GRAVITY PROBE B PROCEDURE FOR SCIENCE MISSION DEWAR

DISCONNECT MAIN TANK VENT LINE FROM GAS MODULE – MAIN TANK SUBATMOSPHERIC

To be performed at Vandenberg Air Force Base building 1610

WARNING: THIS DOCUMENT CONTAINS HAZARDOUS OPERATIONS

P1005 Rev A ECO #1435 July 29, 2003

Written by:			
	Date		
Ned Calder			
Cryogenic Test			
Approvals:	Data		Data
Dorrene Ross	_Date	Harv Moskowitz	_Date
Quality Assurance		LMMS Safety	
		Ennino Galety	
	Date		Date
Rob Brumley		Mike Taber	
Payload Technical Manage	er	Payload Test Director	
	Date		
NASA/KSC Safety			

REVISION RECORD

REVISION	ECO	PAGES	DATE
A	1435	-Modify procedure to install Flight Main Tank Vent Cap	7/29/03

Table of Contents

Α.	SCOPE	2
В.	SAFETY	2
	B.1. Description of Potential Hazards	2
	B.2. Mitigation of Potential Hazards	
	B.3. Mishap Notification	3
C.	QUALITY ASSURANCE	3
	C.1. QA Notification	
	C.2. Red-line Authority	
	C.3. Discrepancies	
D.	TEST PERSONNEL	
	D.1. Personnel Responsibilities	
	D.2. Personnel Qualifications D.3. Required Personnel	
-		
E.	REQUIREMENTS E.1. Electrostatic Discharge Requirements	
	E.1. Electrostatic Discharge Requirements	
	E.3. Hardware/Software Requirements	
	E.4. Instrument Pretest Requirements	
	E.5. Configuration Requirements	
	E.6. Optional Non-flight Configurations	10
F.	REFERENCE DOCUMENTS	10
	F.1. Drawings	
	F.2. Supporting documentation	
	F.3. Additional Procedures	
G.	OPERATIONS	
	G.1. Pre-Operations Verifications	
	G.2. Verify Purity of All Sources of Helium Gas	
	G.3. Leak Check Main Tank Vent Cap G.4. Verify Configuration Requirements	
	G.5. Record Initial Configuration and Conditions	
	G.6. Set up Main Tank in Non-vented Mode.	
	G.7. Perform Leak-back Test of SV-9 Closure	
	G.8. Disconnect Main Tank Vent Line and Install Vent Cap	16
	G.9. Condition Main Tank Vent Cap	
	G.10. Establish Final Configuration	17
Η.	PROCEDURE COMPLETION SIGN OFF	18
I.	APPENDIX 1 PRE OPERATIONS CHECKLIST	19
J.	APPENDIX 2 POST OPERATIONS CHECKLIST	21
K.	APPENDIX 3- CONTINGENCY/EMERGENCY RESPONSES	

List of Abbreviations and Acronyms

AG-x	Gauge x of Gas Module auxiliary section	MT	Main Tank
AMI ATC	American Magnetics Inc. Advanced Technology Center	MTVC MTVC-G	Main Tank Vent Cap Main Tank Vent Cap pressure
Aux	Auxiliary	MTVC-RV	gauge Main Tank Vent Cap relief valve
AV-x	Valve x of Gas Module auxiliary section	MTVC-V	Main Tank Vent Cap valve
Bot	Bottom	NBP	Normal boiling point
CN [xx]	Data acquisition channel number	ONR	Office of Naval Research
DAS	Data Acquisition System	PFCG	Fill Cap assembly pressure Gauge
EFM	Exhaust gas Flow Meter	PFM	Pump equipment Flow Meter
EG-x	Gauge x of Gas Module exhaust section	PG-x	Gauge x of Pump equipment
EM	Electrical Module	PM	Pump Module
ERV-x	Relief valve of Gas Module exhaust section	psi	pounds per square inch
EV-x	Valve number x of Gas Module exhaust section	psig	pounds per square inch gauge
FCV	Fill Cap Valve	PTD	Payload Test Director
FIST	Full Integrated System Test	PV-x	Valve x of the Pump equipment
GHe	Gaseous Helium	QA	Quality Assurance
GM	Gas Module	RAV-x	Remote Actuated Valve-x
GP-B	Gravity Probe-B	RGA	Residual Gas Analyzer
GSE	Ground Support Equipment	SMD	Science Mission Dewar
GT	Guard Tank	STV	SMD Thruster vent Valve
GTVC	Guard Tank Vent Cap	SU	Stanford University
GTVC-G	Guard Tank Vent Cap pressure gauge	SV-X	SMD VALVE NUMBER X
GTVC-RV	Guard Tank Vent Cap relief valve	TG-x	Gauge x of Utility Turbo System
GTVC-V	Guard Tank Vent Cap valve	TV-x	Valve x of Utility Turbo System
GTV-G	Guard Tank vent pressure gauge	UTS	Utility Turbo System
GTV-RV	Guard Tank vent relief valve	Vac	Vacuum
GTV-V	Guard Tank vent valve	VCP-x	Vent cap pressure gauge
HX-x	Vent line heat exchanger in Gas Module	VCRV-x	Vent cap relief valve
KFxx	Quick connect o-ring vacuum flange (xx mm diameter)	VCV-x	Vent cap valve
LHe	Liquid Helium	VDC	Volts Direct Current
LHSD	Liquid Helium Supply Dewar	VF-x	Liquid helium Fill line valve
Liq	Liquid	VG-x	Gauge x of Vacuum Module
LL	Liquid level	VM	Vacuum Module
LLS	Liquid level sensor	VV-x	Valve x of Vacuum Module
LMMS	Lockheed Martin Missiles and Space	VW-x	Valve x of Dewar Adapter
LMSC	Lockheed Missiles and Space Co.		

LIST OF SPECIFIC HEADING DEFINITIONS

Each type of alert message will precede the procedural step to which it applies

- NOTE: Used to indicate an operating procedure of such importance that it must be emphasized
 - 2. CAUTION: Used to identify hazards to equipment
 - 3. WARNING: Used to identify hazards to personnel

A. SCOPE

This procedure provides the necessary steps to disconnect the Main Tank vent line from the Gas Module and install the Main Tank Flight Vent Cap, while the Main Tank liquid is subatmospheric. The steps include:

Close Main Tank vent valve (SV-9)

Perform leak-back test on Main Tank vent valve

Disconnect vent line and install vent cap

Leak test vent cap and backfill with helium gas.

Install Swagelok Cap Main Tank Vent Cap valve

Stake and wire tie assembly

The hazardous operation contained in this procedure is the handling of cryogenic nitrogen to service the leak detector.

B. SAFETY

B.1. Description of Potential Hazards

Personal injury and hardware damage can result during normal positioning, assembly and disassembly of hardware.

Liquid helium used in the SMD represents a hazardous material for the personnel involved in the operations. Cryogenic burns can be caused by contact with the cold liquid or gas, high pressures can result if boiling liquid or cold gas is confined without a vent path, and asphyxiation can result if the vent gas is allowed to accumulate.

The SMD Safety Compliance Assessment, document GPB-100153C and the Missile System Prelaunch Safety Package LM/P479945 discuss the safety design, operating requirements and the hazard analysis of the SMD.

B.2. Mitigation of Potential Hazards

B.2.1. Lifting hazards

There are no lifting operations in this procedure

B.2.2. Cryogenic Hazards

In VAFB building 1610, the GP-B cryogenic team provides an oxygen deficiency monitor that alarms when the oxygen level is reduced to 19.5%. Additional temperature and pressure alarms, provided by the DAS, warn of potential over-pressure conditions. Emergency vent lines are installed over the four burst disks to direct any flow to the outside area.

Only authorized and trained personnel are allowed in VAFB facilities without escort. All personnel working on platforms at a height 30 inches or more off the floor are required to have an approved air tank (emergency breathing apparatus) within easy reach. Note that tank need not be kept available when working from ladder. In the unlikely event of a large LHe spill all employees have been instructed to evacuate the room and contact NASA and VAFB safety.

The following additional requirements apply to all personnel involved directly in cryogenic operations. Gloves that are impervious to liquid helium and liquid nitrogen are to be worn whenever the possibility of splashing or impingement of high-velocity cryogens exists or when handling equipment that has been cooled to cryogenic temperatures. Protective clothing, non-absorbent shoes and full-face shields with goggles/glasses are to be worn whenever the possibility of splashing cryogens exists.

B.2.3. Other Hazards

When appropriate, tools or other items used with the potential to damage the space vehicle shall be tethered.

B.3. Mishap Notification

B.3.1. Injury

In case of any injury or illness requiring emergency medical treatment **DIAL 911.**

B.3.2. Hardware Mishap

In case of an accident, incident, or mishap, notification is to proceed per the procedures outlined in Lockheed Martin Engineering Memorandum EM SYS229 and Stanford University GP-B P0879. Additionally, VAFB NASA Safety and 30th Space Wing Safety will be notified as required.

B.3.3. Contingency Response

Responses to contingencies/emergency (e.g., power failure) are listed in Appendix 3.

C. QUALITY ASSURANCE

C.1. **QA Notification**

The NASA program and the NASA safety representative and SU QA shall be notified 24 hours prior to the start of this procedure. Upon completion of this procedure, the QE Manager will certify his/her concurrence that the effort was performed and accomplished in accordance with the prescribed instructions by signing and dating in the designated place(s) in this document.

C.2. Red-line Authority

Authority to red-line (make minor changes during execution) this procedure is given solely to the TD or his designate and shall be approved by the QA Representative. Additionally, approval by the Payload Technical Manager shall

be required, if in the judgement of the TD or QA Representative, experiment functionality may be affected. Within hazardous portions of this procedure, all steps shall be worked in sequence. Out of sequence work or redlines shall be approved by NASA Safety prior to their performance

C.3. Discrepancies

A Quality Assurance Representative designated by D. Ross shall review any discrepancy noted during this procedure, and approve its disposition. <u>Discrepancies will be recorded in a D-log or a DR per Quality Plan P0108</u>. Any time a procedure calls for verification of a specific configuration and that configuration is not the current configuration, it represents a discrepancy of one of three types. These types are to be dealt with as described below.

- 1. If the discrepancy has minimal effect on procedure functionality (such as the state of a valve that is irrelevant to performance of the procedure) it shall be documented in the procedure, together with the resolution. Redlines to procedures are included in this category.
- 2. If the discrepancy is minor and affects procedure functionality but not flight hardware fit or function, it shall be recorded in the D-log. Resolution shall be in consultation with the PTD and approved by the QA representative.
- 3. All critical and major discrepancies, those that effect flight hardware fit or functions, shall be documented in a D-log and also in a Discrepancy Report, per P0108.

TEST PERSONNEL

D.1. Personnel Responsibilities

The performance of this procedure requires a minimum complement of personnel as determined by the Test Director. The person performing the operations (Test Director or Test Engineer) is to sign the "Completed by" sign-off. Any other qualified person or QA person who can attest to the successful performance of this procedure may sign the "Witnessed by" sign-off. The Test Director will perform Pre-Test and Post-Test Briefings in accordance with P0875 "GP-B Maintenance and Testing at all Facilities." Checklists will be used as directed by P0875

D.2. **Personnel Qualifications**

The Test Director must have a detailed understanding of all procedures and facility operations and experience in all of the SMD operations. Test Engineers must have SMD Cryogenic operations experience and an understanding of the operations and procedures used for the cryogenic servicing/maintenance of the Dewar.

D.3. Required Personnel

The following personnel are essential to the accomplishment of this procedure:

FUNCTIONAL TITLE	NUMBER	AFFILIATION
Test Director/Test Engineer	1	Stanford
GP-B Quality Assurance	1	Stanford
NASA Safety Rep	1	SFAO or ANALEX

E. **REQUIREMENTS**

E.1. Electrostatic Discharge Requirements

When working on the space vehicle, proper ESD protection is required. ESD wrist-straps will be checked on a calibrated checker prior to use.

E.2. Lifting Operation Requirements

There are no lifting operations in this procedure

E.3. Hardware/Software Requirements

E.3.1. Commercial Test Equipment

No commercial test equipment is required for this operation.

E.3.2. Ground Support Equipment

The Ground Support Equipment includes the Gas Module, the pump module, the Electrical Module. The Gas Module provides the capability to configure vent paths, read pressures and flow rates, and pump and backfill vent lines. The Pump Module provides greater pumping capacity than the Gas Module, together with additional flow metering capabilities. The vent output of the Gas Module flows through the Pump Module. The Electrical Module contains the instruments listed in Table 1, and provides remote control of valves in the Gas Module, Pump Module, and SMD.

This procedure refers to or calls for the use of hardware located in the Gas Module (Figure 1), Pump Module (Figure 2), and Electrical Module (Table 1).

E.3.3. Computers and Software:

The Data Acquisition System (DAS) is required for this procedure. The DAS reads and displays pressures, temperatures, and flow rates and monitors critical parameters. No additional computers or software are required.

E.3.4. Additional Test Equipment

Description
Varian Helium leak detector
Calibrated leak S/N#:
Cal. due date:

- E.3.5. Additional Hardware
 - 1. Main Tank Vent Cap Assembly

- 2. Main Tank Vent Line
- 3. 4 liter cryogenic thermos (used for nitrogen fills)
- E.3.6. Flight Hardware
 - 1. Main Tank Vent Cap
 - a. Record Part Number:_____
 - 2. Main Tank Vent Cap o-ring
 - a. 2-027V747-75
- E.3.7. Personnel Protective Equipment
 - 1. Cryogenic safety gloves and apron
 - 2. Face Shield
 - 3. Glasses or Goggles
 - 4. Non-absorbent shoes
- E.3.8. Tools

Description
Torque Wrench, 1-1/4-in socket, 60 in- Ib
S/N# :
Cal Due Date:

E.3.9. Expendables

WARNING Ethanol is highly flammable and vapor/air mixtures are Explosive. Exposure hazards include: Inhalation (headache/fatigue), skin (dryness, eyes (redness/pain/burning)

Description	Quantity	Mfr./Part No.
Ethanol	AR	N/A
99.999% pure gaseous helium	AR	N/A
Vacuum Grease	AR	Dow Corning High Vacuum or Apiezon N

E.4. Instrument Pretest Requirements

The GSE instruments required to perform this procedure are listed in Table 1, together with their serial numbers, where available. Instruments that are required to have current calibrations are indicated in the Cal-Required column. Instruments that do not require calibration are those not used to verify performance requirements and are not connected to flight instrumentation. The

status column is to be filled in with the due date of the instrument calibration sticker and verified to be in calibration by QE or QE designee. Serial numbers are to be updated as appropriate.

No.	Location	Description	User Name	Serial No.	Cal Required	Status Cal due date
1	DAS	Power Supply, H-P 6627A	-	3452A01975	Yes	
2	DAS	Power Supply, H-P 6627A	-	3452A01956	Yes	
3	DAS	Data Acquisition/Control Unit H-P 3497A	-	2936A245539	No	-
4	DAS	Digital Multimeter H-P 3458A	-	2823A15047	Yes	
5	EM	Vacuum Gauge Controller Granville-Phillips Model 316	EG-1a, -1b	2827	No	-
6	EM	Vacuum Gauge Controller Granville-Phillips Model 316	AG-2a, -2b	2826	No	-
7	EM	Vacuum Gauge Controller Granville-Phillips Model 316	EG-3	2828	No	-
8	EM	MKS PDR-C-2C	EG-2, FCG	92022108A	No	-
9	EM	Flow meter – Matheson 8170	EFM-1	96186	No	-
10	EM	Flow meter totalizer Matheson 8124	EFM-1	96174	No	-
11	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Main Tank	96-409-11	No	-
12	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Guard Tank	96-409-10	No	-
13	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Well	96-409-9	No	-
14	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Axial Lock	96-409-12	No	-
15	EM	Pressure Controller – MKS 152F-92	EV-7a, -7b	96203410A	No	-
16	EM	Power Supply HP 6038A	H08D Tank Heater	96023407A	Yes	
17	EM	Power Supply HP 6038A	H09D Tank Heater	3511A-13332	Yes	
18	EM	Power Supply HP 6038A	RAV Power Supply	3329A-12486	Yes	
19	EM	Vac Ion Pump power supply Varian 929-0910, Minivac	SIP	5004N	No	-
20	EM	Flow meter totalizer Veeder-Root	PFM-1	576013-716	No	-
21	GM	Pressure Gauge, Heise	AG-1	CC-122077	No	-
22	GM	Pressure Gauge, Marshall Town	AG-3	N/A	No	-
23	GM	Main Tank Heat Exchanger: a) Thermocouple, b) Current meter, c) Temperature set point controller	-	C-19950	No	-
24	GM	Guard Tank Heat Exchanger: a) Thermocouple, b) Current meter, c) Temperature set point controller	-	C-09920	No	-

Table 1. Required Instrumentation and Calibration Status

Disconnect Main Tank Vent Line From Gas Module And Install Flight Main Tank Vent Cap

No.	Location	Description	User Name	Serial No.	Cal Required	Status Cal due date
25	VM	Vacuum Gauge readout, Granville-Phillips 316	VG-3 VG-4	2878	No	-
26	VM	Vacuum Gauge readout, Granville-Phillips 360	VG-1, VG-2 VG-5	96021521	No	-

E.5. Configuration Requirements

- E.5.1. Main Tank Liquid in the Main Tank is subatmospheric.
- E.5.2. Guard Tank The Guard-Tank will contain liquid.
- E.5.3. Well The Well is evacuated.
- E.5.4. Vacuum Shell

The vacuum shell pressure shall be < 5*10E-5 torr.

- E.5.5. Alarm System
 - 1. The DAS alarm system must be enabled and contain the following alarm set-points:
 - a. Top of lead bag temperature (CN175) set at T \leq 6.5 K.
 - b. Top of lead bag temperature set (CN 178) at T \leq 6.0 K.
 - c. Relative Guard Tank Pressure (CN 46) set at $P \ge 0.3$ torr.
 - 2. Ensure watchdog timer enabled
- E.5.6. GSE
 - 1. GSE cabling must be connected between the SMD and the Electrical Module (P/N 5833812) and between the SMD and the Data Acquisition System (P/N 5833811).

E.6. **Optional Non-flight Configurations**

The following modifications or non-flight arrangement of the basic SMD configuration may also be in place. They are incidental to the performance of this procedure and not required.

- 1. The SMD is installed in its transportation and test fixture.
- 2. The ion-pump magnet is installed.
- 3. The Guard Tank Vent Line may be connected to the Gas Module, or it may be disconnected, with a vent cap installed.
- 4. The Vacuum shell pump out port at SV-6 may be connected to the Vacuum Module (P/N 5833816) via a 2-in valve and pumping line, with the valve in either the closed position or in the open position with the Vacuum Module actively pumping the vacuum shell.
- 5. The Fill Cap Assembly is installed at SV-13.

F. **REFERENCE DOCUMENTS**

F.1. Drawings

Drawing No.	Title
LMMS-5833394	Instrumentation Installation

F.2. Supporting documentation

Document No.	Title
LMMC-5835031	GP-B Magnetic Control Plan
GPB-100153C	SMD Safety Compliance Assessment
LM/P479945	Missile System Prelaunch Safety Package
SU/GP-B P0141	FIST Emergency Procedures
LMSC-P088357	Science Mission Dewar Critical Design Review
SU/GP-B P0108	Quality Plan
LMMS GPB-100333	Science Mission Dewar Failure Effects and Causes Analysis
SU/GP-B P059	GP-B Contamination Control Plan
EM SYS229	Accident/Mishap/Incident Notification Process
EWR 127-1	Eastern and Western Range Safety Requirements
KHB 1710.2 Rev E	Kennedy Space Center Safety Practices Handbook

F.3. Additional Procedures

Document No.	Title
SU/GP-B P0879	Accident/Incident/Mishap Notification Process
SU/GP-B P1015	Connect Vacuum Module to SMD
SU/GP-B P0875	GP-B Maintenance and Testing at all Facilities

Operation Number:_	
Date Initiated:	

Time Initiated:_____

G. **OPERATIONS**

G.1. **Pre-Operations Verifications**

o Verify SU QA notified.

Record: Individual notified _____,

Date/time _____/___.

o Verify NASA program representative notified.

Record: Individual notified _____,

o Verify NASA safety representative notified and concurrence has been given to proceed.

Record: Individual notified _____

Date/Time:_____,

- o Record calibration due dates in Table 1 (Sections. E.3.4, E.4)
- Persons actually performing this procedure should list their names in Sec D.3.
- o Verify completion of the pre-operations checklist (Appendix 1).
- o Verify proper operation of GP-B Cryogenic Team oxygen monitor
- o Verify emergency shower is available and operational.

Section Complete Quality_____

G.2. Verify Purity of All Sources of Helium Gas

G.2.1. Record serial number on helium bottle/s.

1	2	3
4	5	6

Verify helium bottle/s have been tested for purity and record Op. Number.

Op. Number:_____

Section Complete QA Witness:_____

WARNING

The following operations involve steps that pose a cryogenic safety hazard. When filling the nitrogen trap in the leak detector, wear cryogenic safety apron, gloves, face shield with glasses or goggles, and non-absorbent shoes. Failure to comply may result in personal injury.

G.3. Start Leak Detector.

- G.3.1. Ensure a six foot clear area is established around leak detector
- G.3.2. Ensure all nonessential personnel are clear of the area
- G.3.3. Make PA announcement for start of hazardous operation
- G.3.4. Turn Area Warning Light to Amber
- G.3.5. Record Leak detector background:_____ scc/s
- G.3.6. Record Leak Detector after three minutes: _____ scc/s
- G.3.7. Briefly pull open outer relief valve to ensure that inner valve is tight.

NOTE:

Hazardous operations are now complete.

- G.3.8. Make PA announcement for end of hazardous operation
- G.3.9. Turn Area Warning Light to Green
- G.3.10. Disband Controlled area

Section Complete Quality Witness:

G.4. Verify Configuration Requirements

G.4.1. Verify liquid in Main Tank is subatmospheric and record pressure.

Main Tank pressure (EG-2) _____ torr.

Ensure DAS alarm system enabled and record set points.

inotan r ngint iv		1 1000 107 71
	 Top of lead bag temperature – ensure CN [175] on DAS alarm list and set to alarm at T ≤ 2.2 K. Record set point. 	K
	 Top of lead bag temperature – ensure CN [178] on DAS alarm list and set to alarm at T ≤ 2.2 K. Record set point. 	K
	 Relative Guard Tank pressure – ensure CN [46] on DAS alarm list and set to alarm at △P ≥ 0.3 torr. Record set point. 	tor
G 4 1	3. Ensure liquid-level alarms enabled and record set points.	1
G.+.	1. <i>Main Tank</i> – ensure liquid-level alarm set \ge 20%.	
	Record set point.	
		%
	 Guard Tank – ensure liquid-level alarm set ≥ 10%. Record set point. 	
		%
	Section Complete Qualit	У
G.5. Rec	ord Initial Configuration and Conditions	
	1. Record Main Tank pumping configuration.	
	o Main Tank actively pumped by AP-1 (Gas Module).	
	o Main Tank actively pumped by PP-1/PP-2 (Pump Module)	
	o Main Tank in non-vented mode.	
G.5.	2. Record Guard Tank Configuration.	
	o Guard Tank contains liquid and is connected to Gas Modu	ıle.
	o Venting through EV-20 (EV-20 open, EV-16 and EV-1	3 closed).
	o Venting through EV-13 (EV-13 open, EV-16 and EV-2	0 closed).
	o Guard Tank contains liquid and is disconnected from Gas	Module.
	o Guard Tank is depleted and is connected to Gas Module.	
	o Guard Tank is depleted and is disconnected from Gas Mo	dule.
G.5.	3. Record initial liquid helium levels as appropriate.	
	1. Main Tank (LL-1D or LL-2D) <u>%</u>	
	2. Guard Tank (LL-5D or LL-6D) <u>%</u>	
G.5.4	4. Record relative Guard Tank pressure (GTV-G): torr.	
	Section Complete QA Witnes	S

G.6. Set up Main Tank in Non-vented Mode.

CAUTION:

During the period of Main Tank vent closure, the temperature at the top of the lead bag are to be continuously monitored. Failure to comply may result in equipment damage.

- G.6.1. Record date/time : _____/____.
- G.6.2. Record Main Tank Pressure (EG-2):_____ torr
- G.6.3. Close SV-9 and torque to 60 in-lbs.
- G.6.4. Enter comment into the DAS "Close Main Tank vent valve SV-9."

Section Complete Quality_____

G.7. Perform Leak-back Test of SV-9 Closure

- G.7.1. Valve off pumps from Main Tank
 - 1. Close/verify closed EV-4, EV-21/22, EV-14, EV-5, EV-8 and EV-12.
 - 2. Close/verify closed AV-5 and AV-6.
- G.7.2. Ensure EV-9, EV-15, and EV-16 closed.
- G.7.3. Open/verify open EV-10 and EV-17.
- G.7.4. Ensure EV-7a/b open.
- G.7.5. Turn on/verify on AP-1
- G.7.6. Ensure Blank-off installed on Auxiliary Gas Section access port no. 1.
- G.7.7. Open AV-8, AV-3 and AV-1.
- G.7.8. Open EV-12 and evacuate to <25 mtorr as measured at AG-2b.
- G.7.9. Close AV-8.
- G.7.10. Wait for 10 minutes and then verify that pressure AG-2b does not increase by more than 10 mtorr in 20 minutes while recording every 4 minutes:

Time (min)	0	4	8	12	16	20	
P (AG-2b) torr							
Pass/Fail:	tor	r/ 20 min	n:				

QA Witness:

- G.7.11. If leak-back test fails, repeat steps G.6.6 through G.6.9.
- G.7.12. Open AV-9 until pressure reaches 0 psig as read on gauge AG-1, then close AV-9.
- G.7.13. Close EV-10, EV-12, and EV-17.

G.7.14. Close all open AV valves.

Section Complete QA Witness:_____

G.8. Disconnect Main Tank Vent Line and Install Vent Cap

- G.8.1. Remove vent line from Main Tank exhaust at SV-9 bayonet:
- G.8.2. Inspect o-rings on Main Tank vent cap assembly and lightly lubricate face seal o-ring with flight Apeizon N grease.
- G.8.3. Install Flight Main Vent Cap and associated Flight O-ring .
 - 1. Record Main Tank Vent Cap P/N#:_____
 - 2. Record Main Tank Flight O-ring P/N#:_____
- G.8.4. Connect Main Tank Vent Cap valve to UTS
- G.8.5. Place UTS Valve Interlock switch in the "over-ride" position.
- G.8.6. Turn on Vane Pump and Converter
- G.8.7. Push the red reset button
- G.8.8. Open the foreline valve TV-2.
- G.8.9. Slowly open TV-4
- G.8.10. Push the sensor button on the vacuum gauge display so that the "Pir" annunciator shows.
- G.8.11. When the pressure on the Piriani gauge reads $<1\times10^{-2}$ torr, push the start button on the turbo controller.
- G.8.12. When the "Normalbetrieb" light comes on, close TV-4 and open the UTS Gate Valve TV-1
- G.8.13. Switch the Valve Interlock switch to the "protected" position.
- G.8.14. Push the button on the vacuum gauge readout so that the "Hi-Vac" annunciator shows, and push the emis button to turn on the cold cathode guage, TG-1
- G.8.15. Connect leak detector to UTS at TV-3
- G.8.16. Leak check all plumbing between UTS and TV-3
- G.8.17. Slowly open TV-3 and close TV-2
- G.8.18. Ensure leak detector background on 10[^]-6 sccs range
 - 1. Record Leak Detector background, _____ scc/s.
- G.8.19. Bag the Vent Cap per best shop practice, purge bag with GHe and record:
 - 1. Initial reading:_____ scc/s
 - 2. Two minute reading:_____ scc/s
 - 3. Pass/Fail: _____ (Pass = **no** increase from initial background)
- G.8.20. Close TV-3 and open TV-2
- G.8.21. Close TV-1 and press stop on Turbo controller

- 1. Verify TV-2 closes
- G.8.22. Install source of Gaseous helium into TV-5
- G.8.23. Slowly open TV-5 and backfill vent cap to ~830 torr as read on TG-3
- G.8.24. Close Flight Main Tank Vent Cap valve
- G.8.25. Remove UTS/leak detector from Flight Main Tank Vent Cap
- G.8.26. Install flight Swagelok cap onto Flight Main Tank Vent Cap valve, (this is included in vent cap assembly)
- G.8.27. Request LM mechanical team to stake or wire tie Main Tank Vent Cap and Swagelok cap per best shop practice ref drawing 8A03624 Rev E
 - 1. LM technician stamp:_____
 - 2. SU/LM Quality:_____
- G.8.28. Photograph Flight Main Tank Vent Cap.

Section Complete QA Witness_____

G.9. Establish Final Configuration

- G.9.1. Ensure EV-4, EV-21/22, EV-14, EV-5, EV-8, and EV-12 closed.
- G.9.2. Close/verify closed EV-9, EV-10, and EV-17.
- G.9.3. Open EV-16.
- G.9.4. Ensure all AV valves closed.

- G.9.5. Ensure DAS alarm enabled and record set points if changed
 - o Thermal conditions substantially unchanged, alarm set points for the lead bags are unchanged and set to alarm.
 - o Thermal conditions substantially changed, temperature alarm points reset as follows:
 - a. Top of Lead Bag set point [CN _____ K (\leq 6.5 K) 175]
 - b. Top of Lead Bag set point [CN _____ K (\leq 6.0 K) 178]
- G.9.6. Ensure liquid level sensor alarms enabled, as appropriate, and record set points if changed.
 - 1. Main Tank Level Set Point _____%
 - 2. Guard Tank Set Point _____%
- G.9.7. Verify completion of post operations checklist
- G.9.8. Ensure Guard Tank pressure on DAS alarm list and set to alarm at 0.3 torr differential.

Section Complete Quality_____

Н.	PROCEDURE COMPLETION SIGN OFF
Comp	eted by:
Witnes	ssed by:
Date:	
Time:_	

Quality Manager	Date
Payload Test Director	Date

I. APPENDIX 1

DATE	CHECKLIST ITEM	COMPLETE D	REMARKS
	1. Verify the test procedure being used is the latest revision.		
	2. Verify all critical items in the test are identified and discussed with the test team.		
	3. Verify all required materials and tools are available in the test area.		
	4. Verify all hazardous materials involved in the test are identified to the test team.		
	5. Verify all hazardous steps to be performed are identified to the test team.		
	6. Verify each team member is certified for the task being performed and knows their responsibilities.		
	7. Confirm that each test team member clearly understands that he/she has the authority to stop the test if an item in the procedure is not clear.		
	8. Confirm that each test team member clearly understands that he/she must stop the test if there is any anomaly or suspected anomaly.		
	9. Notify management of all discrepancy reports or d-log items identified during procedure performance. In the event an incident or major discrepancy occurs during procedure performance management will be notified immediately.		
	10. Perform an Engineering and Safety High- Bay walk down. Verify all discrepancies are corrected prior to start of operation.		
	11. Confirm that each test team member understands that there will be a post-test team meeting.		
	Team Lead Signature:		

J. APPENDIX 2

DATE	CHECKLIST ITEM	COMPLETED	REMARKS
	1. Verify all steps in the procedure were successfully completed.		
	2. Verify all anomalies discovered during testing are properly documented.		
	3. Ensure management has been notified of all major or minor discrepancies.		
	4. Ensure that all steps that were not required to be performed are properly identified.		
	5. If applicable sign-off test completion.		
	6. Verify all RAV valve operations have been entered in log book		
	7. Verify the as-run copy of procedure has been filed in the appropriate binder		
	Team Lead Signature:		

K. APPENDIX 3– CONTINGENCY/EMERGENCY RESPONSES

Condition	Circumstance	Response
Power Failure		Wait for power restoration, and resume procedure
Oxygen Monitor Alarm	Anytime	Evacuate room
Liquid nitrogen spill	Anytime	Clear area until all spilled liquid has evaporated
Burst disk rupture (MT/GT)	Any time	Evacuate room