C	perati	ons l	No.	

GRAVITY PROBE B PROCEDURE FOR SCIENCE MISSION DEWAR

(PTP) Calibration of SMD Flow Meter

P0841 Rev -

May 22, 2001

Prepared by		Checked by		
	Date	•	Date	
Dave Murray		Jim Maddocks		
Cryogenic Test		Cryogenic Test		
Approvals:				
Αμριοναίδ.				
	Date		Date	
Dorrene Ross		Mike Taber		
Quality Assurance		Payload Test Director		
	Date	_	Date	
Rich Whelan		Robert Brumley		
Systems Engineering		Payload Technical Manager		

Revision Record

Rev	ECO	Pages	Date
-	-		May 25, 2001

Table of Contents

A.	SCOPE1			
B.	SAFETY	.1		
	B.1. Potential Hazards	.1		
	B.2. Mitigation of Hazards	.1		
	B.3. Injuries	.2		
C.	QUALITY ASSURANCE	.2		
	C.1. QA Notification	.2		
	C.2. Red-line Authority	.2		
	C.3. Discrepancies	.2		
D.	TEST PERSONNEL			
	D.1. Personnel Responsibilities	.3		
	D.2. Personnel Qualifications			
	D.3. Qualified Personnel	.3		
E.	REQUIREMENTS	.3		
	E.1. Electrostatic Discharge Requirements	.3		
	E.2. Lifting Operation Requirements			
	E.3. Hardware/Software Requirements			
	E.4. Instrument Pretest Requirements			
	E.5. Configuration Requirements			
	E.6. Optional Non-flight Configurations			
	E.7. Verification/Success Criteria			
	E.8. Payload Constraints and Restrictions			
F.	REFERENCE DOCUMENTS			
	F.1. Drawings			
	F.2. Supporting documentation	.8		
	F.3. Additional Procedures			
G.	OPERATIONS			
	G.1. Verify Appropriate QA Notification			
	G.2. Verify Preliminary SMD and GSE Preparations Complete			
	G.3. Verify Configuration Requirements			
	G.4. Record Initial Conditions			
	G.5. Set up Data Acquisition System			
	G.7. Verify RAV Configuration	11.		
	G.8. Flow Rate No. 1			
	G.9. Flow Rate No. 2			
	G.10. Flow Rate No. 3			
	G.11. Flow Rate No. 4 (zero flow)			
	G.12. Establish Final Configuration			
Н.	PROCEDURE COMPLETION			

List of Abbreviations and Acronyms

	LIST OF ADDIEVIATIONS		
AG-x	Gauge x of Gas Module auxiliary section	MTVC	Main Tank Vent Cap
AMI	American Magnetics Inc.	MTVC-G	Main Tank Vent Cap pressure gauge
ATC	Advanced Technology Center	MTVC-RV	Main Tank Vent Cap relief valve
APR-x	Pressure regulator x of Gas Module	MTVC-V	Main Tank Vent Cap valve
AV-x	Valve x of Gas Module auxiliary section	NBP	Normal boiling point
CG-x	Gauge x of portable helium pressurization source	ONR	Office of Naval Research
CPR-x	Pressure regulator x of portable helium pressurization source	PFCG	Fill Cap assembly pressure Gauge
CV-x	Valve x of portable helium pressurization	PFM	Pump equipment Flow Meter
0117	source	50	0 (5
CN [xx]	Data acquisition channel number	PG-x	Gauge x of Pump equipment
DAS	Data Acquisition System	PM	Pump Module
EFM	Exhaust gas Flow Meter	psi	pounds per square inch
EG-x	Gauge x of Gas Module exhaust section	psig	pounds per square inch gauge
EM	Electrical Module	PTĎ	Payload Test Director
ERV-x	Relief valve of Gas Module exhaust	PV-x	Valve x of the Pump equipment
	section		
EV-x	Valve number x of Gas Module exhaust section	QA	Quality Assurance
	30011011		
FCV	Fill Cap Valve	RAV-x	Remote Actuated Valve-x
FIST	Full Integrated System Test	RGA	Residual Gas Analyzer
GHe	Gaseous Helium	SMD	Science Mission Dewar
GM	Gas Module	STV	SMD Thruster vent Valve
GP-B	Gravity Probe-B	SU	Stanford University
GSE	Ground Support Equipment	SV-x	SMD Valve number x
GT	Guard Tank	TG-x	Gauge x of Utility Turbo System
GTVC	Guard Tank Vent Cap	TV-x	Valve x of Utility Turbo System
GTVC-G	Guard Tank Vent Cap pressure gauge	UTS	Utility Turbo System
GTVC-RV	Guard Tank Vent Cap relief valve	Vac	Vacuum
GTVC-V	Guard Tank Vent Cap valve	VCP-x	Vent cap pressure gauge
GTV-G	Guard Tank vent pressure gauge	VCRV-x	Vent cap relief valve
GTV-RV	Guard Tank vent plessure gauge Guard Tank vent relief valve	VCV-x	
			Vent cap valve
GTV-V	Guard Tank vent valve	VDC	Volts Direct Current
HX-x	Vent line heat exchanger in Gas Module	VF-x	Liquid helium Fill line valve
KFxx	Quick connect o-ring vacuum flange (xx mm diameter)	VG-x	Gauge x of Vacuum Module
LHe	Liquid Helium	VM	Vacuum Module
LHSD	Liquid Helium Supply Dewar	VV-x	Valve x of Vacuum Module
LLS	Liquid level sensor	VW-x	Valve x of Vacuum Module Valve x of Dewar Adapter
		A A A -V	vaive x of Dewal Adapter
LM	Lockheed Martin Co.		
MT	Main Tank		

A. SCOPE

This procedure effects the calibration of the SMD flow meter using the cryogenic GSE. This is accomplished by operating the flow meter at various input heater power levels and for various rates of helium flow out of the main tank (see Fig. 4). The flow rates are changed by adjustment of the control valves, EV-7a/-7b.

B. **SAFETY**

B.1. Potential Hazards

Personal injury and hardware damage can result during normal positioning, assembly and disassembly of hardware. Examples include: positioning Dewar in tilt stand; integrating probe with airlock; positioning airlock on Dewar; removing airlock from Dewar; removing probe from Dewar; and positioning support equipment such as pressurized gas cylinders and supply dewars.

A number of undesired events may be associated with these operations. For example, personnel or equipment can be struck when hardware is being moved (e.g. by forklift or crane load). Personnel are subject to entrapment while positioning hardware, such as hands or feet caught between objects as hardware is moved into place. Suspended hardware may be dropped. Personnel can be caught between objects such as forklifts and walls or loads and building support columns.

In addition, liquid helium used in the SMD represents a hazardous material for the personnel involved in the operations. Cryogenic burns can be caused by contact with the cold liquid or gas, high pressures can result if boiling liquid or cold gas is confined without a vent path, and asphyxiation can result if the vent gas is allowed to accumulate.

The SMD Safety Compliance Assessment, document GPB-100153C discusses the safety design, operating requirements and the hazard analysis of the SMD.

B.2. Mitigation of Hazards

B.2.1 Lifting hazards

There are no lifting operations in this procedure

B.2.2 Cryogenic Hazards

The FIST OPS laboratory has an oxygen deficiency monitor that alarms when the oxygen level is reduced to 19.5%. Prior to beginning this procedure in any facility other than the FIST OPS Lab, the presence of a similar oxygen monitor must be verified by safety and operations personnel. Additional temperature and pressure alarms, provided by the DAS, warn of potential over-pressure conditions. Emergency vent line deflectors are installed over the four burst disks on the SMD vacuum shell, and oxygen collection pans are on the floor beneath them.

The following requirements apply to personnel involved in cryogenic operations. Gloves that are impervious to liquid helium and liquid nitrogen are to be worn whenever the possibility of splashing or

impingement of high-velocity cryogens exists or when handling equipment that has been cooled to cryogenic temperatures. Protective clothing and full-face shields are to be worn whenever the possibility of splashing cryogens exists.

The FIST Emergency Procedures document, SU/GP-B P0141, discusses emergency procedures. These documents should be reviewed for applicability at any facility where the hardware is operated.

A.1.1. Other Hazards

When appropriate, tools or other items used with the potential to damage the SMD or Probe shall be tethered.

B.3. Injuries

In case of any injury obtain medical treatment as follows LM Call 117; Stanford University Call 9-911

C. QUALITY ASSURANCE

C.1. QA Notification

The ONR representative and SU QA shall be notified 24 hours prior to the start of this procedure. Upon completion of this procedure, the QE Manager will certify his/her concurrence that the effort was performed and accomplished in accordance with the prescribed instructions by signing and dating in the designated place(s) in this document.

C.2. Red-line Authority

Authority to red-line (make minor changes during execution) this procedure is given solely to the PTD or his designate and shall be approved by the QA Representative. Additionally, approval by the Payload Technical Manager shall be required, if in the judgement of the PTD or QA Representative, experiment functionality may be affected.

C.3. Discrepancies

A Quality Assurance Representative designated by D. Ross shall review any discrepancy noted during this procedure, and approve its disposition. Discrepancies will be recorded in a D-log or a DR per Quality Plan P0108. Any time a procedure calls for verification of a specific configuration and that configuration is not the current configuration it represents a discrepancy of one of three types. These types are to be dealt with as described below.

- 1. If the discrepancy has minimal effect on procedure functionality (such as the state of a valve that is irrelevant to performance of the procedure) it shall be documented in the procedure, together with the resolution. Redlines to procedures are included in this category.
- 2. If the discrepancy is minor and affects procedure functionality but not flight hardware fit or function, it shall be recorded in the D-log. Resolution shall be in consultation with the PTD and approved by the QA representative.

3. All critical and major discrepancies, those that effect flight hardware fit or functions, shall be documented in a D-log and also in a Discrepancy Report, per P0108.

D. TEST PERSONNEL

D.1. Personnel Responsibilities

The performance of this procedure requires a minimum complement of personnel as determined by the Test Director. The Test Director is the designated signer for the "witnessed by" sign-off located at the end of each procedure. The person in charge of the operation (Test Director or Test Engineer) is to sign the "completed by" sign-off.

D.2. Personnel Qualifications

The Test Director must have a detailed understanding of all procedures and facility operations and experience in all of the SMD operations. Test Engineers must have SMD Cryogenic operations experience and an understanding of the operations and procedures used for the cryogenic servicing/maintenance of the Dewar.

D.3. Qualified Personnel

Test Director	Test Engineer
Mike Taber	Tom Welsh
Dave Murray	Chris Gray
Jim Maddocks	Bruce Clarke
Dave Frank	

E. **REQUIREMENTS**

E.1. Electrostatic Discharge Requirements

This procedure does not involve operations with any equipment sensitive to electrostatic discharge.

E.2. Lifting Operation Requirements

There are no lifting operations in this procedure

E.3. Hardware/Software Requirements

E.3.1 Commercial Test Equipment

No commercial test equipment is required for this operation.

E.3.2 Ground Support Equipment

The Ground Support Equipment includes the Gas Module, the Pump Module, the Electrical Module, and the Vacuum Module. The Gas Module provides the capability to configure vent paths, read pressures and flow rates, and pump and backfill vent lines. The Pump Module provides greater pumping capacity than the Gas Module, together with additional flow metering capabilities. The vent output of the Gas Module flows through the Pump Module. The Electrical Module

contains the instruments listed in Table 1 (see the *Electrical Module Manual* for details) and provides remote control of valves in the Gas Module, Pump Module, and SMD. The Vacuum Module contains a turbo pump, backed by a vane pump and provides the capability to pump out the SMD vacuum shell.

This procedure calls for use of hardware located in the Gas Module (Figure 1), the Pump Module (Figure 2), the Vacuum Module (Figure 3), and the Electrical Module (Table 1).

E.3.3 Computers and Software

The Data Acquisition System (DAS) and data acquisition software are required for this procedure. The DAS reads and displays pressures, temperatures, and flow rates and monitors critical parameters. No additional computers or software are required.

E.3.4 Additional Test Equipment

No additional test equipment is required.

E.3.5 Additional Hardware

No additional hardware is required

E.3.6 Tools

No tools are required for this operation.

E.3.7 Expendables

Liquid helium for Guard Tank fillings is required for this operation.

E.4. Instrument Pretest Requirements

The GSE instruments required to perform this procedure are listed in Table 1, together with their serial numbers, where available. Instruments that are required to have current calibrations are indicated in the Cal-Required column. Instruments that do not require calibration are those not used to verify performance requirements and are not connected to flight instrumentation. The status column is to be filled in with the due date of the instrument calibration sticker and verified to be in calibration by QE or QE designee. Serial numbers are to be updated as appropriate.

Table 1. Required Instrumentation and Calibration Status

	Loca-	Table 1. Required Inst				Status
No.	Tion	Description	User Name	Serial No.	Cal Required	Cal due date
1	DAS	Power Supply, H-P 6627A	A1, A2, A3,A4	3452A01975	Yes	
2	DAS	Power Supply, H-P 6627A	B1, B2, B3, B4	3452A01956	Yes	
3	DAS	Data Acquisition/Control Unit H-P 3497A	-	2936A245539	No	-
4	DAS	Digital Multimeter H-P 3458A	-	2823A15047	Yes	
5	EM	Vacuum Gauge Controller Granville-Phillips Model 316	EG-1a, -1b	2827	No	-
6	EM	Vacuum Gauge Controller Granville-Phillips Model 316	AG-2a, -2b	2826	No	-
7	EM	Vacuum Gauge Controller Granville-Phillips Model 316	EG-3	2828	No	-
8	EM	MKS PDR-C-2C	EG-2, FCG	92022108A	No	-
9	EM	Flow meter – Matheson 8170	EFM-1	96186	No	-
10	EM	Flow meter totalizer Matheson 8124	EFM-1	96174	No	-
11	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Main Tank	96-409-11	No	-
12	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Guard Tank	96-409-10	No	-
13	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Well	96-409-9	No	-
14	EM	Liquid Helium Level Controller American Magnetics, Inc. 136	LLS Axial Lock	96-409-12	No	-
15	EM	Pressure Controller – MKS 152F-92	EV-7a, -7b	96203410A	No	-
16	EM	Power Supply HP 6038A	H08D Tank Heater	96023407A	Yes	
17	EM	Power Supply HP 6038A	H09D Tank Heater	3511A-13332	Yes	
18	EM	Power Supply HP 6038A	RAV Power Supply	3329A-12486	Yes	
19	EM	Vac Ion Pump power supply Varian 929-0910, Minivac	SIP	5004N	No	-
20	EM	Flow meter totalizer Veeder-Root	PFM-1	576013-716	No	-
21	GM	Pressure Gauge, Heise	AG-1	CC-122077	No	-
22	GM	Pressure Gauge, Marshall Town	AG-3	N/A	No	-
23	GM	Main Tank Heat Exchanger: a) Thermocouple, b) Current meter, c) Temperature set point controller	-	C-19950	No	-
24	GM	Guard Tank Heat Exchanger: a) Thermocouple, b) Current meter, c) Temperature set point controller	-	C-09920	No	-
25	VM	Vacuum Gauge readout, Granville-Phillips 316	VG-3 VG-4	2878	No	-
26	VM	Vacuum Gauge readout, Granville-Phillips 360	VG-1, VG-2 VG-5	96021521	No	-

P0841.doc 7/25/2001 2:15:00 PM

E.5. Configuration Requirements

E.5.1 Main Tank

The Main Tank liquid must start at SFHe temperatures of 1.7 to 1.8 K or less and be filled to a liquid level ≥ 90%. The actuator control valve for the Gas Module valve, EV-9, should be in the "Subatm He" position.

E.5.2 Guard Tank

The Guard Tank must contain liquid, and the level must be $\geq 20\%$.

E.5.3 Well

The Well may be connected to the UTS via the Well manifold and can be pumped to vacuum conditions

E.5.4 SMD Vacuum Shell

The Vacuum Shell pressure must be less than 5 x 10⁻⁵ torr. Procedure P0213 contains the steps for connecting to and pumping on the SMD vacuum shell and should be used it the pressure criterion is not met.

- E.5.5 Alarm System
 - E.5.5.1 The DAS alarm system must be enabled and contain the following alarm set-points:
 - a. Station 200 temperature (CN 01) set at $T \le 2.2$ K.
 - b. Top of lead bag temperature set (CN 28) at $T \le 2.2$ K.
 - c. Relative Guard Tank Pressure (CN 46) set at $\Delta P \ge 0.3$ torr.
 - E.5.5.2 The Facility Main Alarm System must be armed.
- E.5.6 GSE and Non-flight Hardware
 - E.5.6.1 The ion-pump magnet is installed.
 - E.5.6.2 GSE cabling must be connected between the SMD and the Electrical Module (P/N 5833812) and between the SMD and the Data Acquisition System (P/N 5833811).
 - E.5.6.3 The Main Tank vent line must be connected to the Gas Module with a vacuum insulated line (P/N 5833806).

 Procedures P0674 and P0672 contain the procedures for connecting Main Tank vent lines.
 - E.5.6.4 The Guard Tank vent line must be connected to the Gas Module with a vacuum insulated line (P/N 5833813).

 Procedure No. P0676 contains the steps for connecting the Guard Tank vent line.
 - E.5.6.5 A relief valve assembly (FLRV) or flight-like burst disk is installed in place of the flight SMD fill-line burst disk (BD3).
 - E.5.6.6 The Fill Cap Assembly must be installed at SV-13.
 - E.5.6.7 The thruster vent port is flanged to a relief valve/pressure sensor assembly.

- E.5.6.8 The heaters on the SMD top plate, SV-9, and Main Tank vent bayonet must be installed and operational.
- E.5.6.9 The Pump Module must be connected to the Gas module at EV-21/22.

E.6. Optional Non-flight Configurations

The following modifications or non-flight arrangement of the basic SMD configuration may also be in place. They are incidental to the performance of this procedure and not required.

- 1. The SMD is installed in its transportation and test fixture.
- 2. A foreign object and debris shield may cover the upper cone of the SMD and is required whenever work is being performed above the SMD such that hard objects could be dropped and impact the SMD or Probe.
- E.6.1 The high-vacuum pumping line may be connected between the SMD at SV-14 and the inlet port of the Vacuum Module and may be pumping up to a closed valve SV-14. Procedure No. P0213 contains the procedure for connecting to and pumping on the SMD vacuum shell.

E.7. Verification/Success Criteria

This procedure demonstrates the prelaunch hold time of the Main Tank and Guard Tank.

Paragraph No.(PLSE-12)	Specification/Req- uirement Title	Criterion
3.7.5.11.2	Helium flow meter	A flow meter shall be provided for measuring the helium flow rate to the spacecraft thrusters while in orbit, to within +/- 5% of its true value.

E.8. Payload Constraints and Restrictions

- E.8.1 No Payload operations, which result in substantial heat dissipation in the Probe/SMD, e.g., temperature control operations, may be performed during this procedure.
- E.8.2 Vacuum integrity of Probe must be maintained <5 E-6 torr level.
- E.8.3 The Well vacuum must be at a low enough value such that main tank flow rate remains below approximately 3 slpm.

F. REFERENCE DOCUMENTS

F.1. **Drawings**

Drawing No.	Title
LMMS-5833394	Instrumentation Installation

F.2. Supporting documentation

Document No.	Title
LMMC-5835031	GP-B Magnetic Control Plan
GPB-100153C	SMD Safety Compliance Assessment
SU/GP-B P0141	FIST Emergency Procedures
LMSC-P088357	Science Mission Dewar Critical Design Review
SU/GP-B P0108	Quality Plan
LMMS GPB-100333	Science Mission Dewar Failure Effects and Causes Analysis
SU/GP-B P059	GP-B Contamination Control Plan
LMMC F277277v4.2	Science Payload Specification CDRL/PLSE-12

F.3. Additional Procedures

Document No.	Title
SU/GP-B P0674	Connect Main Tank Vent Line to Gas Module – Main Tank at NBP
SU/GP-B P0676	Connect Guard Tank Vent Line to Gas Module
SU/GP-B P0213	Connect Vacuum Module / Pump on SMD Vacuum Shell
SU/GP-B P0214	Stop Pumping on SMD Vacuum Shell / Disconnect Vacuum Module
SU/GP-B P0613	Repump Well with Probe Installed
SU/GP-B P0207B	External Guard Tank Fill

			Operation Number:
			Date Initiated:
			Time Initiated:
G.	OPEF	RATIONS	
	G.1.	Verify	Appropriate QA Notification
			rify SU QA notified. cord: Individual notified,
		Dat	te/time/
		o Ver	rify ONR representative notified.
			cord: Individual notified, te/time/
	G.2.	Verify	Preliminary SMD and GSE Preparations Complete
		G.2.1	Record Guard Tank liquid level %, temperature [CN24] K.
			Ensure level \geq 20 %. If necessary, perform procedure P0209B, "External Guard Tank Fill" to raise level and record:
			Date Procedure No and Op. No
			Liquid level %
		G.2.2	Record Main Tank liquid level %, temperature [CN24] K.
		G.2.3	Verify relief assembly (FLRV) or flight-like burst disk installed on SMD fill line.
	G.3.	Verify	Configuration Requirements
		G.3.1	Verify ion-pump magnet installed.
		G.3.2	Verify GSE cabling connected between SMD and Electrical Module and between SMD and Data Acquisition System.
		G.3.3	Verify Main Tank vent line connected to Gas Module.
		G.3.4	Verify Guard Tank vent line connected to Gas Module.
		G.3.5	Verify actuator control valve for EV-9, located on Gas Module, set to "Subatm He" position.
		G.3.6	Verify Pump Module connected to Gas Module at EV-21/22.
		G.3.7	Verify Well pressure:

G.3.7.1	π Well is not being pumped:	
	Record for last performance of Probe Installed", Operations Note to Date performed, and	No.
G.3.7.2	2π Well is being pumped:	
	Record PW-2 torr.	
G.3.8 Ensure	DAS alarm system enabled and	record set points.
G.3.8.1	Station 200 temperature — end DAS alarm list and set to alarm Record set point.	
G.3.8.2	Top of lead bag temperature on DAS alarm list and set to al Record set point.	
G.3.8.3	Relative Guard Tank Pressul on DAS alarm list and set to al torr. Record set point.	
G.3.9 Ensure	DAS watchdog timer and alarm	enabled.
G.3.10 Ensure	liquid-level alarms enabled and	record set points.
G.3.10.1	Main Tank – ensure liquid-leve Record set point.	el alarm set ≥ 20%. %
G.3.10.2	? Guard Tank – ensure liquid-lev Record set point.	el alarm set ≥ 20%. %
G.3.10	.3 Ensure Facility Main Alarm Sy	rstem enabled.
G.3.11 Ensure	Top-plate heaters on SMD are o	connected and on.
G.3.12 Valve of	configuration:	
Open: E	V-13, -17; All of	ther EVs closed
A	NV-6 All th	ne AVs closed
F	PV-2, PV-4 All of	ther PVs closed
AP-1 on	, PP-1 and PP-2 off	
Optional	:	
Open: V	TH, All other TV	s and VW-3 closed
	is open at VTH , record PW-2	torr.
Record Initial C	Conditions	
G.4.1 Record	I initial SMD vacuum shell pressu	re as follows:
	a. Turn on Vac-ion pump and	record date/time/

G.4.

		b.	Use DAS [Monitor Data] for CN 99.
		C.	When value is steady, record pressure (IP) torr.
		d.	Verify Vacuum Shell Pressure < 5 x 10 ⁻⁶ torr. If not, turn off Vac-ion pump and perform procedure P0213, <i>Pump SMD Vacuum Space with Vacuum Module</i> , to pump out SMD vacuum shell. Record Op No
		e.	Exit [Monitor Data] and collect data with [Set Data Interval] to 5 min.
		f.	When data cycle is complete, turn off Vac-ion pump.
	G.4.2	Record data	a in Table 2.
G.5.	Set up	Data Acquis	ition System
			e: Refer to Operating Instructions for hanics of DAS keyboard/mouse operations.
	G.5.1	Set DAS to	fast scan using [other menus] [data config] [fast scan].
	G.5.2	•	he DAS for the "Flow Meter Test" configuration under the gs] of the DAS program.
	G.5.3		ain Tank and Guard Tank liquid-level sensors to "off" and sampling intervals respectively.
	G.5.4		ample Main Tank level sensor for channel "A" and "B" and "B" and "A" %; LLS "B" %; LLS average %.
	G.5.5		er is set up to display the main tank temperatures and e rate of change and the flow meter temperatures and er.
	G.5.6	Record the	DAS software and version in use:
	G.5.7	Record the	DAS data file in use:
	G.5.8		
	G.5.9		rify connected the A3 power supply output to the H5AD t using the three pin audio cables supplied with the DAS.
	G.5.10	Set up spec	cial data cycle collection to record: CN05, CN01,
		CN28, CN 26	6 , CN27, CN69
G.6.	Data P	ecording	
G.U.			ving apprations, record the data in Table 2
	G.6.1	III LII U IUIIUV	ving operations, record the data in Table 2.

Use [Get Data] of DAS to collect an initial hard copy of the data and

Adjust special data cycle interval to 0.5 min or less.

G.6.2

G.6.3

attach to this procedure.

Gravity Probe B Program P0841 Rev -Page 12

G./. Verily hav Configuration	G.7.	Verify RAV	Configuratio
-------------------------------	------	------------	--------------

G.7.1	Using RA	V log book, verify:
	Open: RA\	/-6B
	Closed: RA	AV –1, -2, -5, -6A, -7
G.7.2	θ RA'	V-3 is closed; proceed with G.7.4
G.7.3	θ RA	V-3 is open; close RAV-3 (flight configuration) as follows:
	G.7.3.1	Verify all RAV selection switches are in the OFF position.
	G.7.3.2	Turn on RAV power supply and adjust current limit to 1.85 amps.
	G.7.3.3	Adjust power supply to 28 VDC.
	G.7.3.4	Power up RAV controller No. 3.
	G.7.3.5	Position selection switch to RAV-3.
	G.7.3.6	Record initial switch status: Open: $\theta = \theta$ Closed: $\theta = \theta$
	G.7.3.7	Activate controller No. 1 and record: a) run time: seconds b) current draw: amp c) Time of day:
	G.7.3.8	Record final switch status: Open: $\theta = \theta$ Closed: $\theta = \theta$
	G.7.3.9	Turn RAV-3 selection switch to OFF.
	G.7.3.10	Power off controller No 3.
	G.7.3.11	Turn off RAV power supply.
G.7.4	Record o	peration in RAV log book
Flow F	Rate No. 1	
G.8.1	Start with	existing flow rate, WTM average readings:
	G.8.1.1	Using long term plot, verify equilibrium conditions of temperature and flow exist.
	G.8.1.2	Date/Time/
	G.8.1.3	CN121 slpm; CN122 mg/s;
	G.8.1.4	Flow Meter CN27 K; Main Tank, bot CN09 K; Top LB CN28 K; S200 CN01 K.
	G.8.1.5	Execute DAS [GET DATA]
	G.8.1.6	Record data in Table 2.

G.8.

G.8.2	Flow Ra	ate No. 1 / Heater Setting No. 1	- 35 mW	
	G.8.2.1	Adjust power supply A3 to give 834 ohms) and record:		•
	DMM vo	The wattage used here is calculated readings at the voltage lessistor shunt in the current leads	ads of the heate	
	G.8.2.2	When temperature equilibrium	m at T18D (CN2	(26) is reached:
		a. Do a [Get Data]		
		b. Record WTM flow rate:	slpm;	mg/sec
			Time	
	G.8.2.3	Record data in Table 2.		
G.8.3	Flow Ra	ate No. 1 / Heater Setting No. 2	- 50 mW	
	G.8.3.1	Adjust power supply A3 to give 834 ohms) and record:		
	G.8.3.2	When temperature equilibrium	m at T18D (CN2	(26) is reached:
		a. Do a [Get Data]		
		b. Record WTM flow rate:	slpm;	mg/sec
			Time	
	G.8.3.3	Record data in Table 2.		
G.8.4	Flow Ra	ate No. 1 / Heater Setting No. 3	- 100 mW	
	G.8.4.1	Adjust power supply A3 to girecord: volt;		y 100 mW and
	G.8.4.2	When temperature equilibrium	m at T18D (CN2	26) is reached:
		a. Do a [Get Data]		
		b. Record WTM flow rate:		
	0010		Time	
0.05	G.8.4.3		0.0.14/	
G.8.5		ate No. 1 / Heater Setting No. 4		
	G.8.5.1	Adjust power supply A3 to 0 mW.		
	G.8.5.2	When temperature equilibrium	m at T18D (CN2	26) is reached:
		a. Do a [Get Data]		
		b. Record WTM flow rate:	•	
			Time	

G.8.5.3 Record data in Table 2.

G.9.	Flow	Rate	No.	2
G.y.	LIOM	naie	INU.	

G.9.1	Increase	flow by adjusting the position of EV-7a/-7b.
	G.9.1.1	Using long term plot, verify equilibrium conditions of temperature and flow exist.
		Note: The flow range of interest is 4 to 16 mg/s. Assuming flow rate No. 1 was in the neighborhood of 4 mg/s, the target flow rate here is in the neighborhood of 8 mg/s
	G.9.1.2	Date/Time/
		CN121 slpm; CN122 mg/s;
		Flow Meter CN27 K; Main Tank, bot CN09 K; Top LB CN28 K; S200 CN01 K.
	G.9.1.5	Execute DAS [GET DATA]
	G.9.1.6	Record data in Table 2.
G.9.2	Flow Rat	te No. 2 / Heater Setting No. 1 - 35 mW
	G.9.2.1	Adjust power supply A3 to give approximately 35 mW (R= 834 ohms) and record: volt; mW.
	DMM vol	The wattage used here is calculated by the DAS using the tage readings at the voltage leads of the heater and at the sistor shunt in the current leads.
	G.9.2.2	When temperature equilibrium at T18D (CN26) is reached:
		a. Do a [Get Data]
		b. Record WTM flow rate: slpm; mg/sec
		Time
	G.9.2.3	Record data in Table 2.
G.9.3	Flow Rat	te No. 2 / Heater Setting No. 2 - 50 mW
	G.9.3.1	Adjust power supply A3 to give approximately 50 mW (R= 834 ohms) and record: volt; mW.
	G.9.3.2	When temperature equilibrium at T18D (CN26) is reached:
		a. Do a [Get Data]
		b. Record WTM flow rate: slpm; mg/sec
		Time

	G.9.3.3	Record data in Table 2.
G.9.4	Flow Rat	e No. 2 / Heater Setting No. 3 - 100 mW
	G.9.4.1	Adjust power supply A3 to give approximately 100 mW (R= 834 ohms) and record: volt; mW.
	G.9.4.2	When temperature equilibrium at T18D (CN26) is reached:
		a. Do a [Get Data]
		b. Record WTM flow rate: slpm; mg/sec
		Time
	G.9.4.3	Record data in Table 2.
G.9.5	Flow Rat	e No. 2 / Heater Setting No. 4 – 0.0 mW
	G.9.5.1	Adjust power supply A3 to 0.0 volts and record: 0.0 volt; mW.
	G.9.5.2	When temperature equilibrium at T18D (CN26) is reached:
		a. Do a [Get Data]
		b. Record WTM flow rate: slpm; mg/sec
		Time
	G.9.5.3	Record data in Table 2.

G.10. Flow Rate No. 3

- G.10.1 Change flow rate
 - G.10.1.1 Increase flow by adjusting the position of EV-7a/-7b.
 - G.10.1.2 Using long term plot, verify equilibrium conditions of temperature and flow exist.

Note: The flow range of interest is 4 to 16 mg/s. Assuming flow rate No. 1 was in the neighborhood of 4 mg/s, the target flow rate here is in the of 12-16 mg/s

	G.10.1.3 Date/Time/
	G.10.1.4 CN121 slpm; CN122 mg/s;
	G.10.1.5 Flow Meter CN27 K; Main Tank, bot CN09 K; Top LB CN28 K; S200 CN01 K.
	G.10.1.6 Execute DAS [GET DATA]
	G.10.1.7 Record data in Table 2.
G.10.2	Flow Rate No. 3 / Heater Setting No. 1 - 35 mW (R= 834 ohms)
	G.10.2.1 Adjust power supply A3 to give approximately 35 mW and record: volt; mW.
	NOTE: The wattage used here is calculated by the DAS using the DMM voltage readings at the voltage leads of the heater and at the 0.1% resistor shunt in the current leads.
	G.10.2.2 When temperature equilibrium at T18D (CN26) is reached:
	a. Do a [Get Data]
	b. Record WTM flow rate: slpm; mg/sec
	Time
	G.10.2.3 Record data in Table 2.
G.10.3	Flow Rate No. 3 / Heater Setting No. 2 - 50 mW
	G.10.3.1 Adjust power supply A3 to give approximately 50 mW (R= 834 ohms) and record: volt; mW.
	G.10.3.2 When temperature equilibrium at T18D (CN26) is reached:
	a. Do a [Get Data]
	b. Record WTM flow rate: slpm; mg/sec
	Time

	G.10.3.3 Record data in Table 2.
G.10.4	Flow Rate No. 3 / Heater Setting No. 3 - 100 mW
	G.10.4.1 Adjust power supply A3 to give approximately 100 mW (R= 834 ohms) and record: volt; mW.
	G.10.4.2 When temperature equilibrium at T18D (CN26) is reached:
	a. Do a [Get Data]
	b. Record WTM flow rate: slpm; mg/sec
	Time
	G.10.4.3 Record data in Table 2.
G.10.5	Flow Rate No. 3 / Heater Setting No. 4 – 0.0 mW
	G.10.5.1 Adjust power supply A3 to 0.0 volts and record: mW.
	G.10.5.2 When temperature equilibrium at T18D (CN26) is reached:
	a. Do a [Get Data]
	b. Record WTM flow rate: slpm; mg/sec
	Time

G.10.5.3 Record data in Table 2.

G.11. Flow Rate No. 4 (zero flow)

G.11.1	Change flow rate
	G.11.1.1 Close AV-6: Main Tank flow goes to zero.
	G.11.1.2 Using long term plot, verify equilibrium conditions of temperature and flow exist.
	G.11.1.3 Date/Time/
	G.11.1.4 CN121 slpm; CN122 mg/s;
	G.11.1.5 Flow Meter CN27 K; Main Tank, bot CN09 K; Top LB CN28 K; S200 CN01 K.
	G.11.1.6 Execute DAS [GET DATA]
	G.11.1.7 Record data in Table 2.
G.11.2	Flow Rate No. 4 / Heater Setting No. 1 - 35 mW
	G.11.2.1 Adjust power supply A3 to give approximately 35 mW (R= 834 ohms) and record: volt; mW.
	G.11.2.2 When temperature equilibrium at T18D (CN26) is reached:
	a. Do a [Get Data]
	b. Record WTM flow rate: slpm; mg/sec
	Time
	G.11.2.3 Record data in Table 2.
G.11.3	Flow Rate No. 4 / Heater Setting No. 2 - 50 mW (R= 834 ohms)
	G.11.3.1 Adjust power supply A3 to give approximately 50 mW and record: volt; mW.
	G.11.3.2 When temperature equilibrium at T18D (CN26) is reached:
	a. Do a [Get Data]
	b. Record WTM flow rate: slpm; mg/sec
	Time
	G.11.3.3 Record data in Table 2.
G.11.4	Flow Rate No. 4 / Heater Setting No. 3 - 100 mW
	G.11.4.1 Adjust power supply A3 to give approximately 100 mW (R= 834 ohms) and record: volt; mW.
	G.11.4.2 When temperature equilibrium at T18D (CN26) is reached:
	a. Do a [Get Data]
	b. Record WTM flow rate: slpm; mg/sec
	Time

	G.11.4.3 Record data in Table 2.
G.11.5	Flow Rate No. 4 / Heater Setting No. 4 – 0.0 mW
	G.11.5.1 Adjust power supply A3 to 0.0 volts and record: mW.
	G.11.5.2 When temperature equilibrium at T18D (CN26) is reached
	a. Do a [Get Data]
	b. Record WTM flow rate: slpm; mg/sec
	Time
	G.11.5.3 Record data in Table 2.
G.11.6	Open AV-6

G.11.7 Adjust EB-7a/-7b as required for temperature stability.

G.12.	Establish Final Configuration										
	G.12.1 Record Date/Time /										
	G.12.2	Input comment to DAS "End of Flow Meter Test"									
	G.12.3	Verify valve configuration:									
		Open: EV-13, -17; All other EVs closed									
		AV-6 All other AVs closed									
		PV-2, PV-4 All other PVs closed									
		AP-1 on, PP-1 and PP-2 off									
	Optional (if VTH is open)										
		Open: VTH VW-3 closed.									
	G.12.4	If VTH of Well is open record PW-2 torr.									
		Adjust RAV Configuration									
		G.12.5.1 Using RAV log book, verify:									
		Open: RAV-6B									
		Closed: RAV -1, -2, -5, -6A, -7									
	G.12.6	θ RAV-3 to remain closed; proceed with G.7.4									
	G.12.7	θ RAV-3 is to be opened as follows:									
		G.12.7.1 Verify all RAV selection switches are in the OFF position.									
		G.12.7.2 Turn on RAV power supply and adjust current limit to 1.85 amps.									
		G.12.7.3 Adjust power supply to 28 VDC.									
		G.12.7.4 Power up RAV controller No. 3.									
		G.12.7.5 Position selection switch to RAV-3.									
	G.12.7.6 Record initial switch status: Open: $\theta = \theta$ Closed: $\theta = \theta$										
		G.12.7.7 Activate controller No. 1 and record:									
		a) run time: seconds b) current draw: amp c) Time of day:									
		G.12.7.8 Record final switch status: Open: $\theta \theta$ Closed: $\theta \theta$									
		G.12.7.9 Turn RAV-3 selection switch to OFF.									
		G.12.7.10 Power off controller No 3.									
		G.12.7.11 Turn off RAV power supply.									

G.12.8 Final RAV configuration:

G.12.8.1 θ RAV-3 is closed.

G.12.8.2 θ RAV-3 is open.

G.12.8.3 And:

Open: RAV-6B

Closed: RAV -1, -2, -5, -6A, -7

- G.12.9 Verify/set the DAS data cycle to 15 minutes.
- G.12.10 Stop Special Data collection using [other menus] [special data], [stop special data].
- G.12.11 Set DAS to normal scan using [other menus], [data config], [normal scan].
- G.12.12 Verify all operating liquid level sensors have sampling intervals of 10 minutes.
- G.12.13 Ensure DAS alarm enabled and record set points if changed
 - o Thermal conditions substantially unchanged, alarm set points for Station 200 and lead bag unchanged
 - o Thermal conditions substantially changed, temperature alarm points reset as follows:

 - c. Guard Tank, GTVG _____ torr (>0.3 torr)
- G.12.14 Ensure DAS watchdog timer and alarm enabled.
- G.12.15 Options:
 - π Continue pumping Well under control of P0613B.
 - π Close out pumping Well, perform final sections of P0613B.
 - π Continue with Well manifold: VTH open VW-3 closed.
 - π Continue with Well locked up: VTH closed; VW-3 closed.

PROCEDURE COMPLETION	
Completed by:	
Witnessed by:	
Date:	
Time:	
Quality Manager	Date
Payload Test Director	Date

Page 25

Table 2a Flow Meter Data

Date/ Time	Comments	Main Tank LHe level CN101 %	T.V+Atm CN140 torr	Main Tank Press EG-2 CN114 torr	Thruster Vent CN49 torr	EV-7a/7b Position %/%	Vac Ion Pump press CN99 torr	GT press GTV_G CN46 torr	Flow rate PFM-1 CN110 Ll/hr
						/			
						/			
						/			
						/			
						/			
						/			
						/			
						/			
						/			
						/			
						/			
						/			
						/			
						/			
						/			
						/			
						/			
						/			
						/			
						/			

Page 26

Table 2b Flow Meter Data

Date/ Time	Flow Meter/a T18D [CN 26]	Flow Meter/b T18D [CN 27]	Top of Lead bag [CN 28]	Main Tank Top [CN 20]	MT Bottom T09D [CN09]	GT Bottom [CN 24]	HEX-1 T04D [CN 04]	Slope of MT Bot [CN 141]	Calc(Tave) Slope [CN28]		
	K	K	K	K	K	K	K	K	K		

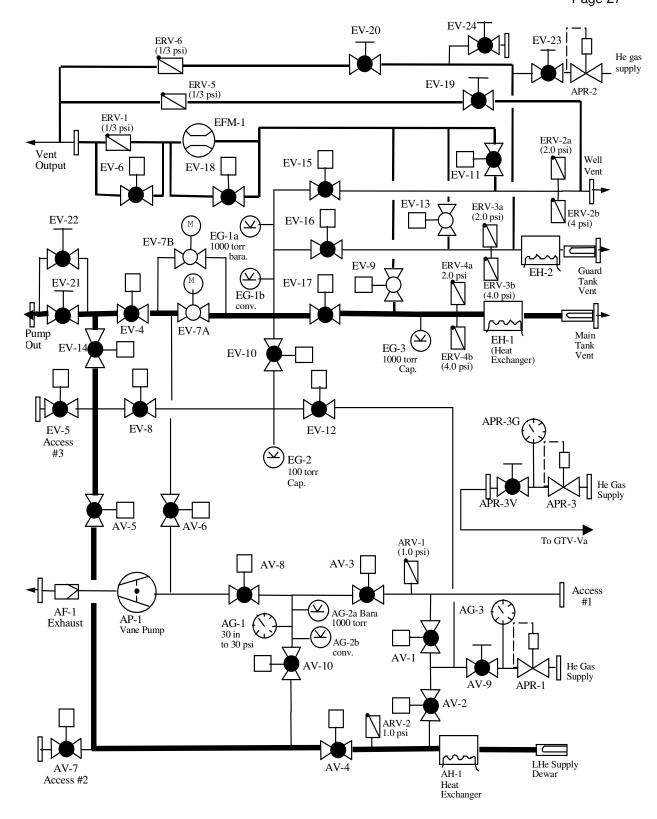


Figure 1. Schematic of Gas Module Plumbing.

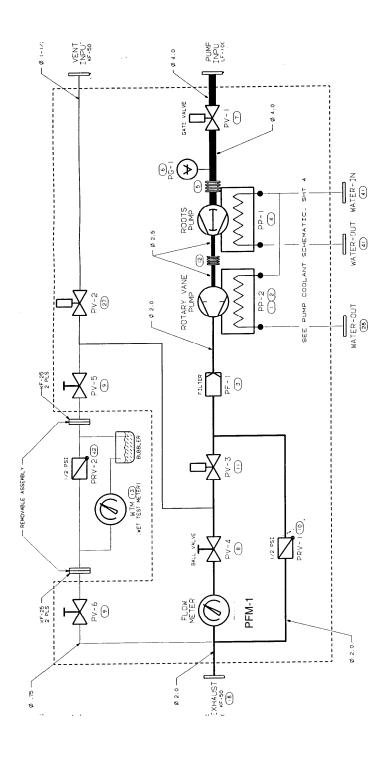


Figure 2. Schematic of Pump Module plumbing.

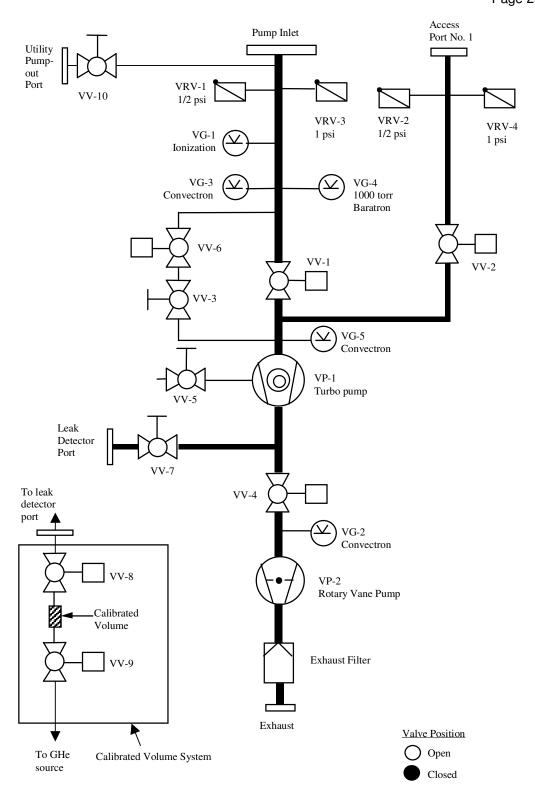


Figure 3 Schematic diagram of Vacuum Module

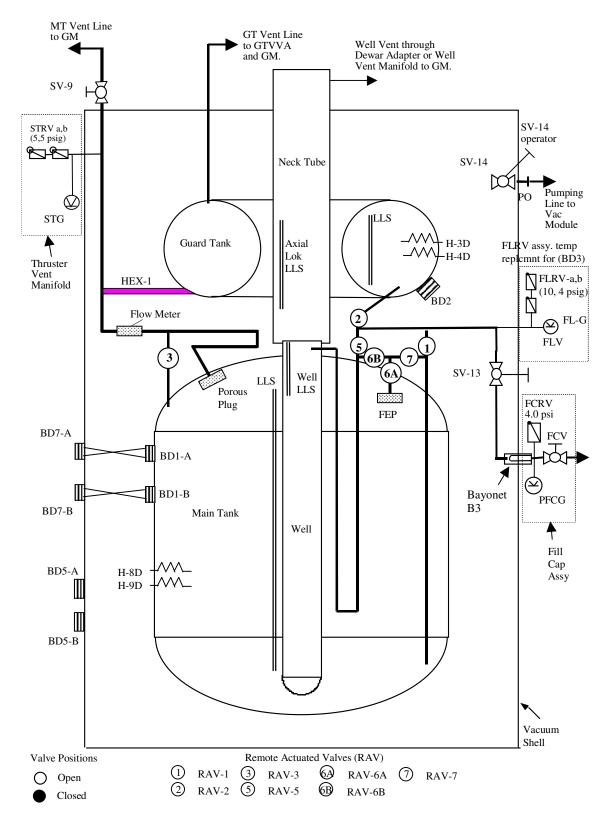


Figure 4. Schematic of Science Mission Dewar plumbing.