GRAVITY PROBE B PROCEDURE FOR SCIENCE MISSION DEWAR

Installation and Testing of the Guard Tank Thrust Nullifier

THIS DOCUMENT CONTAINS THE USE OF HAZARDOUS MATERIALS

P0990

June 13, 2003

Written by:

_____Date____

Ned Calder Cryogenic Test

Approvals:

REVISION RECORD

REVISION	ECO	PAGES	DATE

Table of Contents

Α.	SCOPE1
В.	SAFETY1
	B.1. Potential Hazards1
	B.2. Mitigation of Hazards1
	B.3. Mishap Notification2
C.	QUALITY ASSURANCE
	C.1. QA Notification
	C.2. Red-line Authority
	C.3. Discrepancies
D.	TEST PERSONNEL
	D.1. Personnel Responsibilities
	D.2. Personnel Qualifications
_	D.3. Qualified Personnel
Ε.	REQUIREMENTS
	E.1. Electrostatic Discharge Requirements
	E.2. Lifting Operation Requirements
	E.4. Instrument Pretest Requirements
	E.5. Configuration Requirements
	E.6. Optional Non-flight Configurations
F.	REFERENCE DOCUMENTS
••	F.1. Drawings
	F.2. Supporting documentation
	F.3. Additional Procedures
G.	OPERATIONS
	G.1. Pre-Operations Verifications
	G.2. Verify Configuration Requirements9
	G.3. Set Up Data Acquisition System10
	Quality10
	G.4. Install Thrust Nullifier S/N 002 on Space Vehicle
	G.5. Install Thrust Nullifier S/N 001 on Space Vehicle
	G.6. Reduction of Guard Tank Liquid Level with Thrust Nullifier Installed
	G.7. Remove Thrust Nullifier and Install GTVVA
	G.8. Prepare to Leak Check GTVVA15
Н.	PROCEDURE COMPLETE15

List of Abbreviations and Acronyms

AG-x	Gauge x of Gas Module auxiliary	MT	Main Tank
	section		
AMI	American Magnetics Inc.	MTVC	Main Tank Vent Cap
ATC	Advanced Technology Center	MTVC-G	Main Tank Vent Cap pressure
Aux	Auxiliary	MTVC-RV	gauge Main Tank Vent Cap relief
/ UX	Advinary		valve
AV-x	Valve x of Gas Module auxiliary section	MTVC-V	Main Tank Vent Cap valve
Bot	Bottom	NBP	Normal boiling point
CN [xx]	Data acquisition channel number	ONR	Office of Naval Research
DAS	Data Acquisition System	PFCG	Fill Cap assembly pressure
			Gauge
EFM	Exhaust gas Flow Meter	PFM	Pump equipment Flow Meter
EG-x	Gauge x of Gas Module exhaust	PG-x	Gauge x of Pump equipment
	section		
EM	Electrical Module	PM	Pump Module
ERV-x	Relief valve of Gas Module exhaust	psi	pounds per square inch
	section	•	
EV-x	Valve number x of Gas Module	psig	pounds per square inch gauge
	exhaust section		
FCV	Fill Cap Valve	PV-x	Valve x of the Pump equipment
FIST	Full Integrated System Test	QA	Quality Assurance
GHe	Gaseous Helium	RAV-x	Remote Actuated Valve-x
GM	Gas Module	RGA	Residual Gas Analyzer
GP-B	Gravity Probe-B	SMD	Science Mission Dewar
GSE	Ground Support Equipment	STV	SMD Thruster vent Valve
GT	Guard Tank	SU	Stanford University
GTVC	Guard Tank Vent Cap	SV-x	SMD Valve number x
GTVC-G	Guard Tank Vent Cap pressure gauge	TD	Test Director
GTVC-RV	Guard Tank Vent Cap relief valve	TG-x	Gauge x of Utility Turbo
	Guard Tank Vent Cap Teller Valve	TG-X	System
GTVC-V	Guard Tank Vent Cap valve	TV-x	Valve x of Utility Turbo System
GTV-G	Guard Tank vent pressure gauge	UTS	Utility Turbo System
GTV-RV	Guard Tank vent relief valve	Vac	Vacuum
GTV-V	Guard Tank vent valve	VCP-x	Vent cap pressure gauge
HX-x	Vent line heat exchanger in Gas	VCRV-x	Vent cap relief valve
	Module		
KFxx	Quick connect o-ring vacuum flange (xx mm diameter)	VCV-x	Vent cap valve
LHe	Liquid Helium	VDC	Volts Direct Current
LHSD	Liquid Helium Supply Dewar	VF-x	Liquid helium Fill line valve
Liq	Liquid	VG-x	Gauge x of Vacuum Module
	•		-
	Liquid level	VM	Vacuum Module
LLS	Liquid level sensor	VV-x	Valve x of Vacuum Module
LMMS	Lockheed Martin Missiles and Space	VW-x	Valve x of Dewar Adapter
LMSC	Lockheed Missiles and Space Co.		

A. SCOPE

This procedure provides the necessary steps to install and perform engineering tests on one and fit checks on two flight Guard Tank Thrust Nullifiers.

B. SAFETY

B.1. **Potential Hazards**

Personal injury and hardware damage can result during normal positioning, assembly and disassembly of hardware

In addition, liquid helium used in the SMD represents a hazardous material for the personnel involved in the operations. Cryogenic burns can be caused by contact with the cold liquid or gas, high pressures can result if boiling liquid or cold gas is confined without a vent path, and asphyxiation can result if the vent gas is allowed to accumulate.

The SMD Safety Compliance Assessment, document GPB-100153C discusses the safety design, operating requirements and the hazard analysis of the SMD.

B.2. Mitigation of Hazards

B.2.1. Lifting hazards

There are no lifting operations in this procedure

B.2.2. Cryogenic Hazards

In LM Building 156, an oxygen deficiency monitor that alarms when the oxygen level is reduced to 19.5% will be utilized. Additional temperature and pressure alarms, provided by the DAS, warn of potential over-pressure conditions. Emergency vent deflectors are installed over the four burst disks on the SMD vacuum shell except during test operations.

Only authorized and trained LM and SU personnel are allowed In the high-bay without escort. All personnel working at a height 30 inches or more off the floor are required to have an LM approved air tank within easy reach. In the unlikely event of a large LHe spill all employees have been instructed to evacuate the room and contact LM safety.

The following additional requirements apply to all personnel involved directly in cryogenic operations. Gloves that are impervious to liquid helium and liquid nitrogen are to be worn whenever the possibility of splashing or impingement of high-velocity cryogens exists or when handling equipment that has been cooled to cryogenic temperatures. Protective clothing and full-face shields are to be worn whenever the possibility of splashing cryogens exists.

B.2.3. Other Hazards

When appropriate, tools or other items used with the potential to damage the SMD or Probe shall be tethered.

B.3. Mishap Notification

B.3.1. Injury

In case of any injury obtain medical treatment as follows LM $\underline{Call\ 117}$

B.3.2. Hardware Mishap

In case of an accident, incident, or mishap, notification is to proceed per the procedures outlined in Lockheed Martin Engineering Memorandum EM SYS229.

B.3.3. Contingency Response

Responses to contingencies (e.g., power failure) are listed in Appendix 3.

C. QUALITY ASSURANCE

C.1. QA Notification

The NASA representative and SU QA shall be notified 24 hours prior to the start of this procedure. Upon completion of this procedure, the QE Manager will certify his/her concurrence that the effort was performed and accomplished in accordance with the prescribed instructions by signing and dating in the designated place(s) in this document.

C.2. Red-line Authority

Authority to red-line (make minor changes during execution) this procedure is given solely to the TD or his designate and shall be approved by the QA Representative. Additionally, approval by the Payload Technical Manager shall be required, if in the judgement of the TD or QA Representative, experiment functionality may be affected.

C.3. Discrepancies

A Quality Assurance Representative designated by D. Ross shall review any discrepancy noted during this procedure, and approve its disposition. <u>Discrepancies will be recorded in a D-log or a DR per Quality Plan P0108</u>. Any time a procedure calls for verification of a specific configuration and that configuration is not the current configuration, it represents a discrepancy of one of three types. These types are to be dealt with as described below.

- 1. If the discrepancy has minimal effect on procedure functionality (such as the state of a valve that is irrelevant to performance of the procedure) it shall be documented in the procedure, together with the resolution. Redlines to procedures are included in this category.
- 2. If the discrepancy is minor and affects procedure functionality but not flight hardware fit or function, it shall be recorded in the D-log. Resolution shall be in consultation with the TD and approved by the QA representative.

3. All critical and major discrepancies, those that effect flight hardware fit or functions, shall be documented in a D-log and also in a Discrepancy Report, per P0108.

D. TEST PERSONNEL

D.1. **Personnel Responsibilities**

The performance of this procedure requires a minimum complement of personnel as determined by the Test Director. The person in charge of the operation (Test Director or Test Engineer) is to sign the "completed by" sign-off. Any other qualified person or QA person who can attest to the successful performance of this procedure may sign the "Witnessed by" sign-off. *The Test Director will perform Pre-Test and Post-Test Briefings in accordance with P0875 "GP-B Maintenance and Testing at all Facilities." Checklists will be used as directed by P0875.*

D.2. Personnel Qualifications

The Test Director must have a detailed understanding of all procedures and facility operations and experience in all of the SMD operations. Test Engineers must have SMD Cryogenic operations experience and an understanding of the operations and procedures used for the cryogenic servicing/maintenance of the Dewar.

D.3. Qualified Personnel

Test Director	Test Engineer
Ned Calder	Tom Welsh
Mike Taber	
Dave Murray	

E. **REQUIREMENTS**

E.1. Electrostatic Discharge Requirements

Any person who comes in contact with the SV must use a grounding wrist strap that has been tested that day. Appropriate attachment points are positioned around the SV.

E.2. Lifting Operation Requirements

There are no lifting operations in this procedure

E.3. Hardware/Software Requirements

E.3.1. Commercial Test Equipment

No commercial test equipment is required for this operation.

E.3.2. Ground Support Equipment

The Ground Support Equipment includes the Gas Module, the Electrical Module, and the Vacuum Module. The Gas Module provides the capability to configure vent paths, read pressures and flow rates, and pump and backfill vent lines. The Pump Module provides greater pumping capacity than the Gas Module, together with additional flow metering capabilities. The vent output of the Gas Module flows through the Pump Module. The Electrical Module contains the instruments listed in Table 1, and provides remote control of valves in the Gas Module, Pump Module, and SMD. The Vacuum Module contains a turbo pump, backed by a vane pump, and provides the capability to pump out the SMD vacuum shell.

This procedure calls for use of hardware located in the Gas Module, and the Electrical Module (Table 1).

E.3.3. Computers and Software:

The Data Acquisition System (DAS) and data acquisition software are required for this procedure. The DAS reads and displays pressures, temperatures, and flow rates and monitors critical parameters. No additional computers or software are required.

E.3.4. Test Equipment

Description	
N/A	
:	

E.3.5. Flight Hardware

Two Guard Tank Thrust Nullifier (LM P/N 8A03510-101, S/N 001 and 002) and associated o-rings (Parker 2-027).

E.3.6. Tools

#5 stopper with 1psig relief valve

E.3.7. Expendables

Description	Quantity	Mfr./Part No.
Isopropanol	AR	N/A
99.999% pure gaseous helium	AR	N/A
Vacuum Grease	AR	Apiezon N or Dow Corning High Vacuum Grease

E.4. Instrument Pretest Requirements

The GSE instruments required to perform this procedure are listed in Table 1, together with their serial numbers, where available. Instruments that are required to have current calibrations are indicated in the Cal-Required column. Instruments that do not require calibration are those not used to verify performance requirements and are not connected to flight instrumentation. The status column is to be filled in with the due date of the instrument calibration sticker and verified to be in calibration by QE or QE designee.

No.	Location	Description	Name	Serial No.	Cal Required	Status Cal due date
1	DAS	Power Supply, H-P 6627A	-	3452A01975	Yes	
2	DAS	Power Supply, H-P 6627A	-	3452A01956	Yes	
3	DAS	Data Acquisition/Control Unit H-P 3497A	-	2936A245539	No	-
4	DAS	Digital Multimeter H-P 3458A	-	2823A15047	Yes	
5	EM	Vacuum Gauge Controller Granville-Phillips Model 316	EG-1a, -1b	2827	No	-
6	EM	Vacuum Gauge Controller Granville-Phillips Model 316	AG-2a, -2b	2826	No	-
7	EM	Vacuum Gauge Controller Granville-Phillips Model 316	EG-3	2828	No	-
8	EM	MKS PDR-C-2C	EG-2, FCG	92022108A	No	-
9	EM	Flow meter – Matheson 8170	EFM-1	96186	No	-
10	EM	Flow meter totalizer Matheson 8124	EFM-1	96174	No	-
11	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Main Tank	96-409-11	No	-
12	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Guard Tank	96-409-10	No	-
13	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Well	96-409-9	No	-
14	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Axial Lock	96-409-12	No	-
15	EM	Pressure Controller – MKS 152F-92	EV-7a, -7b	96203410A	No	-
16	EM	Power Supply HP 6038A	H08D Tank Heater	96023407A	Yes	
17	EM	Power Supply HP 6038A	H09D Tank Heater	3511A-13332	Yes	
18	EM	Power Supply HP 6038A	RAV Power Supply	3329A-12486	Yes	
19	EM	Vac Ion Pump power supply Varian 929-0910, Minivac	SIP	5004N	No	-
20	EM	Flow meter totalizer Veeder-Root	PFM-1	576013-716	No	-
21	GM	Pressure Gauge, Heise	AG-1	CC-122077	No	-
22	GM	Pressure Gauge, Marshall Town	AG-3	N/A	No	-
23	GM	Main Tank Heat Exchanger: a) Thermocouple, b) Current meter, c) Temperature set point controller	-	C-19950	No	-
24	GM	Guard Tank Heat Exchanger: a) Thermocouple, b) Current meter, c) Temperature set point controller	-	C-09920	No	-
25	VM	Vacuum Gauge readout, Granville-Phillips 316	VG-3 VG-4	2878	No	-
26	VM	Vacuum Gauge readout,	VG-1, VG-2	96021521	No	-

 Table 1. Required Instrumentation and Calibration Status

No.	Location	Description	Name	Serial No.	Cal Required	Status Cal due date
		Granville-Phillips 360	VG-5			

E.5. Configuration Requirements

E.5.1. Main Tank

Liquid in the Main Tank is at normal boiling point (NBP).

E.5.2. Guard Tank

The Guard-Tank must contain liquid helium at NBP. The Guard Tank liquid level must be >90%. The Guard Tank Spin Balance vent assembly is installed.

E.5.3. Well

The Well is evacuated.

E.5.4. SMD Vacuum Shell

This procedure places no requirement on the vacuum shell pressure.

- E.5.5. Alarm System
 - 1. The DAS alarm system must be enabled and contain the following alarm set-points:
 - a. Top of lead bag temperature (CN 175) set at T \leq 6.0 K.
 - b. Top of lead bag temperature set (CN 178) at T \leq 6.0 K.
 - c. Relative Guard Tank Pressure (CN 46) set at $\Delta P \ge 30$ torr.
- E.5.6. GSE and Non-flight Hardware
 - 1. GSE cabling must be connected between the SMD and the Electrical Module (P/N 5833812) and between the SMD and the Data Acquisition System (P/N 5833811).

E.6. Optional Non-flight Configurations

The following modifications or non-flight arrangement of the basic SMD configuration may also be in place. They are incidental to the performance of this procedure and not required.

1. The GSE Fill Cap Assembly is installed at SV-13.

F. **REFERENCE DOCUMENTS**

F.1. Drawings

Drawing No.	Title	
LMMS-5833394	Instrumentation Installation	

F.2. Supporting documentation

Document No.	Title
LMMC-5835031	GP-B Magnetic Control Plan
GPB-100153C	SMD Safety Compliance Assessment
SU/GP-B P0141	FIST Emergency Procedures

LMSC-P088357	Science Mission Dewar Critical Design Review
SU/GP-B P0108	Quality Plan
LMMS GPB-100333	Science Mission Dewar Failure Effects and Causes Analysis
EM SYS229	Accident/Mishap/Incident Notification Process
SU/GP-B P059	GP-B Contamination Control Plan
SU/GP-B P0875	GP-B Maintenance and Testing at all Facilities

F.3. Additional Procedures

SU/GP-B P0879	Accident/Incident/Mishap Notification Process
SU/GP-B P0669	Internal Guard Tank Fill, vent lines disconnected
SU/GP-B P0916	Installation of FEE Guard Tank Vent Line and Leak Check with SV Vertical

G.

.

			Operation Number:
			Date Initiated:
			Time Initiated:
OPER		ONS	8
G.1.	Pre-Operations Verifications		
		-	rify SU QA notified.
			cord: Individual notified,
			te/time /
	0		rify NASA representative notified.
			cord: Individual notified,
			te/time/
	0		cord calibration due dates in Table 1 (Sections. E.3.4, E.4)
	0		rsons actually performing this procedure should initial their names in Sec 3 and the name of the Test Director should be circled.
	0	Ve	rify completion of the Pre-Operations Checklist (Appendix 1).
	0		sure two Guard Tank Thrust Nullifier and associated o-rings (Parker 2- 7) present
			Section Complete QA Witness:
G.2.	Ve	rify	Configuration Requirements
	G.2	2.1.	Ensure DAS alarm system enabled and record set points.
			1. Top of lead bag temperature – ensure CN [175] on DAS alarm list with alarm limit at $T \le 6.0$ K. Record set point.
			2. Top of lead bag temperature – ensure CN [178] on DAS alarm list with alarm limit at $T \le 6.0$ K. Record set point.
	G.2	2.2.	Record initial pressures, as appropriate.
			1. Main Tank – NBP (STG): torr.
			2. Guard Tank – (GTV-G) torr relative to 1 atm.
	G.2	2.3.	Record initial temperatures
			1. Top of Lead BagK

_____K

_____K

K

- 2. Top of Lead Bag
- 3. Guard Tank
- 4. Bottom of the Main Tank
- G.2.4. Ensure Guard Tank liquid level >80%
 - 1. If Guard Tank liquid level <80%, perform procedure P0669, "Internal Guard Tank Fill, vent lines disconnected"
 - a. Record Opt Number:_____
 - 2. Record final Guard Tank liquid helium level:_____

Section Complete QA Witness:_____

G.3. Set Up Data Acquisition System

- G.3.1. Set DAS to fast scan mode using [other menus], [data config], [fast scan] and [Remove MultScan]
- G.3.2. Start "Special Data Cycle" by using [Other Menus] + [Special Data Col].
- G.3.3. Enter CNs: 175, 171, 64, 46 (GTV-G) and 49 (ST-G, Thruster Vent)
- G.3.4. [Init. Collectn]
- G.3.5. [Enter] use default file name.
- G.3.6. Ensure printer is displaying special Data Cycle data.
- G.3.7. Connect/verify connected power supply A3 and A4 to Guard Tank heaters H03D and H-04D via Umbilical.
- G.3.8. Turn on power supply A and set outputs A3 and A4 to 0.08 amp current limit.

Quality_____

G.4. Install Thrust Nullifier S/N 002 on Space Vehicle

- G.4.1. Record Thrust Nullifier serial number:
- G.4.2. Prepare Thrust Nullifier
 - 1. Inspect Thrust Nullifier and associated o-rings
 - 2. Record Thrust Nullifier Gauge (TNG) zero
 - a. Record TNG serial number:_____
 - b. Connect TNG to endevco readout
 - c. Record Unit/Channel numbers:____/
 - d. Set auto zero function to 'On"
 - e. Record offset on DAS CN46:_____

CAUTION

In the following steps the Guard Tank pressure must be prevented from going subatmospheric which could result in air contamination and plugging of the internal Guard Tank vent. Corrective action is to increase the flow rate by raising the Guard Tank heater voltages.

G.4.3. Lightly grease a Parker 2-027 o-ring with Apiezon N grease

G.4.4. Verify available a number 5 rubber stopper with 1 psi relief valve

Note:

The rubber stopper is provided for contingency if the Thrust Nullifier does not immediately fit. The Test Director should assess the situation and decide on the appropriate course of action (i.e reinstall GTVA, the second thrust nullifier, etc). The Guard Tank should not be left with the rubber stopper for extended periods of time

- G.4.5. Open GTV-Va and reduce pressure in the Guard Tank to ~50-100 torr and then close GTV-Va
- G.4.6. Remove Guard Tank Vent Assembly and immediately install Thrust Nullifier
- G.4.7. Turn on Guard Tank internal heaters if necessary to properly purge the thrust nullifier
- G.4.8. Allow LM mechanical team to complete Thrust Nullifier installation
- G.4.9. Record TNG:_____torr
- G.4.10. Set DAS alarm on TNG CN 46 to 5 torr
- G.4.11. Verify Thruster Nullifier S/N 002 heaters and thermometers are connected to Space Vehicle via Umbilical connector P807.
- G.4.12. Verify Thrust Nullifier S/N 002 heaters and thermometers are connected to External Temp Control Unit and Unit is functioning .
 - 1. Record PRT A:_____C
 - 2. Record PRT B:_____ C

Note:

The nominal cracking pressure for the Thrust Nullifier is 12-15 torr.

Note:

The first Thrust Nullifier will now be aligned.

Section Complete QA Witness:_____

G.5. Install Thrust Nullifier S/N 001 on Space Vehicle

- G.5.1. Record Guard Tank liquid level:_____%
 - 1. Ensure Guard Tank liquid level greater than 60%
- G.5.2. Ensure alignment of first Thrust Nullifier successfully completed
- G.5.3. Record Thrust Nullifier serial number:_____
- G.5.4. Prepare Thrust Nullifier
 - 1. Inspect Thrust Nullifier and associated o-rings
 - 2. Record Thrust Nullifier Gauge (TNG) zero
 - a. Record TNG serial number:_____
 - b. Connect TNG to endevco readout
 - c. Record Unit/Channel numbers:____/____
 - d. Set auto zero function to 'On"
 - e. Record offset on DAS CN46:____

CAUTION

In the following steps the Guard Tank pressure must be prevented from going subatmospheric which could result in air contamination and plugging of the internal Guard Tank vent. Corrective action is to increase the flow rate by raising the Guard Tank heater voltages.

- G.5.5. Request LM mechanical to remove brackets securing Thrust Nullifier S/N 002
- G.5.6. Lightly grease a Parker 2-027 o-ring with Apiezon N grease
- G.5.7. Verify available a number 5 rubber stopper with 1 psi relief valve

Note:

The rubber stopper is provided for contingency if the Thrust Nullifier does not immediately fit. The Test Director should assess the situation and decide on appropriate course of action. The Guard Tank should not be left with the rubber stopper for extended periods of time

- G.5.8. Raise Guard Tank pressure
 - 1. Turn on Guard Tank heaters H03D
 - 2. Set current limit to .08A
 - 3. Adjust voltage to raise Guard Tank pressure to ~50-100 torr
- G.5.9. Remove Spin Balance Guard Tank Vent Assembly and immediately install second Thrust Nullifier
- G.5.10. Turn off Guard Tank heaters
- G.5.11. Allow LM mechanical team to complete mechanical installation.
- G.5.12. Record TNG:_____torr
- G.5.13. Set DAS alarm on TNG CN 46 to 5 torr

Note:

The second Thrust Nullifier will now be aligned.

Section Complete QA Witness:_____

G.6. Reduction of Guard Tank Liquid Level with Thrust Nullifier Installed

NOTE:						
This section is designed to represent the reduction in liquid level that may be performed on the MST prior to launch.						
G.6.1.	Ensure G	auard Tank	bayon	et vent heaters	operational	
G.6.2.				aters and thern al connector P8	nometers are conr 807.	nected to
G.6.3.				ers and thermo t and Unit is fu	meters are conne nctioning.	cted to
	1. Reco	rd PRT A:		C		
	2. Reco	rd PRT B:		C		
G.6.4.	Record in	nitial Guard	Tank I	iquid level:	%	
G.6.5.	Reduce (below 30		Level	by 20% from s	tarting value with	out dropping
	1. Turn	on Guard T	ank he	eaters and set	current limits to .0	8A
	2. Set V	oltage on C	Guard ⁻	Tank Heaters H	103D and H04D to	50V
		a. Record	d V/I fo	or H03D:	VA	
		b. Record	d V/I fo	or H04D:	VA	
	3. Turn	on Guard T	ank Tł	nrust Nullifier h	eater and record s	settings
		a. Voltag	e:	V		
		b. Currer	nt:	A		
	4. Enter	comment t	o DAS	, "Begin reduci	ng GT level by 20	%"
5. Beginning recording data for level reduction						
Date/T		L % PRT	•	TN Heater V/I (V/A)	H03D/H04D (V)	
						1
						1
						1

- 6. When Guard Tank level has been reduced by 20% from G.5.3, turn off Guard Tank heaters
 - a. Record Date/Time:_____
 - b. Record Guard Tank liquid level:____%
- 7. Input comment to DAS, "End Guard Tank liquid level reduction"
- 8. Leave Guard Tank Bayonet heaters on for ~.5 hour after end of reduction, then turn off heaters and monitor Guard Tank bayonet for condensation

Section Complete QA Witness:_____

G.7. Remove Thrust Nullifier and Install GTVVA

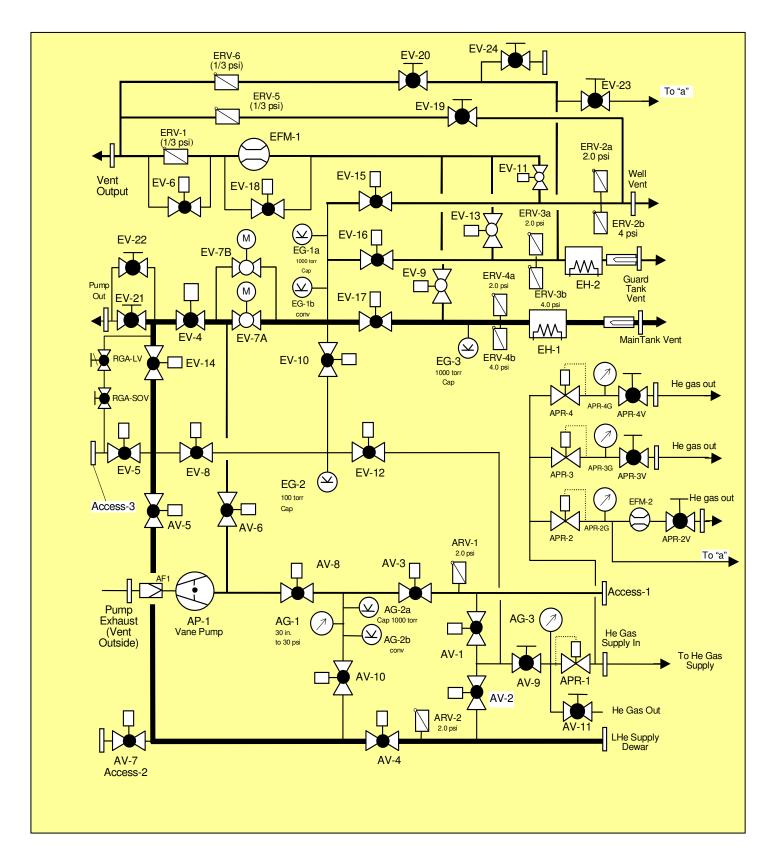
- G.7.1. Continue to monitor Guard Tank with Thrust Nullifier installed until liquid level reaches 20%
- G.7.2. Prepare GTVVA
 - 1. Lightly grease o-ring (Parker 2-027) with Apiezon N
 - 2. Open GTV-Va/b and GTV-V
 - 3. Zero GTV-G and record offset
 - a. Record GTV-G serial number:_____
 - b. Connect GTV-G to endevco readout
 - c. Record Unit/Channel numbers:____/___
 - d. Set auto zero function to 'On"
 - e. Record offset on DAS CN46:_____
- G.7.3. Ensure available number 5 rubber stopper with 1psig relief valve
- G.7.4. Raise Guard Tank pressure
 - 1. Turn on Guard Tank heaters H03D
 - 2. Set current limit to .08A
 - 3. Adjust voltage to raise Guard Tank pressure to ~50-100 torr
- G.7.5. Remove Thrust Nullifier from SV and immediately install GTVVA
- G.7.6. After GTVVA sufficiently purged from Guard Tank boil off, close GTV-Va/b and GTV-V

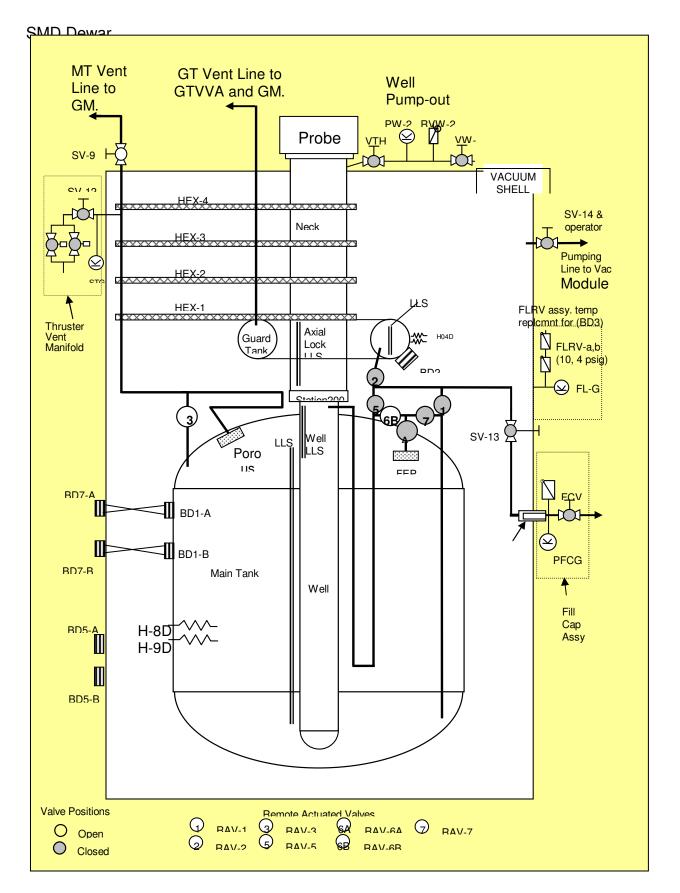
G.7.7. Turn off Guard Tank heaters

Section Complete QA Witness:_____

G.8. Prepare to Leak Check GTVVA

Note:				
The following sections prepares the Gas Module, Guard Tank Vent Line and the UTS for transition to P0916, "Installation of FEE Guard Tank Vent Line and Leak Check with SV Vertical"				
G.8.1.	Ensure all EV and AV valves closed			
G.8.2.	Connect Guard Tank Vent Line to GTVVA and Gas Module			
G.8.3.	Configure UTS			
	1. Connect UTS to EV-5			
	2. Start UTS pumping with turbo up to a closed EV-5			
	3. Ensure TV-1 and TV-2 open			
	4. Ensure TV-3, TV-4 and TV-RGA closed			
	5. Record TG-1:torr			
G.8.4.	Configure Gas Module			
	1. Turn on AP-1			
	2. Open AV-8 and AV-6			
	3. Open EV-4, EV-7a/b, EV-14 and EV-16			
	4. When EG-1 <25 mtorr, open EV-5			
G.8.5.	Transition to procedure P0916, "Installation of FEE Guard Tank Vent Line and Leak Check with SV vertical"			
	1. Record Opt number:			
	2. The following sections must be skipped G.2, G.4, G.6, G.7, G.			
	Deviewer Dest Oneventions Checklist (Annendix 0)			
G.8.6.	Perform Post-Operations Checklist (Appendix 2)			
	Section Complete QA Witness:			
H. PROCEDURI	ECOMPLETE			


Completed by:_____ Witnessed by:_____


Date: _____

Time:_____

Quality Manager	Date
Payload Test Director	Date

Gas Module

DATE	CHECKLIST ITEM	COMPLETED	REMARKS
	1. Verify the test procedure being used is the latest revision.		
	2. Verify all critical items in the test are identified and discussed with the test team.		
	3. Verify all required materials and tools are available in the test area.		
	4. Verify all hazardous materials involved in the test are identified to the test team.		
	5. Verify all hazardous steps to be performed are identified to the test team.		
	6. Verify each team member knows their individual responsibilities.		
	7. Confirm that each test team member clearly understands that he/she has the authority to stop the test if an item in the procedure is not clear.		
	8. Confirm that each test team member clearly understands that he/she must stop the test if there is any anomaly or suspected anomaly.		
	9. Notify management of all discrepancy reports or d-log items identified during procedure performance. In the event an incident or major discrepancy occurs during procedure performance management will be notified immediately.		
	10. Confirm that each test team member understands that there will be a post-test team meeting.		
	Team Lead Signature:		

Appendix 1 Pre Operations Checklist

DATE	CHECKLIST ITEM	COMPLETED	REMARKS
	1. Verify all steps in the procedure were successfully completed.		
	2. Verify all anomalies discovered during testing are properly documented.		
	 Ensure management has been notified of all major or minor discrepancies. 		
	4. Ensure that all steps that were not required to be performed are properly identified.		
	5. If applicable sign-off test completion.		
	Team Lead Signature:		

Appendix 2 Post Operations Checklist

Appendix 3– Contingency Responses

Condition	Circumstance	Response	
Temperature limits (CN 1 or 28) exceeded	Any time	Open EV-9 to Vent Main Tank	
Burst disk rupture (MT/GT)	Any time	Evacuate room	