P/N 5833811).
  - 3. The Guard Tank vent line must be connected to the Gas Module with a vacuum insulated line (P/N 5833813). Procedure No. P1008, *Connect Guard Tank Vent Line to Gas Module*, contains the procedures for connecting vent lines.
  - 4. The Fill Cap Assembly must be installed at SV-13 (See Figure 3)
  - 5. Dewar Adapter heaters on SMD must be installed and operational.

## E.6. Optional Non-flight Configurations

The following modifications or non-flight arrangement of the basic flight configuration may also be in place. They are incidental to the performance of this procedure and not required.

- 1. The SV may be installed in its transportation fixture or in its assembly fixture.
- 2. The Vacuum shell pump out port at SV-14 may be connected to the Vacuum Module (P/N 5833816) via a 2-in valve and pumping line, with the valve in either the closed position or in the open position. The Vacuum Module pump may be; off, actively pumping the pumping line up to a closed SV-6, or actively pumping the vacuum shell.

## F. REFERENCE DOCUMENTS

## F.1. Drawings

| Drawing No.  | Title                        |  |  |  |
|--------------|------------------------------|--|--|--|
| LMMS-5833394 | Instrumentation Installation |  |  |  |
| O            |                              |  |  |  |

## F.2. Supporting documentation

| Document No.    | Title                                                     |
|-----------------|-----------------------------------------------------------|
| LMMC-5835031    | GP-B Magnetic Control Plan                                |
| GPB-100153C     | SMD Safety Compliance Assessment                          |
| LM/P479945      | Missile System Prelaunch Safety Package                   |
| SU/GP-B P0141   | FIST Emergency Procedures                                 |
| LMSC-P088357    | Science Mission Dewar Critical Design Review              |
| SU/GP-B P0108   | Quality Plan                                              |
| LMMS GPB-100333 | Science Mission Dewar Failure Effects and Causes Analysis |

| SU/GP-B P059                                            | GP-B Contamination Control Plan                    |  |  |
|---------------------------------------------------------|----------------------------------------------------|--|--|
| EM SYS229 Accident/Mishap/Incident Notification Process |                                                    |  |  |
| EWR 127-1                                               | Eastern and Western Test Range Safety Requirements |  |  |
| KHB 1710, rev E                                         | Kennedy Space Center Safety Practices Handbook     |  |  |

## F.3. Additional Procedures

| Document No.  | Title                                          |
|---------------|------------------------------------------------|
| SU/GP-B P1008 | Connect Guard Tank Vent Line to Gas Module     |
| SU/GP-B P0879 | Accident/Incident/Mishap Notification Process  |
| SU/GP-B P0875 | GP-B Maintenance and Testing at all Facilities |

G.

|           |     | Operation Number:                                                                                                                                   |
|-----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|           |     | Date Initiated:                                                                                                                                     |
|           |     | Time Initiated:                                                                                                                                     |
| OPER      | ΑΤΙ | ONS                                                                                                                                                 |
| G.1.      | Pre | e-Operations Verifications                                                                                                                          |
|           |     | Verify SU QA notified.                                                                                                                              |
|           |     | Record: Individual notified,                                                                                                                        |
|           |     | Date/time/                                                                                                                                          |
|           | 0   | Verify NASA program representative notified                                                                                                         |
|           |     | Record: Individual notified,                                                                                                                        |
| Date/time |     | /                                                                                                                                                   |
|           | 0   | Record calibration due dates in Table 1 (Section E.4), and Sections E.3.4, and E.3.6                                                                |
|           | 0   | Persons performing this procedure should list their names in Sec D.3                                                                                |
|           | 0   | Verify completion of the Pre-Operations Checklist (Appendix 1).                                                                                     |
|           | 0   | Verify proper operation of the GP-B Cryogenic Group oxygen monitor                                                                                  |
|           | 0   | Verify that the Spacecraft is powered up, arming plug P222 is installed, and control personnel are prepared to command RAV-2 when requested.        |
|           | 0   | Verify availability and functioning of an emergency shower                                                                                          |
|           |     | QA Witness:                                                                                                                                         |
| G.2.      | Ve  | rify Purity of All Sources of Helium Gas                                                                                                            |
|           | Ċ   | 6.2.1. Record serial number on helium bottle/s.                                                                                                     |
|           |     | 1.       2.       3.         4.       5       6.                                                                                                    |
|           |     |                                                                                                                                                     |
|           | Ċ   | <ul> <li>A.2.2. Verify helium bottle/s have been tested for purity and record Op.<br/>Number.</li> <li>Op. Number:</li> <li>Record Date:</li> </ul> |
|           |     | QA Witness:                                                                                                                                         |
| G.3.      | Ve  | rify Configuration Requirements                                                                                                                     |

G.3.1. Verify liquid in Main Tank at NBP (4.2<T<4.3) and record temperature at bottom of tank CN [09] \_\_\_\_\_K.

- G.3.2. Ensure ion-pump magnet installed.
- G.3.3. Ensure Vacuum Shell Pressure < 5 x 10-5 torr.
  - 1. Turn on Vac-ion pump and record time of day \_\_\_\_\_
  - 2. Use DAS [Monitor Data] for CN 99.
  - 3. When value is steady, record pressure (IP) \_\_\_\_\_\_ torr. If pressure is above 5x10<sup>-5</sup> torr, turn off Vac-ion pump and perform procedure P1015, *Connect Vacuum Module to SMD*, to connect Vacuum Module and pump out SMD vacuum shell.
  - 4. Exit [Monitor Data] and collect data with [Set Data Interval] to 5 min.
  - 5. When data cycle is complete, turn off Vac-ion pump.

## CAUTION

This procedure necessitates closure of the Main Tank vent. During the period of closure the temperatures at the top of the lead bag are to be continuously monitored by the test director. Ensure that these temperatures are on the DAS alarm list and appropriately alarmed. Failure to comply may result in hardware damage.

- G.3.4. Ensure DAS alarm system enabled and record set points. 1. Top of lead bag temperature - ensure CN [40] on DAS alarm list and set to alarm at T  $\leq$  6.0 K. Record set point. Κ Top of lead bag temperature - ensure CN 2. [41] on DAS alarm list and set to alarm at T  $\leq$  6.0 K. Κ Record set point. Relative Guard Tank Pressure - ensure CN 3. [46] on DAS alarm list and set to alarm at  $\Delta P \ge 0.3$ tor torr. Record set point. r G.3.5. Ensure liquid-level alarms enabled and record set points. *Main Tank* – ensure liquid-level alarm set  $\geq$ 1. 20%. % Record set point. *Guard Tank* – ensure liquid-level alarm set  $\geq$ 2. 20%. % Record set point. G.3.6. Ensure GSE cabling connected between SMD and Electrical Module and between SMD and Data Acquisition System.
  - G.3.7. Ensure Guard Tank vent line connected to Gas Module. If not, perform

procedure P1008, *Connect Guard Tank Vent Line to Gas Module*, to connect Guard Tank vent.

G.3.8. Ensure Fill Cap Assembly installed at SV-13.

## G.4. Establish Gas Module Configuration and Record Initial Conditions

- G.4.1. Ensure Guard Tank Vent Valve (GTV-V) open.
- G.4.2. Ensure closed EV-4, EV-5, EV-8, EV-10, EV-12, EV-15, EV-19, EV-21/22, EV-24
- G.4.3. Ensure all AV valves closed
- G.4.4. Establish Guard Tank and Main Tank vent configurations.

## Initial Guard Tank Vent Configuration:

| 0 | Guard Tank contains liquid and is venting in common manifold mode: |                                                               |  |  |  |
|---|--------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|
|   | 1.                                                                 | Verify EV-13 and EV-16 open                                   |  |  |  |
|   | 2.                                                                 | Verify EV-20 and EV-23 closed                                 |  |  |  |
| 0 | Guard Tank contains liquid                                         | and is venting in bypass mode:                                |  |  |  |
|   | 1.                                                                 | Verify EV-16 and EV-20 open                                   |  |  |  |
|   | 2.                                                                 | Verify EV-13 and EV-23 closed                                 |  |  |  |
| 0 | Guard Tank depleted - pre                                          | essure independently regulated to maintain positive pressure: |  |  |  |
|   | 1.                                                                 | Verify EV-16, EV-23 open                                      |  |  |  |
|   | 2.                                                                 | Verify EV-20 and EV-13 closed                                 |  |  |  |
| 0 | Main Tank Vent Line Conr                                           | nected to Gas Module                                          |  |  |  |
|   | 1.                                                                 | Verify EV-9 open                                              |  |  |  |
|   | 2.                                                                 | Verify SV-9 open                                              |  |  |  |
|   | 3.                                                                 | Verify EV-17 closed                                           |  |  |  |
| 0 | Main Tank Vent Line not c                                          | onnected to Gas Module                                        |  |  |  |
|   | 1. Verify                                                          | v SV-9 open                                                   |  |  |  |

G.4.5. Record pressures:

- 1. Guard Tank pressure (EG-1a) \_\_\_\_\_ torr.
- 2. Main Tank pressure (EG-3) \_\_\_\_\_ torr.
- G.4.6. Record liquid helium levels:
  - 1. Main Tank level (LL-1D or LL-2D) \_\_\_\_%
  - 2. Guard Tank Level (LL-5D or LL-6D) %
- G.4.7. Turn on pump AP-1.
- G.4.8. Turn on Guard Tank vent-line heat exchanger (EH-2).

QA Witness:\_\_\_\_\_

## G.5. Verify SMD in Standard Configuration

- G.5.1. Using the RAV log book verify that the dewar's internal valves are in the following positions. If not, investigate to ensure previous RAV operations properly recorded. If necessary, note resolution in D-log.
  - 1. Open: RAV-3, and RAV-6B.
  - 2. Closed: RAV-1, RAV-2, RAV-5, RAV-6A, and RAV-7.
- G.5.2. Verify that SMD external valves are in the following positions.
  - 1. Open: SV-9.
  - 2. Closed: SV-13, SV-12 and FCV.

QA Witness:\_\_\_\_\_

## G.6. Check Initial pressure in Fill Line

- G.6.1. Install a pumping line between valve FCV on the Fill Cap Assembly and the Access Port #1 of the Auxiliary gas section.
- G.6.2. Open AV-8.
- G.6.3. Open AV-3.
- G.6.4. Open valve FCV and evacuate to 20 mtorr as measured at AG-2.
- G.6.5. Close AV-8 and FCV.
- G.6.6. Once the pressure in the Fill Cap Assembly (PFCG) has stabilized, record Fill Cap Assembly pressure (PFCG): \_\_\_\_\_\_ torr.
- G.6.7. Open valve SV-13 and bring the Fill Cap Assembly up to the pressure in the SMD fill line and record fill line pressure (PFCG): \_\_\_\_\_\_ torr.

## G.7. Raise Pressure in Fill Line by opening RAV-1

- G.7.1. Ensure all RAV controller selection switches in OFF position.
- G.7.2. Turn on RAV power supply and adjust current limit to 1.85 amps.
- G.7.3. Adjust power supply to 28 VDC.
- G.7.4. Power up controller #1.
- G.7.5. Position controller #1 selection switch to RAV-1.
- G.7.6. Record initial switch status: <u>Open</u>:  $\theta \quad \theta$  <u>Closed</u>:  $\theta \quad \theta$
- G.7.7. Activate controller #1 to open RAV-1 and record:
  - 1. Run time: \_\_\_\_\_ seconds
  - 2. Current draw: \_\_\_\_\_ amp
  - 3. Time of day: \_\_\_\_
- G.7.8. Record final switch status: <u>Open</u>:  $\theta \quad \theta$  <u>Closed</u>:  $\theta \quad \theta$

G.7.9. When convenient, record operation in RAV log book.

## NOTE Do not power off controller.

# G.7.10. Verify that the Fill Cap Assembly pressure (PFCG) rises to the Dewar Main Tank pressure EG-3 and record

- 1. Fill line pressure (PFC): \_\_\_\_\_ psig/torr.
- 2. Main Tank Pressure (EG-3/STG) \_\_\_\_\_ torr.

QA Witness:\_\_\_\_\_

## G.8. Set up Data Acquisition

**Note:** Refer to Operating Instructions for mechanics of DAS keyboard/mouse operations.

- G.8.1. Set Main Tank sampling interval to 1 minute.
- G.8.2. Set Guard Tank sampling interval to 1 minutes.

## G.9. Prepare to Transfer

- G.9.1. Confirm that operations personnel are ready to operate RAV-2.
- G.9.2. Record Main Tank pressure (EG-3/STG): \_\_\_\_\_ torr.
- G.9.3. Record Guard Tank pressure (EG-1a): \_\_\_\_\_ torr.
- G.9.4. Record Main Tank pressure desired for initiating transfer \_\_\_\_\_\_ torr. **Comment:** typically a value 15 torr greater than EG-1a is sufficient.
- G.9.5. Record the desired final Guard Tank level: \_\_\_\_\_\_%.
- G.9.6. Input comment to DAS "Start Internal transfer to Guard Tank".

## CAUTION

This procedure necessitates closure of the Main Tank vent. During the period of closure the temperature of the top of the lead bag are to be continuously monitored. Failure to comply may result in equipment damage.

G.9.7. Close Main Tank vent as appropriate and record time: \_\_\_\_\_.

o Main Tank Vent Line Connected to Gas Module 1. Close EV-9

- o Main Tank Vent Line not connected to Gas Module
  - 1. Close SV-9
  - G.9.8. Enter comment in DAS, "Closed Main Tank Vent"
  - G.9.9. Turn on Tank Heater (H-8D or H-9D) power supply and adjust current limit to 1.25 amps.

G.9.10. Adjust power supply to 30 VDC and record:

V: \_\_\_\_\_ Vdc and I: \_\_\_\_\_ A

## G.10. Initiate Transfer

- G.10.1. When the Main Tank pressure (EG-3/STG) reaches the desired initial pressure as noted in G.9.4, open RAV-2 and initiate transfer as follows:
- G.10.2. Close/Verify Closed EV-23
- G.10.3. Request operations personnel to open RAV-2
- G.10.4. When convenient, record operation in RAV log book.
- G.10.5. Open/Verify Open EV-13, EV-6, and EV-18 and record time:

G.10.6. Record pressures:

- 1. EG-3/STG: \_\_\_\_\_torr
- 2. EG-1a: \_\_\_\_\_ torr
- G.10.7. Adjust Main Tank heater voltage, as necessary, to maintain desired transfer pressure, and record data in the following table.

| Time | MT<br>Pressure<br>EG-3<br>(torr) | GT<br>Pressure<br>EG-1a<br>(torr) | MT<br>Heater<br>Voltage<br>(V) | MT<br>LLS<br>(%) | GT<br>LLS<br>(%) | Flow Rate<br>PFM-1<br>(LL/hr) | Comments |
|------|----------------------------------|-----------------------------------|--------------------------------|------------------|------------------|-------------------------------|----------|
|      |                                  |                                   |                                |                  |                  |                               |          |
|      |                                  |                                   |                                |                  |                  |                               |          |
|      |                                  |                                   |                                |                  |                  |                               |          |
|      |                                  |                                   |                                |                  |                  |                               |          |
|      |                                  |                                   |                                |                  |                  |                               |          |
|      |                                  |                                   |                                |                  |                  |                               |          |
|      |                                  |                                   |                                |                  |                  |                               |          |
|      |                                  |                                   |                                |                  |                  |                               |          |
|      |                                  |                                   |                                |                  |                  |                               |          |
|      |                                  |                                   |                                |                  |                  |                               |          |
|      |                                  |                                   |                                |                  |                  |                               |          |

QA Witness:\_\_\_\_\_

## G.11. Terminate Transfer to Guard Tank

- G.11.1. When the Guard Tank level reaches the value chosen in Paragraph G.9.5 Turn off Main Tank heater
- G.11.2. Request operations personnel to close RAV-2
- G.11.3. When convenient, record operation in RAV log book.
- G.11.4. Close relief bypass valves EV-6 and EV-18.
- G.11.5. Close EV-13 to isolate the Guard Tank and record:
  - 1. Guard Tank Pressure (EG-1a):\_\_\_\_\_ torr
  - 2. Main Tank pressure (EG-3/STG): \_\_\_\_\_ torr
- G.11.6. Open Main Tank vent

| 0 | Main Tank Vent Line Connected to Gas Module     |  |  |  |  |
|---|-------------------------------------------------|--|--|--|--|
|   | 1. Open EV-9                                    |  |  |  |  |
| 0 | Main Tank Vent Line not connected to Gas Module |  |  |  |  |
|   | 2. Open SV-9                                    |  |  |  |  |
|   |                                                 |  |  |  |  |

G.11.7. Establish Guard Tank Vent Configuration:

| 0 | Main Tank Vent Line Connected to Gas Module-Manifold Guard Tank and Main Tank Vent |
|---|------------------------------------------------------------------------------------|
|   | Paths                                                                              |

- Once Main Tank Pressure (EG-3) is within 3 torr of Guard Tank pressure (EG-1a), open EV-13 Note: EV-6 may be opened for short periods to promote depressurization of Main Tank
- 2. Close/Verify Closed EV-20

## o Main Tank Vent Line not connected to Gas Module

- 1. Open EV-13
- 2. Close/Verify Closed EV-20

G.11.8. Record flowrate EFM-1: \_\_\_\_\_.

G.11.9. Ensure EV-13 and EV-16 open.

- G.11.10. If Main Tank Vent Line connected ensure EV-9 open
- G.11.11. Once conditions have stabilized, record final transfer conditions:
  - 1. Main Tank level (LL-1D or LL-2D) \_\_\_\_%
  - 2. Guard Tank Level (LL-5D or LL-6D) \_\_\_\_%

QA Witness:\_\_\_\_\_

## G.12. Condition Dewar Fill Line and Fill Cap Assembly.

- G.12.1. Ensure pumping line installed between Fill Cap Assembly at valve FCV and Auxiliary Gas Section access port no. 1.
- G.12.2. Ensure FCV closed.
- G.12.3. Close/verify closed AV-1 and AV-9.
- G.12.4. Open AV-8 and AV-3 and evacuate pumping line to <25 mtorr measured at AG-2b.

| Relief of the Dewar fill li | ne will be     | <b>Note:</b><br>e through the relief valve in the Fill Cap Assembly until the next<br>operation.                          |  |  |
|-----------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
|                             | 1.<br>sele     | Verify controller #1 already powered up and controller #1 ction switch set to RAV-1. If not, perform the following steps: |  |  |
|                             | 2.             | Ensure controller #1 selection switch in off position                                                                     |  |  |
|                             | 3.             | Power up controller #1.                                                                                                   |  |  |
|                             | 4.             | Position controller #1 selection switch to RAV-1.                                                                         |  |  |
|                             | 5.             | Record initial switch status: Open: $\theta = \theta$ Closed: $\theta = \theta$                                           |  |  |
|                             | 6.             | Activate controller #1 and record:                                                                                        |  |  |
|                             | b. C           | Run time: seconds<br>Current draw: amp<br>Fime of day:                                                                    |  |  |
|                             | 7.             | Record final switch status: Open: $\theta = \theta$ Closed: $\theta = \theta$                                             |  |  |
|                             | 8.             | Turn controller #1 selection switch to OFF.                                                                               |  |  |
|                             | 9.             | Power off controller #1.                                                                                                  |  |  |
|                             | 10.            | Turn off RAV power supply.                                                                                                |  |  |
|                             | 11.            | When convenient, record operation in log book.                                                                            |  |  |
| G.12.6.                     | •              | CV and evacuate Dewar fill line to < 25 mtorr as measured at and record AG-2b: torr                                       |  |  |
| G.12.7.                     | Close S        | V-13 and torque to 60 +/- 5 in-lbs.                                                                                       |  |  |
|                             |                | Quality                                                                                                                   |  |  |
| G.12.8.                     | Close A        | V-8.                                                                                                                      |  |  |
| G.12.9.                     | Open A         | V-1                                                                                                                       |  |  |
| G.12.10                     | ). Op<br>AV-9. | pen AV-9 until pressure reaches 0.5 psig at AG-1, then close                                                              |  |  |
| G.12.1                      | I. Clo         | ose AV-1 and AV-3.                                                                                                        |  |  |
| G.12.12                     | 2. Clo         | ose FCV.                                                                                                                  |  |  |
| G.12.13                     | 3. Tu          | rn off pump AP-1.                                                                                                         |  |  |
| G.12.14                     | 4. Re          | emove pumping line from Fill Cap Assembly.                                                                                |  |  |
| G.12.15                     | 5. Ins         | stall KF-25 blank-off cap on valve FCV and record:                                                                        |  |  |
|                             | 1.             | PFCG pressure:                                                                                                            |  |  |
|                             |                |                                                                                                                           |  |  |

2. Time of day: \_\_\_\_\_

G.12.16. Verify closure of SV-13 by observing the pressure in the Fill Cap Assembly (PFCG) until satisfied that no gas is leaking into the Dewar Fill line. After 30 minutes record:

Time of day:

PFCG pressure:

**Comment**: If PFCG drops by more than 0.5 torr in 30 minutes, retorque SV-13 and repeat steps G.11.8 through G.11.16.

QA Witness:\_\_\_\_\_

## G.13. Configure the DAS and Liquid Level Sensors

G.13.1. Input comment to DAS "End of Internal transfer to Guard Tank".

G.13.2. Set the DAS data cycle to 15 minutes.

G.13.3. Set all the liquid level sampling intervals to 10 minutes.

- G.13.4. Ensure DAS alarm enabled and record set points if changed
- o Thermal conditions substantially unchanged, alarm set points for lead bag unchanged
- o Thermal conditions substantially changed, temperature alarm points reset as follows:
  - 1. Top of Lead Bag set point [CN \_\_\_\_\_ K ( $\leq 6.0$  K) 40]
  - 2. Top of Lead Bag set point [CN \_\_\_\_\_ K (  $\leq$  6.0 K) 41]
  - G.13.5. Ensure liquid level sensor alarms enabled and record set points if changed.
    - 1. Main Tank Level Set Point \_\_\_\_\_%
    - 2. Guard Tank Level Set Point \_\_\_\_\_%

## CAUTION

The Guard Tank may tend to subcool following the completion of this procedure. Establish continuous monitoring of the Guard Tank pressure by placing it on the DAS alarm list. Maintain positive pressure in the Guard Tank by regulating the pressure through EV-23 as necessary. Failure to comply may result in equipment damage.

G.13.6. Ensure Guard Tank pressure on DAS alarm list and set to alarm at 0.3 torr differential or greater.

## G.14. Verify Final Configuration

G.14.1. Turn off Guard Tank vent-line heat exchanger (EH-2).

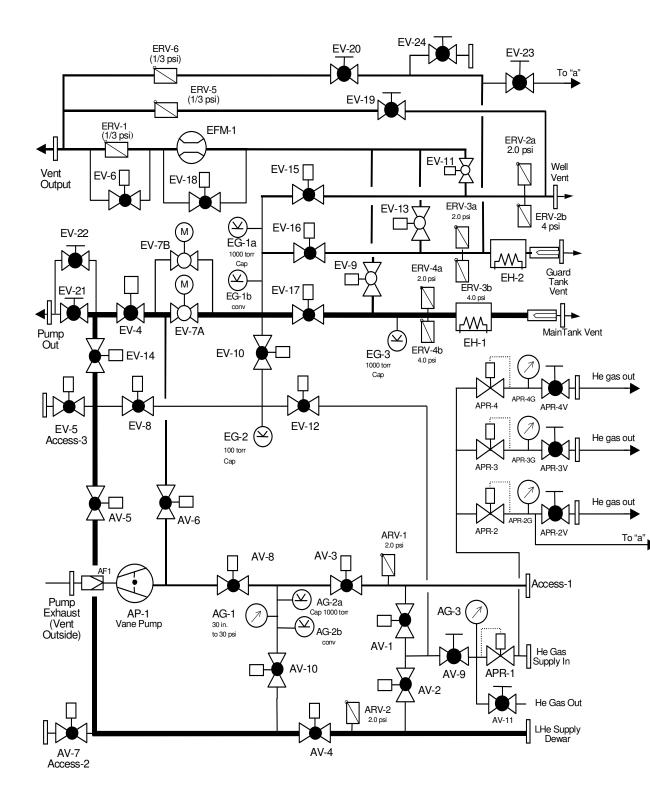
G.14.2. Verify final valve states

|           | Main Tank Vent Line<br>Connected  |                     | Main Tank Vent Line Not Connected |                     |  |
|-----------|-----------------------------------|---------------------|-----------------------------------|---------------------|--|
|           | Open Closed                       |                     |                                   | Closed              |  |
| EV Valves | EV-13, EV-9,<br>EV-16,<br>EV-7a/b | All other EV valves | EV-16, EV-13,<br>EV-7a/b          | All other EV-Valves |  |
| AV Valves | none                              | All                 | none                              | All                 |  |

- G.14.3. Confirm that all liquid level sensors are set at a sampling rate of 10 minutes.
- G.14.4. Ensure that power to Vac-lon pump is off.
- G.14.5. Ensure all RAV operations recorded in log book
  - 1. RAV-1
  - 2. RAV-2
- G.14.6. Record Main Tank liquid usage:
  - a) Start level: \_\_\_\_\_%, Finish level: \_\_\_\_%.
  - b) Amount transferred: \_\_\_\_\_ liters (use 1 % = 24 l)
- G.14.7. Verify Completion of Post Operations Checklist

QA Witness:\_\_\_\_\_

H. PROCEDURE SIGN OFF


Completed by:\_\_\_\_\_

Witnessed by:

Date: \_\_\_\_\_

Time:\_\_\_\_\_

| Quality Manager       | Date |
|-----------------------|------|
| Payload Test Director | Date |



**Figure1.** Schematic of Gas Module Plumbing.

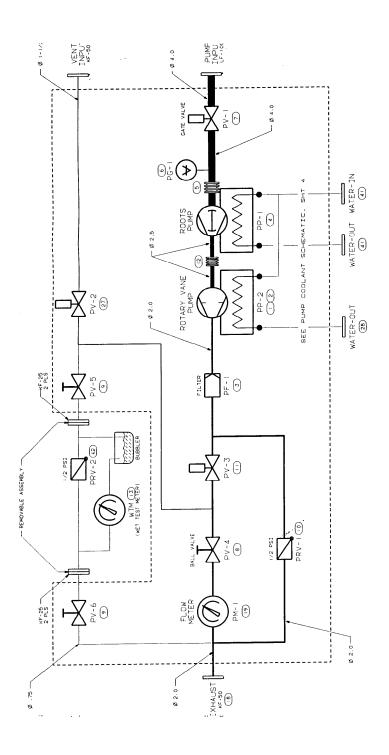



Figure 2. Schematic of Pump Module plumbing.

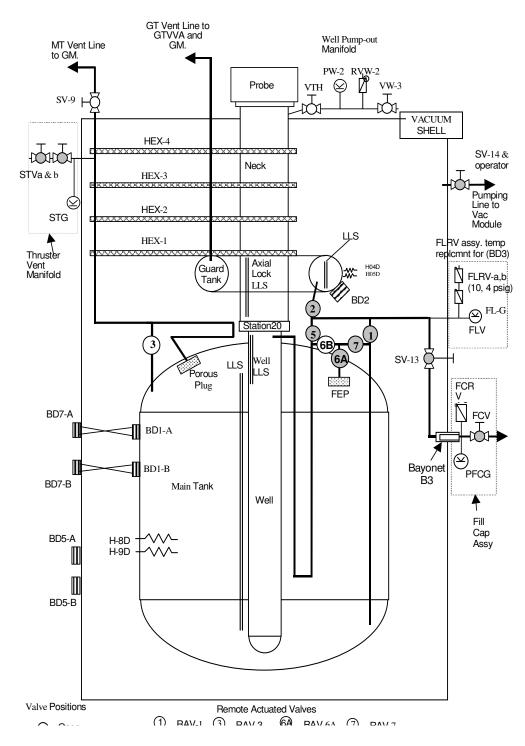



Figure 3. Schematic of Science Mission Dewar plumbing.

## APPENDIX 1 PRE OPERATIONS CHECKLIST

| DATE | CHECKLIST ITEM                                                                                                                                                                                                                                          | COMPLETED | REMARKS |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|
|      | 1. Verify the test procedure being used is the latest revision.                                                                                                                                                                                         |           |         |
|      | 2. Verify all critical items in the test are identified and discussed with the test team.                                                                                                                                                               |           |         |
|      | 3. Verify all required materials and tools are available in the test area.                                                                                                                                                                              |           |         |
|      | 4. Verify all hazardous materials involved in the test are identified to the test team.                                                                                                                                                                 |           |         |
|      | 5. Verify all hazardous steps to be performed are identified to the test team.                                                                                                                                                                          |           |         |
|      | 6. Verify each team member is certified for<br>the task being performed and knows their<br>responsibilities.                                                                                                                                            |           |         |
|      | 7. CONFIRM THAT EACH TEST TEAM<br>MEMBER CLEARLY UNDERSTANDS THAT<br>HE/SHE HAS THE AUTHORITY TO STOP THE<br>TEST IF AN ITEM IN THE PROCEDURE IS NOT<br>CLEAR.                                                                                          |           |         |
|      | 8. Confirm that each test team member clearly<br>understands that he/she must stop the test if<br>there is any anomaly or suspected anomaly.                                                                                                            |           |         |
|      | 9. NOTIFY MANAGEMENT OF ALL<br>DISCREPANCY REPORTS OR D-LOG ITEMS<br>IDENTIFIED DURING PROCEDURE<br>PERFORMANCE. IN THE EVENT AN<br>INCIDENT OR MAJOR DISCREPANCY<br>OCCURS DURING PROCEDURE<br>PERFORMANCE MANAGEMENT WILL BE<br>NOTIFIED IMMEDIATELY. |           |         |
|      | 10. VERIFY/PERFORM PRE-TASK<br>ENGINEERING/SAFETY HIGH BAY WALK<br>DOWN. VERIFY NOTED DISCREPANCIES<br>HAVE BEEN CORRECTED.                                                                                                                             |           |         |
|      | 11 Confirm that each test team member<br>understands that there will be a post-test team<br>meeting.                                                                                                                                                    |           |         |
|      | Team Lead Signature:                                                                                                                                                                                                                                    |           |         |

## J. APPENDIX 2 POST OPERATIONS CHECKLIST

| DATE | CHECKLIST ITEM                                                                                 | COMPLETED | REMARKS |
|------|------------------------------------------------------------------------------------------------|-----------|---------|
|      |                                                                                                |           |         |
|      | 1. Verify all steps in the procedure were successfully completed.                              |           |         |
|      | 2. Verify all anomalies discovered<br>during testing are properly<br>documented.               |           |         |
|      | 3. Ensure management has been<br>notified of all major or minor<br>discrepancies.              |           |         |
|      | 4. Ensure that all steps that were<br>not required to be performed are<br>properly identified. |           |         |
|      | 5. If applicable sign-off test completion.                                                     |           |         |
|      | 6. Verify all RAV valve operations have been entered in log book                               |           |         |
|      | 7. Verify the as-run copy of procedure has been filed in the appropriate binder                |           |         |
|      | Team Lead Signature:                                                                           |           |         |

|   | Condition                                 | Circumstance             | Response                                                                                                                                                                                                                                                                   |
|---|-------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Temperature limits (CN 29 or 28) exceeded | Main tank is not venting | ALLOW MAIN TANK TO<br>VENT<br>If SV-9 is closed:                                                                                                                                                                                                                           |
|   |                                           |                          | Close EV-17 (if open)<br>and verify EV-9 open,<br>crack open SV-9 to<br>allow MT to vent.<br>Adjust SV-9 as<br>necessary to restore<br>temperature(s) below<br>alarm limits. Open EV-<br>6 and EV-18 if higher<br>flow rate is needed.<br>If SV-9 open and EV-9<br>closed: |
|   |                                           |                          | Open EV-9 for short<br>periods (~15 sec) and<br>allow increased flow<br>from Main tank; in<br>addition, Open EV-6<br>and EV-18 if higher<br>flow rate is needed.<br>If SV-9 and EV-9 open                                                                                  |
|   |                                           |                          | Open EV-6 and EV-18<br>for higher flow                                                                                                                                                                                                                                     |
|   |                                           |                          | lf problem persists see<br>item 3                                                                                                                                                                                                                                          |
| 2 |                                           | Main tank is venting     | PROMOTE INCREASE IN<br>MAIN TANK VENTING                                                                                                                                                                                                                                   |
|   |                                           |                          | Power up heater at<br>H08D or H0-9D and starting<br>at 15 vdc input increase<br>power until increased flow<br>has cooled the problem area                                                                                                                                  |
| 3 | Burst disk rupture (MT/GT)                | Anytime                  | Request 100% facility make-<br>up air purge<br>Evacuate room                                                                                                                                                                                                               |
| 4 | Liquid helium leak                        | Anytime                  | Clear area until all liquid has<br>evaporated                                                                                                                                                                                                                              |
| 5 | Oxygen Monitor Alarm                      | Anytime                  | Evacuate                                                                                                                                                                                                                                                                   |

## K. APPENDIX 3– CONTINGENCY RESPONSES