GRAVITY PROBE B PROCEDURE FOR SCIENCE MISSION DEWAR

CONNECT MAIN TANK VENT LINE TO GAS MODULE – MAIN TANK SUBATMOSPHERIC

To be performed at Vandenberg Air Force Base building 1610

WARNING: THIS DOCUMENT CONTAINS HAZARDOUS OPERATIONS

P1004

September 30, 2002

Prepared by:	Checked by:	
Date	 Dave Murray	Date
Cryogenic Test	Cryogenic Test	
Approvals:		
Date		Date
Dorrene Ross	Harv Moskowitz	
Quality Assurance	LMMS Safety	
Date	<u> </u>	Date
Rob Brumley	Mike Taber	
Program Technical Manager	Test Director	
Date		
NASA/KSC Safety		

Gravity Probe B Program P1004 rev -

REVISION RECORD

REVISION	ECO	PAGES	DATE

Page i

Table of Contents

Α.	SCOPE	2
B.	SAFETY	2
	B.1. Potential Hazards	
	B.2. Mitigation of Hazards	2
	B.3. Mishap Notification	3
C.	QUALITY ASSURANCE	3
	C.1. QA Notification	3
	C.2. Red-line Authority	3
	C.3. Discrepancies	4
D.	TEST PERSONNEL	4
	D.1. Personnel Responsibilities	4
	D.2. Personnel Qualifications	4
	D.3. Required Personnel	4
E.	REQUIREMENTS	
	E.1. Electrostatic Discharge Requirements	
	E.2. Lifting Operation Requirements	
	E.3. Hardware/Software Requirements	
	E.4. Instrument Pretest Requirements	
	E.5. Configuration Requirements	
	E.6. Optional Non-flight Configurations	
F.	REFERENCE DOCUMENTS	
	F.1. Drawings	
	F.2. Supporting documentation	
_	F.3. Additional Procedures	
G.	OPERATIONS	
	G.1. Pre-Operations Verifications	
	G.2. Verify Purity of All Sources of Helium Gas	
	G.3. Verify Configuration Requirements	
	G.5. Close and Leak Check Main Tank Vent Valve	
	G.6. Connect Main Tank Vent Line	
	G.7. Leak Check Main Tank Vent Line	
	G.8. Reestablish Initial Gas Module Configuration	
	G.9. Resume Pumping on Main Tank	
	G.10. Establish Final Alarm Configuration	
H.	PROCEDURE COMPLETION SIGN OFF	21
I.	APPENDIX 1 PRE OPERATIONS CHECKLIST	26
J.	APPENDIX 2 POST OPERATIONS CHECKLIST	28
K	APPENDIX 3- CONTINGENCY/EMERGENCY RESPONSES	20

List of Abbreviations and Acronyms

AG-x	Gauge x of Gas Module auxiliary section	MT	Main Tank
AMI ATC	American Magnetics Inc. Advanced Technology Center	MTVC MTVC-G	Main Tank Vent Cap Main Tank Vent Cap pressure
Aux	Auxiliary	MTVC-RV	gauge Main Tank Vent Cap relief valve
AV-x	Valve x of Gas Module auxiliary section	MTVC-V	Main Tank Vent Cap valve
Bot CN [xx] DAS	Bottom Data acquisition channel number Data Acquisition System	NBP ONR PFCG	Normal boiling point Office of Naval Research Fill Cap assembly pressure Gauge
EFM EG-x	Exhaust gas Flow Meter Gauge x of Gas Module exhaust section	PFM PG-x	Pump equipment Flow Meter Gauge x of Pump equipment
EM ERV-x	Electrical Module Relief valve of Gas Module exhaust section	PM psi	Pump Module pounds per square inch
EV-x	Valve number x of Gas Module exhaust section	psig	pounds per square inch gauge
FCV FIST GHe GM GP-B GSE GT GTVC GTVC-G	Fill Cap Valve Full Integrated System Test Gaseous Helium Gas Module Gravity Probe-B Ground Support Equipment Guard Tank Guard Tank Vent Cap Guard Tank Vent Cap pressure gauge Guard Tank Vent Cap relief valve	PTD PV-x QA RAV-x RGA SMD STV SU SV-x TG-x	Payload Test Director Valve x of the Pump equipment Quality Assurance Remote Actuated Valve-x Residual Gas Analyzer Science Mission Dewar SMD Thruster vent Valve Stanford University SMD Valve number x Gauge x of Utility Turbo System
GTVC-V GTV-G GTV-RV GTV-V HX-x KFxx LHe LHSD Liq	Guard Tank Vent Cap valve Guard Tank vent pressure gauge Guard Tank vent relief valve Guard Tank vent valve Vent line heat exchanger in Gas Module Quick connect o-ring vacuum flange (xx mm diameter) Liquid Helium Liquid Helium Supply Dewar Liquid	TV-x UTS Vac VCP-x VCRV-x VCV-x VDC-x VDC VF-x VG-x	Valve x of Utility Turbo System Utility Turbo System Vacuum Vent cap pressure gauge Vent cap relief valve Vent cap valve Volts Direct Current Liquid helium Fill line valve Gauge x of Vacuum Module
LL LLS LMMS LMSC	Liquid level Liquid level sensor Lockheed Martin Missiles and Space Lockheed Missiles and Space Co.	VM VV-x VW-x	Vacuum Module Valve x of Vacuum Module Valve x of Dewar Adapter

Connect Main Tank Vent Line to Gas Module – Main Tank Subatmospheric

Gravity Probe B Program P1004 rev -

LIST OF SPECIFIC HEADING DEFINITIONS

Each type of alert message will precede the procedural step to which it applies

NOTE: Used to indicate an operating procedure of such importance that it must be emphasized
 CAUTION: Used to identify hazards to equipment
 WARNING: Used to identify hazards to personnel

A. SCOPE

This procedure describes the steps required to remove the Main Tank Vent Cap and connect the Main Tank vent line to the Gas Module, while liquid in the Main Tank is subatmospheric. The steps include:

Close and leak check Main Tank vent valve (SV-9)

Remove Vent Cap

Install and leak check vent line

Reestablish pumping on Main Tank (optional) with Pump Module or Gas Module.

The hazardous operation contained in this procedure is the handling of cryogenic nitrogen to service the leak detector.

B. **SAFETY**

B.1. Potential Hazards

Personal injury and hardware damage can result during normal positioning, assembly and disassembly of hardware.

Liquid helium used in the SMD represents a hazardous material for the personnel involved in the operations. Cryogenic burns can be caused by contact with the cold liquid or gas, high pressures can result if boiling liquid or cold gas is confined without a vent path, and asphyxiation can result if the vent gas is allowed to accumulate.

The SMD Safety Compliance Assessment, document GPB-100153C and the Missile System Prelaunch Safety Package LM/P479945 discuss the safety design, operating requirements and the hazard analysis of the SMD.

B.2. Mitigation of Hazards

B.2.1. Lifting hazards

There are no lifting operations in this procedure

B.2.2. Cryogenic Hazards

In VAFB building 1610, the GP-B cryogenic team provides an oxygen deficiency monitor that alarms when the oxygen level is reduced to 19.5%. Additional temperature and pressure alarms, provided by the DAS, warn of potential over-pressure conditions. Emergency vent lines are installed over the four burst disks to direct any flow to the outside area.

Only authorized and trained personnel are allowed in VAFB facilities without escort. All personnel working on platforms at a height 30 inches or more off the floor are required to have an approved air tank (emergency breathing apparatus) within easy reach. Note that tank need not be kept available when working from ladder. In the unlikely event of

a large LHe spill all employees have been instructed to evacuate the room and contact NASA and VAFB safety.

The following additional requirements apply to all personnel involved directly in cryogenic operations. Gloves that are impervious to liquid helium and liquid nitrogen are to be worn whenever the possibility of splashing or impingement of high-velocity cryogens exists or when handling equipment that has been cooled to cryogenic temperatures. Protective clothing, non-absorbent shoes and full-face shields with eye goggles/glasses are to be worn whenever the possibility of splashing cryogens exists.

B.2.3. Other Hazards

All tools or other items used with the potential to damage the space vehicle shall be tethered.

B.3. Mishap Notification

B.3.1. Injury

In case of any injury or illness requiring medical treatment

<u>DIAL 911</u>

B.3.2. Hardware Mishap

In case of an accident, incident, or mishap, notification is to proceed per the procedures outlined in Lockheed Martin Engineering Memorandum EM SYS229 and Stanford University GP-B P0879. Additionally, VAFB NASA Safety and 30th Space Wing Safety will be notified as required.

B.3.3. Contingency Response

Responses to contingencies/emergency (e.g., power failure) are listed in Appendix 3.

C. **QUALITY ASSURANCE**

C.1. **QA Notification**

The NASA program and the NASA safety representative and SU QA shall be notified 24 hours prior to the start of this procedure. Upon completion of this procedure, the QE Manager will certify his/her concurrence that the effort was performed and accomplished in accordance with the prescribed instructions by signing and dating in the designated place(s) in this document.

C.2. Red-line Authority

Authority to red-line (make minor changes during execution) this procedure is given solely to the TD or his designate and shall be approved by the QA Representative. Additionally, approval by the Payload Technical Manager shall be required, if in the judgement of the TD or QA Representative, experiment functionality may be affected. Within hazardous portions of this procedure, all steps shall be worked in sequence. Out-of-sequence work or redlines shall be approved by NASA Safety prior to their performance

C.3. **Discrepancies**

A Quality Assurance Representative designated by D. Ross shall review any discrepancy noted during this procedure, and approve its disposition. Discrepancies will be recorded in a D-log or a DR per Quality Plan P0108. Any time a procedure calls for verification of a specific configuration and that configuration is not the current configuration, it represents a discrepancy of one of three types. These types are to be dealt with as described below.

- 1. If the discrepancy has minimal effect on procedure functionality (such as the state of a valve that is irrelevant to performance of the procedure) it shall be documented in the procedure, together with the resolution. Redlines to procedures are included in this category.
- 2. If the discrepancy is minor and affects procedure functionality but not flight hardware fit or function, it shall be recorded in the D-log. Resolution shall be in consultation with the PTD and approved by the QA representative.
- 3. All critical and major discrepancies, those that effect flight hardware fit or functions, shall be documented in a D-log and also in a Discrepancy Report, per P0108.

D. TEST PERSONNEL

D.1. Personnel Responsibilities

The performance of this procedure requires a minimum complement of personnel as determined by the Test Director. The person performing the operations (Test Director or Test Engineer) is to sign the "Completed by" sign-off. Any other qualified person or QA person who can attest to the successful performance of this procedure may sign the "Witnessed by" sign-off. The Test Director will perform Pre-Test and Post-Test Briefings in accordance with P0875 "GP-B Maintenance and Testing at all Facilities." Checklists will be used as directed by P0875

D.2. Personnel Qualifications

The Test Director must have a detailed understanding of all procedures and facility operations and experience in all of the SMD operations. Test Engineers must have SMD Cryogenic operations experience and an understanding of the operations and procedures used for the cryogenic servicing/maintenance of the Dewar

D.3. Required Personnel

The following personnel are essential to the accomplishment of this procedure:

FUNCTIONAL TITLE	NUMBER	AFFILIATION
Test Director/Test Engineer	1	Stanford
GP-B Quality Assurance	1	Stanford
NASA Safety Rep	1	SFAO or ANALEX

E. **REQUIREMENTS**

E.1. Electrostatic Discharge Requirements

When working on the space vehicle, proper ESD protection is required. The wrist-strap will be checked using an appropriate calibrated checker prior to use.

E.2. Lifting Operation Requirements

There are no lifting operations in this procedure

E.3. Hardware/Software Requirements

E.3.1. Commercial Test Equipment

No commercial test equipment is required for this operation.

E.3.2. Ground Support Equipment

The Ground Support Equipment includes the Gas Module, the Electrical Module. The Gas Module provides the capability to configure vent paths, read pressures and flow rates, and pump and backfill vent lines. The Pump Module provides greater pumping capacity than the Gas Module, together with additional flow metering capabilities. The vent output of the Gas Module flows through the Pump Module. The Electrical Module contains the instruments listed in Table 1, and provides remote control of valves in the Gas Module, Pump Module, and SMD.

E.3.3. Computers and Software:

The Data Acquisition System (DAS) and data acquisition software are required for this procedure. The DAS reads and displays pressures, temperatures, and flow rates and monitors critical parameters. No additional computers or software are required.

E.3.4. Additional Test Equipment

Description
Utility Turbo System (UTS) (see Figure 3)
Varian Helium leak detector
calibrated leak S/N #:
cal. Due date:

E.3.5. Additional Hardware

- 1. Main Tank Vent Cap Assembly
- 2. Main Tank Vent Line
- 3. 4 liter cryogenic thermos (used for nitrogen fills)

E.3.6. Tools

Description	
Torque Wrench, 1-1/4-in socket, 60 in-	
S/N #	
Cal Due Date:	

E.3.7. Personnel Protective Equipment

- 1. Cryogenic safety gloves and apron
- 2. Face Shield

- 3. Goggles/glasses
- 4. Non-absorbent shoes

E.3.8. Expendables

Warning alcohol is a skin irritant, potentially toxic if skin absorbed, and flammable. All hazardous waste will be placed into approved waste containers.

Description	Quantity	Mfr./Part No.
Alcohol	AR	N/A
99.999% pure gaseous helium	AR	N/A
Vacuum Grease	AR	Apeizon or Dow Corning High Vacuum grease

E.4. Instrument Pretest Requirements

The GSE instruments required to perform this procedure are listed in Table 1, together with their serial numbers, where available. Instruments that are required to have current calibrations are indicated in the Cal-Required column. Instruments that do not require calibration are those not used to verify performance requirements and are not connected to flight instrumentation. The status column is to be filled in with the due date of the instrument calibration sticker and verified to be in calibration by QE or QE designee.

Table 1. Required Instrumentation and Calibration Status

No.	Location	Description	User Name	Serial No.	Cal Required	Status Cal due date
1	DAS	Power Supply, H-P 6627A	-	3452A01975	Yes	
2	DAS	Power Supply, H-P 6627A	-	3452A01956	Yes	
3	DAS	Data Acquisition/Control Unit H-P 3497A	-	2936A245539	No	-
4	DAS	Digital Multimeter H-P 3458A	-	2823A15047	Yes	
5	EM	Vacuum Gauge Controller Granville-Phillips Model 316	EG-1a, -1b	2827	No	-
6	EM	Vacuum Gauge Controller Granville-Phillips Model 316	AG-2a, -2b	2826	No	-
7	EM	Vacuum Gauge Controller Granville-Phillips Model 316	EG-3	2828	No	-
8	EM	MKS PDR-C-2C	EG-2, FCG	92022108A	No	-
9	EM	Flow meter – Matheson 8170	EFM-1	96186	No	-
10	EM	Flow meter totalizer Matheson 8124	EFM-1	96174	No	-
11	EM	Liquid Helium Level Controller	LLS Main	96-409-11	No	-

No.	Location	Description	User Name	Serial No.	Cal Required	Status Cal due date
		American Magnetics, Inc. 136	Tank			
12	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Guard Tank	96-409-10	No	1
13	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Well	96-409-9	No	-
14	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Axial Lock	96-409-12	No	-
15	EM	Pressure Controller – MKS 152F-92	EV-7a, -7b	96203410A	No	-
16	EM	Power Supply HP 6038A	H08D Tank Heater	96023407A	Yes	
17	EM	Power Supply HP 6038A	H09D Tank Heater	3511A-13332	Yes	
18	EM	Power Supply HP 6038A	RAV Power Supply	3329A-12486	Yes	
19	EM	Vac Ion Pump power supply Varian 929-0910, Minivac	SIP	5004N	No	-
20	EM	Flow meter totalizer Veeder-Root	PFM-1	576013-716	No	-
21	GM	Pressure Gauge, Heise	AG-1	CC-122077	No	-
22	GM	Pressure Gauge, Marshall Town	AG-3	N/A	No	-
23	GM	Main Tank Heat Exchanger: a) Thermocouple, b) Current meter, c) Temperature set point controller	-	C-19950	No	-
24	GM	Guard Tank Heat Exchanger: a) Thermocouple, b) Current meter, c) Temperature set point controller	-	C-09920	No	-
25	VM	Vacuum Gauge readout, Granville-Phillips 316	VG-3 VG-4	2878	No	-
26	VM	Vacuum Gauge readout, Granville-Phillips 360	VG-1, VG-2 VG-5	96021521	No	-

E.5. Configuration Requirements

E.5.1. Main Tank

Liquid in the Main Tank is subatmospheric.

E.5.2. Guard Tank

The Guard-Tank may contain liquid, or be depleted. There is no required liquid level. When the Guard Tank is depleted, its pressure must be independently regulated from a source of 99.999% pure helium gas.

E.5.3. Well

The Well is evacuated

E.5.4. SMD Vacuum Shell

The Vacuum Shell pressure shall be <5 *10E-5.

E.5.5. Alarm System

1. The DAS alarm system must be enabled and contain the following

alarm set-points:

- a. Top of lead bag temperature (175) set at $T \le 6.5$ K.
- b. Top of lead bag temperature set (CN 178) set at $T \le 6.0$ K.
- c. Relative Guard Tank Pressure (CN 46) set at $P \ge 0.3$ torr.
- 2. The watchdog timer must be armed

E.5.6. GSE and Non-flight Hardware

 GSE cabling must be connected between the SMD and the Electrical Module (P/N 5833812) and between the SMD and the Data Acquisition System (P/N 5833811).

E.6. Optional Non-flight Configurations

The following modifications or non-flight arrangement of the basic SMD configuration may also be in place. They are incidental to the performance of this procedure and not required.

- 1. The SMD is installed in its transportation and test fixture.
- 2. The ion-pump magnet is installed.
- 3. The Guard Tank may be connected to the Gas module via a vacuum insulated or line, or be disconnected at GTVVA with a Vent Cap installed.
- 4. The Vacuum shell pump out port at SV-14 may be connected to the Vacuum Module (P/N 5833816) via a 2-in valve operator and pumping line, with the valve in either the open or closed position. The Vacuum Module pump may be; off, actively pumping the pumping line up to a closed SV-14, or actively pumping the vacuum shell.
- 5. The Fill Cap Assembly is installed at SV-13 (See Figure 3)

F. REFERENCE DOCUMENTS

F.1. Drawings

Drawing No.	Title
LMMS-5833394	Instrumentation Installation

F.2. Supporting documentation

Document No.	Title
LMMC-5835031	GP-B Magnetic Control Plan
GPB-100153C	SMD Safety Compliance Assessment
LM/P479945	Missile System Prelaunch Safety Package
SU/GP-B P0141	FIST Emergency Procedures
LMSC-P088357	Science Mission Dewar Critical Design Review
SU/GP-B P0108	Quality Plan
LMMS GPB-100333	Science Mission Dewar Failure Effects and Causes Analysis
SU/GP-B P059	GP-B Contamination Control Plan
EM SYS229	Accident/Mishap/Incident Notification Process
EWR 127-1	Eastern and Western Range Safety Requirements

7	
KHB 1710.2 rev E	Managarity Occasion Canada Cafaty Durastica a Haradica ale
I KHB I/IU2 rev E	Kennedy Space Center Safety Practices Handbook

F.3. Additional Procedures

Document No.	Title
SU/GP-B P0879	Accident/Incident/Mishap Notification Process
SU/GP-B P1015	Connect Vacuum Module to SMD
SU/GP-B P0875	GP-B Maintenance and Testing at all Facilities

G.

		Operation Number: Date Initiated: Time Initiated:
OPF	RATIONS	
G.1.		perations Verifications rify SU QA notified.
		ecord: Individual notified,
		tte/time
		rify NASA program representative notified.
		ecord: Individual notified,
	o Ve	rify NASA safety representative notified and concurrence has been given proceed.
	Re	cord: Individual notified
	Da	te/Time:,
	o Re	ecord calibration due dates in Table 1 (Sections. E.3.4, E.4)
	o Pe	ersons actually performing this procedure should list their names in Sec 3.
	o Ve	rify completion of the pre-operations checklist (Appendix 1).
	o Ve	rify proper operation of GP-B Cryogenic Team oxygen monitor
	o Ve	rify availability and functioning of emergency shower
		Section Complete QA Witness:
G.2.	Verify	Purity of All Sources of Helium Gas
G.Z.	-	Record serial number on helium bottle/s.
		1 2 3 4 5 6
	G.2.2.	Verify helium bottle/s have been tested for purity and record Op. Number. Op. Number:
		QA Witness:

G.3. Verify Configuration Requirements

G.3.1. Ensure Electrical Module interlock override switch is off (blinking light off) to prevent accidental opening of EV-15 and EV-16.

	G.3.2.	Ve	rify liquid in Main Tank subatmospheric and record:	
		1.	Temperature at bottom of Main Tank CN [09]k	ζ.
		2.	Main Tank Pressure torr	
	G.3.3.	En	sure DAS alarm system enabled and record set points.	
		1.	Top of lead bad temperature – ensure CN [175] on DAS alarm list and set to alarm at T \leq 6.0 K. Record set point.	K
		2.	Top of lead bag temperature – ensure CN [178] on DAS alarm list and set to alarm at $T \le 6.0$ K. Record set point.	K
		3.	Relative Guard Tank pressure – ensure CN [46] on DAS alarm list and set to alarm at $\Delta P \ge 0.3$ torr. Record set point.	tor
	G.3.4.	En	sure liquid-level alarms enabled and record set points.	
		1.	Main Tank – ensure liquid-level alarm set $\ge 20\%$. Record set point.	%
		2.	Guard Tank – ensure liquid-level alarm set \geq 20%, if Guard Tank contains liquid. Record set point.	%
			Section Complete: QA Witness:	
G.4.	Estab	ish	Gas Module Configuration and Record Initial Condition	ns
	G.4.1.	Re	cord Guard Tank pressure relative to atm. (GTV-G)	torr.
	G.4.2.	_	cord Guard Tank configuration:	
		Re	Cord Guard Tarik Corniguration.	
			Guard Tank contains liquid and is not connected to Gas I	Module.
				Module.
			Guard Tank contains liquid and is not connected to Gas	Module.
_			Guard Tank contains liquid and is not connected to Gas I 1. Ensure GTV-V open.	
		0	Guard Tank contains liquid and is not connected to Gas I 1. Ensure GTV-V open. 2. Close/verify closed all EV valves.	
		0	Guard Tank contains liquid and is not connected to Gas I 1. Ensure GTV-V open. 2. Close/verify closed all EV valves. Guard Tank is depleted and not connected to Gas Modul	le.
		0	Guard Tank contains liquid and is not connected to Gas I 1. Ensure GTV-V open. 2. Close/verify closed all EV valves. Guard Tank is depleted and not connected to Gas Modul 1. Ensure GTV-V closed.	le.
		0	Guard Tank contains liquid and is not connected to Gas I 1. Ensure GTV-V open. 2. Close/verify closed all EV valves. Guard Tank is depleted and not connected to Gas Modul 1. Ensure GTV-V closed. 2. Ensure Guard Tank pressure regulated by APR-2 at 0	le. GTV-Va.
		0	Guard Tank contains liquid and is not connected to Gas II. Ensure GTV-V open. Close/verify closed all EV valves. Guard Tank is depleted and not connected to Gas Modul Ensure GTV-V closed. Ensure Guard Tank pressure regulated by APR-2 at Gas Close/verify closed all EV valves. Guard Tank contains liquid, is connected to Gas module,	le. GTV-Va.
		0	Guard Tank contains liquid and is not connected to Gas I 1. Ensure GTV-V open. 2. Close/verify closed all EV valves. Guard Tank is depleted and not connected to Gas Modul 1. Ensure GTV-V closed. 2. Ensure Guard Tank pressure regulated by APR-2 at G 3. Close/verify closed all EV valves. Guard Tank contains liquid, is connected to Gas module, through EV-13.	le. GTV-Va.

	o Guard Ta	ank contair EV-20.	ns liquid, is	connecte	d to Gas n	nodule, an	d venting
	1. Ensu	re GTV-V	open.				
	2. Ensu	re EV-20 d	pen.				
	3. Ensu	re all other	EV valves	s closed.			
	o Guard Ta	ank deplet	ed and cor	nected to	Gas Modu	ıle.	
	1. Ensu	re GTV-V	open.				
	2. Ensu	re Guard 7	Tank press	ure regula	ted by API	R-2 at EV-	23.
	3. Ensu	re EV-23 d	pen.				
	4. Close	e/verify clo	sed all oth	er EV-valv	es.		
G.4.3.	Close/verify	closed all	AV valves.				
G.4.4.	Record statu	s of Main	Tank Vent	Сар			
	1. Tank pre	ssure (VC	P-1):	_ torr			
	2. Seal pres	ssure (VCF	P-2):	psig			
			Sec	tion Comp	lete QA W	itness:	
G.5. Close	and Leak Ch	eck Main	Tank Vent	t Valve			
During the period of be continuously mo		ent closure e test dire	•				_
G.5.1.	Close SV-9 t	to 60 in-lbs	and recor	d date/time	e :	/	
5.10.1.1						itness:	
G.5.2.	Install a pum	nping line b	etween the	e Main Tar			
	valve VCV-1	and the A	uxiliary Ga	s Section	access po	rt no. 1.	
G.5.3.	Turn on/verif	fy on pump	AP-1.				
G.5.4.	Open AV-3 a	and AV-8.					
G.5.5.	Open VCV-1	and evac	uate to <2	5 mtorr me	asured at	AG-2b.	
G.5.6.	Close AV-8.						
G.5.7.	Open AV-1.						
G.5.8.	Open AV-9 ι	until pressu	ure at AG-1	reaches (0.0 psig, a	nd close A	V-9.
G.5.9.	Close VCV-1	1.					
G.5.10.	Verify that p				e by more	than 1 tor	r in 20
	Time (min)	0	4	8	12	16	20

Connect Main Tank Vent Line to Gas Module – Main Tank Subatmospheric

Gravity Probe B Program P1004 rev -

	VCP-1 (torr)						
G.5.11.	Pass/Fail:	to	orr/ 20 min	:			
					QA W	itness:	
G.5.12.	If leak-back t	est fails, re	etorque S\	/-9 to 60 ir	n-lbs and re	epeat test.	
	1. Verify that 20 minute	•		oes not cha ach minute	•	ore than 1	torr in
	Time (min)	0	4	8	12	16	20
	VCP-1 (torr)						
	2. Pass/Fail	:	torr/ 20	min:	·		
					QA W	itness:	
G.5.13.	Close/verify of	closed all A	AV valves.				
G.5.14.	Remove pum	nping line f	rom Main	Tank Vent	Cap Asse	mbly.	
			Se	ction Com	plete QA V	Witness:	

G.6. Connect Main Tank Vent Line

- G.6.1. Remove Vent Cap record location:
 - o Bayonet at SV-9.
 - o Bayonet at end of short line opposite SV-9.
- G.6.2. Remove o-ring from bayonet receptacle and inspect for defects or damage. Replace if any found and record in o-ring log.
- G.6.3. Clean o-ring and lightly coat with Apiezon N before installation.
- G.6.4. Install Main Tank vent line between Gas Module (at inlet to Main Tank heat exchanger) and location of Vent Cap removal. Install bags around new joint(s).

Section Complete QA Witness:

WARNING

The following operations involve steps that pose a cryogenic safety hazard. When filling the nitrogen trap in the leak detector, wear cryogenic safety apron, gloves, face shield with goggles/glasses, and non-absorbent shoes. Failure to comply may result in personal injury.

G.7. Leak Check Main Tank Vent Line

- G.7.1. Ensure a six foot clear area is established around leak detector.
- G.7.2. Make PA announcement for start of a hazardous operation.
- G.7.3. Ensure all nonessential personnel depart the controlled area.
- G.7.4. Ensure facility warning light is changed to amber.
- G.7.5. Turn on and verify calibration of leak detector. Record

1.	calibrated leak value	 SCCS

2	measured	laak valua	SCCS
~ .	measmed	iear vaiue	うししう

NOTE

The operations that involve steps that pose a cryogenic safety hazard are now complete. Make a PA announcement for end of the hazardous operation and to resume of normal operations. Turn Area Warning Lights to Green and disband controlled area.

- G.7.6. Connect leak detector to the UTS at access port (LD).
- G.7.7. Ensure EV-5 closed.
- G.7.8. Install UTS/Leak detector to Access port #3 of Gas Module and start the UTS pumping up to closed EV-5, as follows:
 - 1. Place valve interlock switch in "over-ride" position.
 - Turn on vane pump and converter (Note: converter switch provides power to turbopump controller and pirani and cold-cathode vacuumgauge display.

- 3. Push the red "reset" button to activate the interlock over-ride circuit. (the yellow-orange indicator light will come on).
- 4. Turn "foreline" switch on, to open TV-2, and verify that the switch is illuminated.
- 5. Push the "Sensor" button on the vacuum gauge display to read the foreline pressure (TG-4). This is the pirani gauge. The "Pir" annunciator will appear in upper left corner of the display).
- 6. Open TV-4.
- 7. When foreline pressure (TG-4) < 1 torr, push "Start" button on turbo controller.
- 8. When the "Normalbetrieb" light illuminates on turbo controller, indicating turbopump is up to speed, close TV-4 and open gate valve TV-1.
- 9. Switch the valve interlock switch to the "protected" position.
- 10. Push the "Sensor" button on the vacuum gauge readout so that the "Hi-Vac" annunciator shows, and push the "Emis" button to turn on the cold cathode gauge (TG-1).
- 11. Record the pumping line pressure (TG-1) _____ torr.
- G.7.9. Open EV-4, EV-14, and EV-17.
- G.7.10. Record settings of EV-7a _____ and EV-7b____ and open fully.
- G.7.11. Evacuate Main Tank vent plumbing with Gas Module
 - 1. Open AV-6 and AV-8.
 - 2. Once pressure is < 25 mtorr as measured at AG-2b, close AV-6 and AV-8.
- G.7.12. Open EV-5 and evacuate with UTS/leak detector, as follows:
 - 1. Verify that leak detector is operational and pumping up to closed valve TV-3.
 - 2. Open TV-3 and close the foreline valve (TV-2)
 - 3. Pump until background level is $< 1 \times 10^{-5}$ scc/s.
- G.7.13. Purge bagged joints with GHe for 2 minutes and record:
 - 1. O-ring location:

Time (min)	0	1/2	1	1 1/2	2
LD (ssc/s)					

2. Pass/Fail: (Pass= **no** increase from initial background)

3. O-ring location:

Time (min)	0	1/2	1	1 1/2	2

Connect Main Tank Vent Line to Gas Module – Main Tank Subatmospheric

Gravity Probe B Program P1004 rev -

LD (ssc/s) 4. Pass/Fail:	(F	ll Pass= no incr	ease from	initial backg	round
E Oring loos	,			3	
5. O-ring locat					
Time (min)	0	1/2	1	1 1/2	2

6. Pass/Fail: _____ (Pass= **no** increase from initial background)

G.7.14. Close EV-4, EV-5, and EV-14 and remove UTS/Leak Detector if not going to use for more operations.

Section Complete QA Witness:_____

G.8. Reestablish Initial Gas Module Configuration

G.8.1. Place Gas Module valves in initial configuration:

Note:

Before reestablishing Main Tank venting place the Gas Module valves in the same states they were in to start with (i.e., the states established in Paragraph G.3.3. Those states are repeated below.

- o Guard Tank contains liquid and is not connected to Gas Module.
 - 3. Ensure GTV-V open.
 - 4. Close/verify closed all EV valves.
- o Guard Tank is depleted and not connected to Gas Module.
 - 4. Ensure GTV-V closed.
 - 5. Ensure Guard Tank pressure regulated by APR-2 at GTV-Va.
 - 6. Close/verify closed all EV valves.
- Guard Tank contains liquid, is connected to Gas module, and venting through EV-13.
 - 4. Ensure GTV-V open.
 - 5. Ensure EV-13 open.
 - 6. Ensure all other EV valves closed.
- Guard Tank contains liquid, is connected to Gas module, and venting through EV-20.
 - 4. Ensure GTV-V open.
 - 5. Ensure EV-20 open.
 - 6. Ensure all other EV valves closed.
- Guard Tank depleted and connected to Gas Module.
 - 5. Ensure GTV-V open.
 - 6. Ensure Guard Tank pressure regulated by APR-2 at EV-23.
 - 7. Ensure EV-23 open.
 - 8. Close/verify closed all other EV-valves.
- G.8.2. Close/verify closed all AV valves.

Section Complete QA Witness:_____

G.9. Resume Pumping on Main Tank

- G.9.1. Record desired Main Tank configuration
 - o Pump on Main Tank with Pump Module (PP-1/PP-2), perform Section

Gravity Probe B Program P1004 rev -

G.8.2.

o Pump on Main Tank with Gas Module (AP-1) perform Section G.8.3.

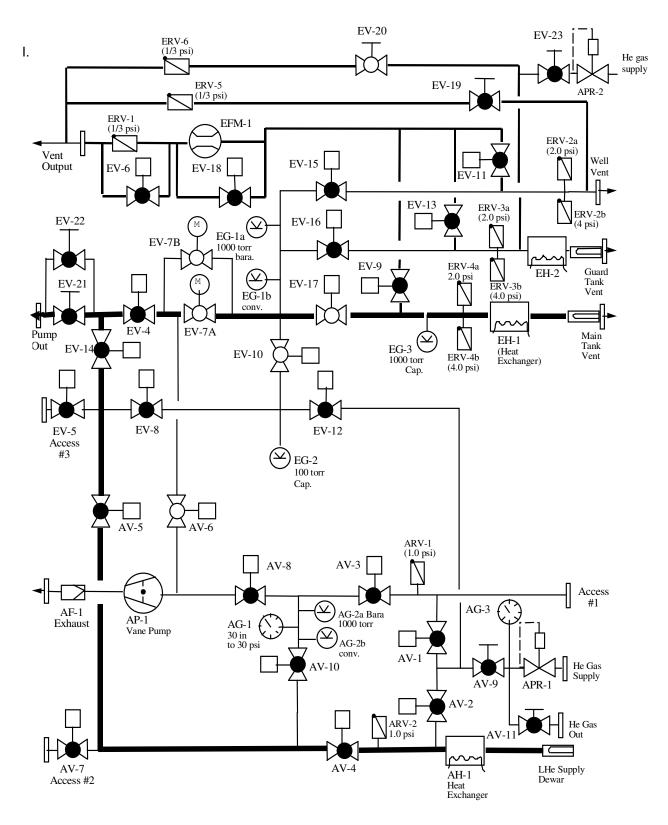
G.9.2. (Option) Establish Pumping on Main Tank With Pump Module

Note:

This operation assumes that the plumbing between the Pump Module and the Gas Module has been successfully leak checked.

- 1. Ensure PV-1, PV-2, and PV-4 open.
- 2. Ensure PV-3, PV-5, and PV-6 closed.
- 3. Initiate Pump Module:
 - a. Turn on water cooling of pump module.
 - b. Ensure EV-4 EV-21/22, EV-14, EV-5, EV-8, and EV-12 closed.
 - c. Turn on rotary vane pump PP-2 and Blower PP-1.
 - d. Once pressure at PG-1 has come to equilibrium Record pressure(PG-1) ______ torr.
- 4. Ensure EV-9, EV-15, and EV-16 closed.
- 5. Open EV-4 and EV-21.
- 6. Open EV-10 and EV-17.
- 7. Set EV-7 valves on manual control and adjust to full closure.
- 8. Record the following:
 - a. Date/time of day _____/___
 - b. Main Tank Temp (T-9D):____ K
 - c. Guard Tank Temp (T-15D)_____ K
 - d. Vacuum Module pressure (VG-1) if connected:_____
 torr
- 9. Enter comment in DAS "Begin pumping on Main Tank with Pump Module."
- 10. Open SV-9.
- 11. Adjust EV-7 valves to value previously recorded in Section G.6.6.
- 12. Open PV-3.
- 13. Once conditions have stabilized, record the following:
 - a. Date/time of day:____/___
 - b. Main Tank level:____ %
 - c. Flowrate (PFM-1, scale B):_____ LI/hr
 - d. Flow meter (PFM-1, scale C):_____ Ll x 60
 - e. Main Tank Temp (T-9D):_____ K
 - f. Guard Tank Temp (T-15D)_____ K
 - g. Main Tank exit pressure (EG-2): torr

		h. Vacuum Module pressure (VG-1) if connected:torr
		i. Record EV-7a valve position: %
		j. Record EV-7b valve position: %
	14	. Skip to Paragraph G.9.
G.9.3.		ption) Establish Pumping on Main Tank With Gas Module
	1.	· · · · · · · · · · · · · · · · · · ·
	2.	
	3.	Set EV-7 valves on manual control and adjust to full closure.
	4.	Open EV-10 and EV-17.
	 .	Open AV-6.
		Record the following:
		a. Date/time of day/
		b. Main Tank Temp (T-9D) K
		c. Guard Tank Temp (T-15D) K
		d. Vacuum Module pressure (VG-1) if connected
		torr
	7.	Enter comment in DAS "Begin pumping on Main Tank with AP-1."
	8.	Open SV-9.
	9.	Adjust EV-7 valves to value previously recorded in Section G.6.6.
	10	Once conditions have stabilized, record the following:
		a. Date/time of day/
		b. Main Tank level %
		c. Main Tank Temp (T-9D) K
		d. Guard Tank Temp (T-15D) K
		e. Main Tank exit pressure (EG-2) torr
		f. Vacuum Module pressure (VG-1) if connectedtorr
		g. Record EV-7a valve position %
		h. Record EV-7b valve position %
G.9.4.	Со	ntinue with Paragraph G.9.


Section Complete QA Witness:_____

Page 20

Gravity Probe B Program P1004 rev -

G.10. Establish Final Alarm Configuration

G.10.1. Ensure DAS alarm enabled and record set points if changed				d		
		ermal conditions d bags are uncha				points for the
		ermal conditions et as follows:	substant	ially changed,	temperature	alarm points
		a. Top of Le 175]	ead Bag	set point [CN		K (≤ 6.0 K)
		b. Top of Le 178]	ead Bag	set point [CN		K (≤ 6.0 K)
		liquid level sens	sor alarm	s enabled, as	appropriate, a	and record
	1. Ma	n Tank Level		Set Point	%	
	2. Gu	ard Tank		Set Point	%	
G.10.3.	Verify of	completion of the	post op	erations check	dist	
G.10.4.		Guard Tank pre ifferential.	essure or	DAS alarm lis	st and set to a	llarm at 0.3
			Se	ction Complet	e QA Witness	s:
H. PROCEDURE	COMP	LETION SIGN O	AEE			
			'1 1			
Completed by: Witnessed by:						
Date:						
Time:						
Quality Manager					_Date	
Payload Test Directo	or				Date	

Figure 1. Schematic of Gas Module plumbing. Valve configuration corresponds to likely final configuration – Main Tank bath being pumped by AP-1 and the Guard Tank, with liquid, venting through EV-20.

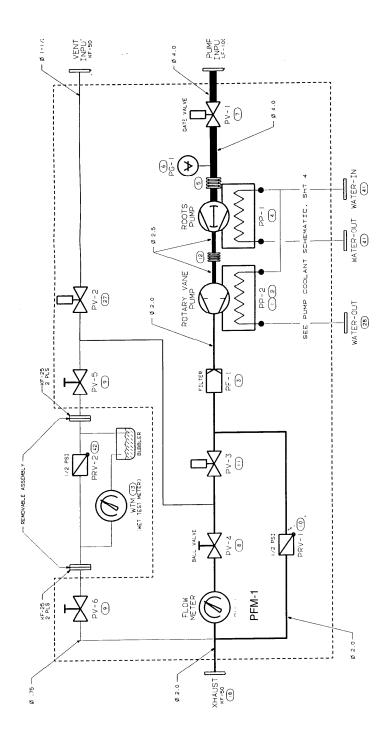


Figure 2. Schematic of Pump Module plumbing.

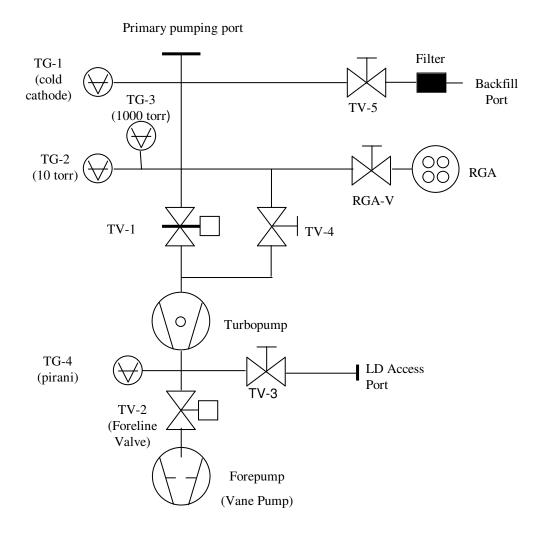


Figure 3. Schematic diagram of Utility Pumping System (UTS)

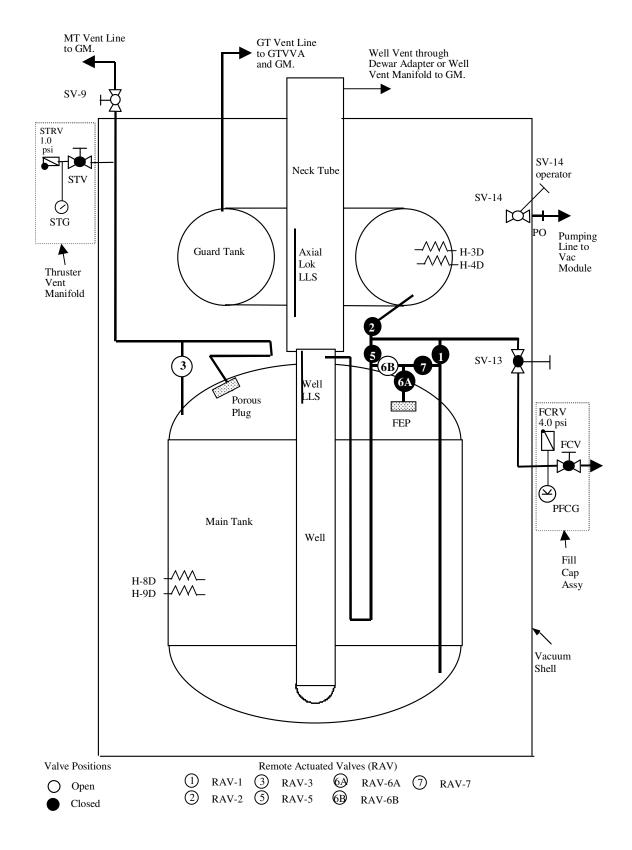


Figure 4. Schematic of Science Mission Dewar plumbing.

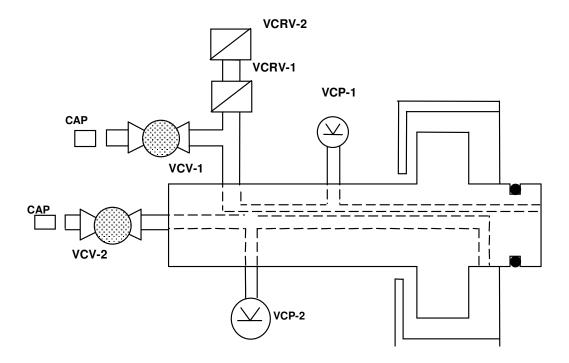


Figure 5. Main Tank Vent Cap Assembly for subatmospheric applications.

APPENDIX 1 PRE OPERATIONS CHECKLIST

DATE	CHECKLIST ITEM	COMPLETED	REMARKS
	1. Verify the test procedure being used is the latest revision.		
	2. Verify all critical items in the test are identified and discussed with the test team.		
	3. Verify all required materials and tools are available in the test area.		
	4. Verify all hazardous materials involved in the test are identified to the test team.		
	5. Verify all hazardous steps to be performed are identified to the test team.		
	6. Verify each team member is certified for the task being performed and knows their responsibilities.		
	7. Confirm that each test team member clearly understands that he/she has the authority to stop the test if an item in the procedure is not clear.		
	8. Confirm that each test team member clearly understands that he/she must stop the test if there is any anomaly or suspected anomaly.		
	9. Notify management of all discrepancy reports or d-log items identified during procedure performance. In the event an incident or major discrepancy occurs during procedure performance management will be notified immediately.		
	10. Perform a pretest Engineering and Safety high-bay walk down. Ensure all discrepancies are corrected prior to start of operations.		
	11. Confirm that each test team member understands that there will be a post-test team meeting.		
	Team Lead Signature:		

J. APPENDIX 2 POST OPERATIONS CHECKLIST

DATE	CHECKLIST ITEM	COMPLETED	REMARKS
	1. Verify all steps in the procedure were successfully completed.		
	2. Verify all anomalies discovered during testing are properly documented.		
	3. Ensure management has been notified of all major or minor discrepancies.		
	4. Ensure that all steps that were not required to be performed are properly identified.		
	5. If applicable sign-off test completion.		
	7. Verify all RAV valve operations have been entered in log book		
	7. Verify the as-run copy of procedure has been filed in the appropriate binder		
	Team Lead Signature:		

K. APPENDIX 3- CONTINGENCY/EMERGENCY RESPONSES

Condition	Circumstance	Response
Power Failure	Anytime	Wait for power restoration, and resume procedure
Liquid nitrogen spill	Anytime	Clear area until all spilled liquid has evaporated
Burst disk rupture (MT/GT)	Any time	Evacuate room
Oxygen Monitor Alarm	Any time	Evacuate room

Gravity Probe B Program P1004 rev -

Connect Main Tank Vent Line to Gas Module – Main Tank Subatmospheric

Page 30