# GRAVITY PROBE B PROCEDURE FOR SCIENCE MISSION DEWAR

# CONNECT GUARD TANK VENT LINES TO GAS MODULE

# THIS DOCUMENT CONTAINS THE USE OF HAZARDOUS MATERIALS

P0676B ECO# 1336 January 23, 2002

| Prepared by:         |       | Checked by:    |      |  |
|----------------------|-------|----------------|------|--|
|                      | Date  |                | Date |  |
| Ned Calder           |       | Dave Murray    |      |  |
| Cryogenic Test       |       | Cryogenic Test |      |  |
| Approvals:           |       |                |      |  |
|                      | Date  |                | Date |  |
| Dorrene Ross         |       | Harv Moskowitz |      |  |
| Quality Assurance    |       | LMMS Safety    |      |  |
|                      | Date  |                | Date |  |
| Rob Brumley          |       | Mike Taber     |      |  |
| Program Technical Ma | nager | Test Director  |      |  |

# **REVISION RECORD**

| REVISION | ECO  | PAGES                                                                                             | DATE    |
|----------|------|---------------------------------------------------------------------------------------------------|---------|
| Α        | 1340 | Added Hazardous Materials comment to title Page.                                                  | 10/7/01 |
|          |      | Added QA inspection points                                                                        |         |
|          |      | Added minor redlines                                                                              |         |
|          |      | Added step to verify purity of helium gas                                                         |         |
|          |      | Modified sections B.2.2. and B.3.1 to reflect new location of SMD in Lockheed Martin building 205 |         |
|          |      | Added sections B.2.3 "Other Hazards", B.3.2 "Hardware Mishap", B.3.3 "Contingency Response".      |         |
|          |      | Updated Qualified Personnel List                                                                  |         |
|          |      | Added EM SYS229                                                                                   |         |
|          |      | Added Appendix Contingency Responses                                                              |         |
|          |      | Added pre/post checklist tables                                                                   |         |
|          |      | Updated Figures                                                                                   |         |
|          |      |                                                                                                   |         |
| В        | 1336 | Updated Scope                                                                                     | 1/23/02 |
|          |      | Updated Figures                                                                                   |         |
|          |      | Modified sections B.2.2. and B.3.1 to reflect location of SMV in all Lockheed Martin buildings    |         |
|          |      | Updated monitored channels and data to reflect installation of the flight ECU                     |         |
|          |      | Added Minor Redlines                                                                              |         |
|          |      | Added steps to bake out Gas Module                                                                |         |

## **Table of Contents**

| A. | SCOPE                                                 | 1  |
|----|-------------------------------------------------------|----|
| B. | SAFETY                                                | 1  |
|    | B.1. Potential Hazards                                |    |
|    | B.2. Mitigation of Hazards                            |    |
|    | B.3. Injuries                                         |    |
| C. | QUALITY ASSURANCE                                     |    |
|    | C.1. QA Notification                                  |    |
|    | C.2. Red-line Authority                               |    |
|    | C.3. Discrepancies                                    |    |
| D. | TEST PERSONNEL                                        | _  |
|    | D.1. Personnel Responsibilities                       |    |
|    | D.2. Personnel Qualifications                         |    |
| _  | D.3. Qualified Personnel                              |    |
| E. | REQUIREMENTS                                          |    |
|    | E.1. Electrostatic Discharge Requirements             |    |
|    | E.2. Lifting Operation Requirements                   |    |
|    | E.4. Instrument Pretest Requirements                  |    |
|    | E.5. Configuration Requirements                       |    |
|    | E.6. Optional Non-flight Configurations               |    |
| F. | REFERENCE DOCUMENTS                                   |    |
| •  | F.1. Drawings                                         |    |
|    | F.2. Supporting documentation                         |    |
|    | F.3. Additional Procedures                            | 8  |
| G. | OPERATIONS                                            | 9  |
|    | G.1. Verify Appropriate QA Notification               | 9  |
|    | G.2. Verify Configuration Requirements                |    |
|    | G.3. Record Initial Configuration and Conditions      |    |
|    | G.4. Remove Guard Tank Vent Cap and Install Vent Line |    |
|    | G.5. Leak Check Guard Tank Vent Line                  |    |
|    | G.6. Establish Final Configuration                    | 16 |

## **List of Abbreviations and Acronyms**

| AG-x       | Gauge x of Gas Module auxiliary section             | MT             | Main Tank                                         |
|------------|-----------------------------------------------------|----------------|---------------------------------------------------|
| AMI<br>ATC | American Magnetics Inc. Advanced Technology Center  | MTVC<br>MTVC-G | Main Tank Vent Cap<br>Main Tank Vent Cap pressure |
| Aux        | Auxiliary                                           | MTVC-RV        | gauge<br>Main Tank Vent Cap relief                |
| AV-x       | Valve x of Gas Module auxiliary section             | MTVC-V         | valve<br>Main Tank Vent Cap valve                 |
| Bot        | Bottom                                              | NBP            | Normal boiling point                              |
| CN [xx]    | Data acquisition channel number                     | ONR            | Office of Naval Research                          |
| DAS        | Data Acquisition System                             | PFCG           | Fill Cap assembly pressure Gauge                  |
| EFM        | Exhaust gas Flow Meter                              | PFM            | Pump equipment Flow Meter                         |
| EG-x       | Gauge x of Gas Module exhaust section               | PG-x           | Gauge x of Pump equipment                         |
| EM         | Electrical Module                                   | PM             | Pump Module                                       |
| ERV-x      | Relief valve of Gas Module exhaust section          | psi            | pounds per square inch                            |
| EV-x       | Valve number x of Gas Module exhaust section        | psig           | pounds per square inch gauge                      |
| FCV        | Fill Cap Valve                                      | PTD            | Payload Test Director                             |
| FIST       | Full Integrated System Test                         | PV-x           | Valve x of the Pump equipment                     |
| GHe        | Gaseous Helium                                      | QA             | Quality Assurance                                 |
| GM         | Gas Module                                          | RAV-x          | Remote Actuated Valve-x                           |
| GP-B       | Gravity Probe-B                                     | RGA            | Residual Gas Analyzer                             |
| GSE        | Ground Support Equipment                            | SMD            | Science Mission Dewar                             |
| GT         | Guard Tank                                          | STV            | SMD Thruster vent Valve                           |
| GTVC       | Guard Tank Vent Cap                                 | SU             | Stanford University                               |
| GTVC-G     | Guard Tank Vent Cap pressure gauge                  | SV-x           | SMD Valve number x                                |
| GTVC-RV    | Guard Tank Vent Cap relief valve                    | TG-x           | Gauge x of Utility Turbo System                   |
| GTVC-V     | Guard Tank Vent Cap valve                           | TV-x           | Valve x of Utility Turbo System                   |
| GTV-G      | Guard Tank vent pressure gauge                      | UTS            | Utility Turbo System                              |
| GTV-RV     | Guard Tank vent relief valve                        | Vac            | Vacuum                                            |
| GTV-V      | Guard Tank vent valve                               | VCP-x          | Vent cap pressure gauge                           |
| HX-x       | Vent line heat exchanger in Gas<br>Module           | VCRV-x         | Vent cap relief valve                             |
| KFxx       | Quick connect o-ring vacuum flange (xx mm diameter) | VCV-x          | Vent cap valve                                    |
| LHe        | Liquid Helium                                       | VDC            | Volts Direct Current                              |
| LHSD       | Liquid Helium Supply Dewar                          | VF-x           | Liquid helium Fill line valve                     |
| Liq        | Liquid                                              | VG-x           | Gauge x of Vacuum Module                          |
| LL         | Liquid level                                        | VM             | Vacuum Module                                     |
| LLS        | Liquid level sensor                                 | VV-x           | Valve x of Vacuum Module                          |
| LMMS       | Lockheed Martin Missiles and Space                  | VW-x           | Valve x of Dewar Adapter                          |
| LMSC       | Lockheed Missiles and Space Co.                     |                |                                                   |

Connect Guard Tank Vent Lines to Gas Module

Gravity Probe B Program P0676 Rev-B

#### A. SCOPE

This procedure provides the necessary steps to remove the Guard Tank Vent Cap and connect the Guard Tank Vent Line to the Gas Module. The steps include:

Close off vent line at Guard Tank Vent Valve (GTV-V)

Remove Vent Cap

Install and leak check Guard Tank vent line

The procedure is applicable when the Guard Tank contains liquid, as well as, when it is depleted. The Main Tank vent line may be connected or disconnected from the Gas Module. The Main Tank liquid may be at normal boiling point or subatmospheric.

#### B. **SAFETY**

#### B.1. Potential Hazards

Personal injury and hardware damage can result during normal positioning, assembly and disassembly of hardware. Examples include: positioning Dewar in tilt stand; integrating probe with airlock; positioning airlock on Dewar; removing airlock from Dewar; removing probe from Dewar; and positioning support equipment such as pressurized gas cylinders and supply dewars.

A number of undesired events may be associated with these operations. For example, personnel or equipment can be struck when hardware is being moved (e.g. by forklift or crane load). Personnel are subject to entrapment while positioning hardware, such as hands or feet caught between objects as hardware is moved into place. Suspended hardware may be dropped. Personnel can be caught between objects such as forklifts and walls or loads and building support columns.

In addition, liquid helium used in the SMD represents a hazardous material for the personnel involved in the operations. Cryogenic burns can be caused by contact with the cold liquid or gas, high pressures can result if boiling liquid or cold gas is confined without a vent path, and asphyxiation can result if the vent gas is allowed to accumulate.

The SMD Safety Compliance Assessment, document GPB-100153C discusses the safety design, operating requirements and the hazard analysis of the SMD.

#### B.2. Mitigation of Hazards

#### B.2.1. Lifting hazards

There are no lifting operations in this procedure

#### B.2.2. Cryogenic Hazards

In LM facilities there may be an oxygen deficiency monitor that alarms when the oxygen level is reduced to 19.5%. Additional temperature and pressure alarms, provided by the DAS, warn of potential overpressure conditions. Emergency vent line deflectors are installed over the four burst disks on the SMD vacuum shell.

Only authorized and trained LM and SU personnel are allowed in LM facilities without escort. All personnel working at a height 30 inches or more off the floor are required to have an LM approved air tank within easy reach. In the unlikely event of a large LHe spill all employees have been instructed to evacuate the room and contact LM safety.

The following additional requirements apply to all personnel involved directly in cryogenic operations. Gloves that are impervious to liquid helium and liquid nitrogen are to be worn whenever the possibility of splashing or impingement of high-velocity cryogens exists or when handling equipment that has been cooled to cryogenic temperatures. Protective clothing and full-face shields are to be worn whenever the possibility of splashing cryogens exists.

#### B.2.3. Other Hazards

When appropriate, tools or other items used with the potential to damage the SMD or Probe shall be tethered.

#### B.3. Mishap Notification

#### B.3.1. Injury

In case of any injury obtain medical treatment as follows LM Call 117

#### B.3.2. Hardware Mishap

In case of an accident, incident, or mishap, notification is to proceed per the procedures outlined in Lockheed Martin Engineering Memorandum EM SYS229.

#### B.3.3. Contingency Response

Responses to contingencies (e.g., power failure) are listed in Appendix 3.

#### C. QUALITY ASSURANCE

#### C.1. **QA Notification**

The NASA representative and SU QA shall be notified 24 hours prior to the start of this procedure. Upon completion of this procedure, the QE Manager will certify his/her concurrence that the effort was performed and accomplished in accordance with the prescribed instructions by signing and dating in the designated place(s) in this document.

#### C.2. Red-line Authority

Authority to red-line (make minor changes during execution) this procedure is given solely to the PTD or his designate and shall be approved by the QA Representative. Additionally, approval by the Payload Technical Manager shall be required, if in the judgement of the PTD or QA Representative, experiment functionality may be affected.

#### C.3. **Discrepancies**

A Quality Assurance Representative designated by D. Ross shall review any discrepancy noted during this procedure, and approve its disposition. Discrepancies will be recorded in a D-log or a DR per Quality Plan P0108. Any time a procedure calls for verification of a specific configuration and that configuration is not the current configuration, it represents a discrepancy of one of three types. These types are to be dealt with as described below.

- 1. If the discrepancy has minimal effect on procedure functionality (such as the state of a valve that is irrelevant to performance of the procedure) it shall be documented in the procedure, together with the resolution. Redlines to procedures are included in this category.
- 2. If the discrepancy is minor and affects procedure functionality but not flight hardware fit or function, it shall be recorded in the D-log. Resolution shall be in consultation with the PTD and approved by the QA representative.
- 3. All critical and major discrepancies, those that effect flight hardware fit or functions, shall be documented in a D-log and also in a Discrepancy Report, per P0108.

#### D. TEST PERSONNEL

#### D.1. Personnel Responsibilities

The performance of this procedure requires a minimum complement of personnel as determined by the Test Director. The Test Director is the designated signer for the "witnessed by" sign-off located at the end of each procedure. The person in charge of the operation (Test Director or Test Engineer) is to sign the "completed by" sign-off. The Test Director will perform Pre-Test and Post-Test Briefings in accordance with P0875 "GP-B Maintenance and Testing at all Facilities." Checklists will be used as directed by P0875

#### D.2. Personnel Qualifications

The Test Director must have a detailed understanding of all procedures and facility operations and experience in all of the SMD operations. Test Engineers must have SMD Cryogenic operations experience and an understanding of the operations and procedures used for the cryogenic servicing/maintenance of the Dewar.

#### D.3. Qualified Personnel

| Test Director | Test Engineer |
|---------------|---------------|
| Mike Taber    | Tom Welsh     |
| Dave Murray   | Ned Calder    |
| Ned Calder    | Dave Hipkins  |
|               | Bruce Clark   |

#### E. **REQUIREMENTS**

#### **E.1. Electrostatic Discharge Requirements**

This procedure does not include any equipment sensitive to electrostatic discharge.

#### **E.2.** Lifting Operation Requirements

There are no lifting operations in this procedure

#### **E.3.** Hardware/Software Requirements

#### E.3.1. Commercial Test Equipment

No commercial test equipment is required for this operation.

#### E.3.2. Ground Support Equipment

The Ground Support Equipment includes the Gas Module, the Pump Module, the Electrical Module, and the Vacuum Module. The Gas Module provides the capability to configure vent paths, read pressures and flow rates, and pump and backfill vent lines. The Pump Module provides greater pumping capacity than the Gas Module, together with additional flow metering capabilities. The vent output of the Gas Module flows through the Pump Module. The Electrical Module contains the instruments listed in Table 1, and provides remote control of valves in the Gas Module, Pump Module, and SMD. The Vacuum Module contains a turbo pump, backed by a vane pump, and provides the capability to pump out the SMD vacuum shell.

This procedure calls for use of hardware located in the Gas Module (Figure 1), the Pump Module (Figure 2), and the Electrical Module (Table 1).

#### E.3.3. Computers and Software:

The Data Acquisition System (DAS) and data acquisition software are required for this procedure. The DAS reads and displays pressures, temperatures, and flow rates and monitors critical parameters. No additional computers or software are required.

#### E.3.4. Additional Test Equipment

| Description                                          |
|------------------------------------------------------|
| Utility Turbo System (UTS, see Figure 3)             |
| Helium leak detector                                 |
| Helium leak detector calibrated leak; cal. due date: |

#### E.3.5. Additional Hardware

Guard Tank Vent Line

#### E.3.6. Tools

No additional tools are required.

#### E.3.7. Expendables

| Description                | Quantity | Mfr./Part No. |
|----------------------------|----------|---------------|
| Ethanol                    | AR       | N/A           |
| 99.99% pure gaseous helium | AR       | N/A           |

| Vacuum Grease | AR | Apeizon N or Dow Corning |
|---------------|----|--------------------------|
|               |    | High Vacuum Grease       |

#### **E.4.** Instrument Pretest Requirements

The GSE instruments required to perform this procedure are listed in Table 1, together with their serial numbers, where available. Instruments that are required to have current calibrations are indicated in the Cal-Required column. Instruments that do not require calibration are those not used to verify performance requirements and are not connected to flight instrumentation. The status column is to be filled in with the due date of the instrument calibration sticker and verified to be in calibration by QE or QE designee.

Table 1. Required Instrumentation and Calibration Status

| No. | Location | Description                                                    | User Name           | Serial No.  | Cal<br>Required | Status<br>Cal due<br>date |
|-----|----------|----------------------------------------------------------------|---------------------|-------------|-----------------|---------------------------|
| 1   | DAS      | Power Supply, H-P 6627A                                        | -                   | 3452A01975  | Yes             |                           |
| 2   | DAS      | Power Supply, H-P 6627A                                        | -                   | 3452A01956  | Yes             |                           |
| 3   | DAS      | Data Acquisition/Control Unit<br>H-P 3497A                     | -                   | 2936A245539 | No              | 1                         |
| 4   | DAS      | Digital Multimeter<br>H-P 3458A                                | -                   | 2823A15047  | Yes             |                           |
| 5   | EM       | Vacuum Gauge Controller<br>Granville-Phillips Model 316        | EG-1a, -1b          | 2827        | No              | -                         |
| 6   | EM       | Vacuum Gauge Controller<br>Granville-Phillips Model 316        | AG-2a, -2b          | 2826        | No              | -                         |
| 7   | EM       | Vacuum Gauge Controller<br>Granville-Phillips Model 316        | EG-3                | 2828        | No              | -                         |
| 8   | EM       | MKS PDR-C-2C                                                   | EG-2, FCG           | 92022108A   | No              | -                         |
| 9   | EM       | Flow meter – Matheson 8170                                     | EFM-1               | 96186       | No              | -                         |
| 10  | EM       | Flow meter totalizer<br>Matheson 8124                          | EFM-1               | 96174       | No              | -                         |
| 11  | EM       | Liquid Helium Level Controller<br>American Magnetics, Inc. 136 | LLS Main<br>Tank    | 96-409-11   | No              | -                         |
| 12  | EM       | Liquid Helium Level Controller<br>American Magnetics, Inc. 136 | LLS Guard<br>Tank   | 96-409-10   | No              | -                         |
| 13  | EM       | Liquid Helium Level Controller<br>American Magnetics, Inc. 136 | LLS Well            | 96-409-9    | No              | -                         |
| 14  | EM       | Liquid Helium Level Controller<br>American Magnetics, Inc. 136 | LLS Axial<br>Lock   | 96-409-12   | No              | -                         |
| 15  | EM       | Pressure Controller – MKS 152F-92                              | EV-7a, -7b          | 96203410A   | No              | -                         |
| 16  | EM       | Power Supply<br>HP 6038A                                       | H08D Tank<br>Heater | 96023407A   | Yes             |                           |
| 17  | EM       | Power Supply<br>HP 6038A                                       | H09D Tank<br>Heater | 3511A-13332 | Yes             |                           |
| 18  | EM       | Power Supply<br>HP 6038A                                       | RAV Power<br>Supply | 3329A-12486 | Yes             |                           |
| 19  | EM       | Vac Ion Pump power supply<br>Varian 929-0910, Minivac          | SIP                 | 5004N       | No              | -                         |

| No. | Location | Description                                                                                       | User Name          | Serial No. | Cal<br>Required | Status<br>Cal due<br>date |
|-----|----------|---------------------------------------------------------------------------------------------------|--------------------|------------|-----------------|---------------------------|
| 20  | EM       | Flow meter totalizer<br>Veeder-Root                                                               | PFM-1              | 576013-716 | No              | 1                         |
| 21  | GM       | Pressure Gauge, Heise                                                                             | AG-1               | CC-122077  | No              | -                         |
| 22  | GM       | Pressure Gauge, Marshall Town                                                                     | AG-3               | N/A        | No              | i                         |
| 23  | GM       | Main Tank Heat Exchanger: a) Thermocouple, b) Current meter, c) Temperature set point controller  | -                  | C-19950    | No              | 1                         |
| 24  | GM       | Guard Tank Heat Exchanger: a) Thermocouple, b) Current meter, c) Temperature set point controller | -                  | C-09920    | No              | 1                         |
| 25  | VM       | Vacuum Gauge readout,<br>Granville-Phillips 316                                                   | VG-3<br>VG-4       | 2878       | No              | -                         |
| 26  | VM       | Vacuum Gauge readout,<br>Granville-Phillips 360                                                   | VG-1, VG-2<br>VG-5 | 96021521   | No              | -                         |

#### **E.5.** Configuration Requirements

#### E.5.1. Main Tank

Liquid in the Main Tank may be at normal boiling point (NBP) or subatmospheric. When subatmospheric, the initial configuration of the Gas Module may be such that the bath is being actively pumped or is set up in a non-vented mode.

#### E.5.2. Guard Tank

The Guard-Tank may contain liquid, or be depleted. When the Guard Tank is depleted, its pressure must be independently regulated from a source of 99.999% pure helium gas and its pressure must be continuously monitored and maintained at a positive value relative to that of the atmosphere. Monitoring is accomplished by placing the relative pressure (GTV-G), as read at the Guard Tank Vent Valve Assembly, on the DAS alarm list.

#### E.5.3. Well

The Well is evacuated.

#### E.5.4. SMD Vacuum Shell

The Vacuum Shell pressure must be less than 5\*10^-5 torr.

#### E.5.5. Alarm System

- 1. The DAS alarm system must be enabled and contain the following alarm set-points:
  - a. Top of lead bag temperature set (CN 28 and CN 29) at T  $\leq$  6.0 K.
  - b. Relative Guard Tank Pressure (CN 46) set at  $\Delta P \ge 0.3$  torr.

#### E.5.6. GSE and Non-flight Hardware

1. GSE cabling must be connected between the SMD and the Electrical Module (P/N 5833812) and between the SMD and the Data Acquisition System (P/N 5833811).

#### E.6. Optional Non-flight Configurations

The following modifications or non-flight arrangement of the basic SMD configuration may also be in place. They are incidental to the performance of this procedure and not required.

- 1. The SMD/Space Vehicle is installed in the Tilt dolly.
- 2. A foreign object and debris shield covers the upper cone of the SMD.
- 3. The ion-pump magnet is installed.
- 4. The Main Tank Vent Line may be connected to the Gas Module, or it may be disconnected either at the Bayonet at the end of the short line or the Bayonet at SV-9.

- 5. When the Well contains liquid, it vents through the Gas Module unless Well operations are being performed (e.g., Probe insertion). Venting through the Gas module is accomplished via a pumping line attached to the Well vent manifold installed at the Well pump-out port.
- 6. The Vacuum shell pump out port at SV-14 may be connected to the Vacuum Module (P/N 5833816) via a 2-in valve operator and pumping line, with the valve in the closed position or in the open position with the Vacuum Module actively pumping the vacuum shell.
- 7. The thruster vent port is flanged to a GSE or Flight shut-off valve.
- 8. The Fill Cap Assembly is installed at SV-13.

#### F. REFERENCE DOCUMENTS

#### F.1. **Drawings**

| Drawing No.  | Title                        |
|--------------|------------------------------|
| LMMS-5833394 | Instrumentation Installation |

#### F.2. Supporting documentation

| Document No.    | Title                                                     |
|-----------------|-----------------------------------------------------------|
| LMMC-5835031    | GP-B Magnetic Control Plan                                |
| GPB-100153C     | SMD Safety Compliance Assessment                          |
| SU/GP-B P0141   | FIST Emergency Procedures                                 |
| LMSC-P088357    | Science Mission Dewar Critical Design Review              |
| SU/GP-B P0108   | Quality Plan                                              |
| LMMS GPB-100333 | Science Mission Dewar Failure Effects and Causes Analysis |
| SU/GP-B P059    | GP-B Contamination Control Plan                           |
| EM SYS229       | Accident/Mishap/Incident Notification Process             |

#### F.3. Additional Procedures

| Document No.  | Title                                                        |
|---------------|--------------------------------------------------------------|
| SU/GP-B P0674 | Connect Main Tank Vent Line to Gas Module – Main Tank at NBP |
| SU/GP-B P0676 | Connect Guard Tank Vent Line to Gas Module                   |
| SU/GP-B P0879 | Accident/Incident/Mishap Notification Process                |
| SU/GP-B P0213 | Connect Vacuum Module to SMD                                 |
| SU/GP-B P0875 | GP-B Maintenance and Testing at all Facilities               |

|            |      |                                                                            |                                                                |                  | Oper                                    | ation Number:                                |  |
|------------|------|----------------------------------------------------------------------------|----------------------------------------------------------------|------------------|-----------------------------------------|----------------------------------------------|--|
|            |      |                                                                            |                                                                |                  |                                         | Date Initiated:                              |  |
|            |      |                                                                            |                                                                |                  |                                         | Time Initiated:                              |  |
| <b>3</b> . | OPE  | RAT                                                                        | IONS                                                           |                  |                                         |                                              |  |
|            | G.1. | Pr                                                                         | e-Operations Ve                                                | erifications     |                                         |                                              |  |
|            |      | o                                                                          | Verify SU QA n                                                 | otified.         |                                         |                                              |  |
|            |      |                                                                            | Record: Individ                                                | ual notified     |                                         | ,                                            |  |
|            |      |                                                                            | Date/time                                                      |                  |                                         |                                              |  |
|            |      | o                                                                          | Verify NASA re                                                 | presentative n   | otified.                                |                                              |  |
|            |      |                                                                            | Record: Individ                                                | ual notified     |                                         | ,                                            |  |
|            |      |                                                                            | Date/time                                                      | /                | ·                                       |                                              |  |
|            |      | o                                                                          | Record calibration due dates in Table 1 (Sections. E.3.4, E.4) |                  |                                         |                                              |  |
|            |      | 0                                                                          |                                                                |                  | his procedure sho<br>Director should be | uld initial their names in Sec<br>e circled. |  |
|            |      | o                                                                          | Verify completion                                              | st (Appendix 1). |                                         |                                              |  |
|            |      | 0                                                                          | Verify Guard Ta<br>connected term                              |                  |                                         | uard Tank Vent Line is                       |  |
|            | G.2. | Ve                                                                         | erify Purity of All                                            | I Sources of H   | lelium Gas                              |                                              |  |
|            |      | G.                                                                         | 2.1. Record seri                                               |                  |                                         |                                              |  |
|            |      |                                                                            |                                                                |                  | 3                                       |                                              |  |
|            |      |                                                                            | 4                                                              | 5                | 6                                       |                                              |  |
|            |      | Verify helium bottle/s have been tested for purity and record C<br>Number. |                                                                |                  |                                         |                                              |  |
|            |      |                                                                            | Op. Numb                                                       | oer:             | Record Step N                           | lumber:                                      |  |
|            |      |                                                                            |                                                                |                  |                                         | OA Witness:                                  |  |

Page 9

G.3.

G.4.

| Verify | Configuration Requirements                                                                                                                              |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| G.3.1. | Verify proper sealing of Well. Record closure (cover plate, Hole cutter, Probe etc.).                                                                   |  |
| G.3.2. | Ensure DAS alarm system enabled and record set points.                                                                                                  |  |
|        | <ol> <li>Top of lead bag temperature – ensure CN [28] and CN [29] on DAS alarm list with alarm limit at T ≤ 6.0 K. Record set point.</li> </ol>         |  |
|        | <ol> <li>Relative Guard Tank Pressure – ensure CN [46] on DAS alarm list with alarm limit at ΔP ≥ 0.3 torr. Record set pointtorr</li> </ol>             |  |
| G.3.3. | Ensure liquid-level alarms set, as appropriate, and record set points.                                                                                  |  |
|        | <ol> <li>Main Tank – ensure liquid-level alarm set ≥ 20%.  Record set point.</li> </ol>                                                                 |  |
|        | 2. <b>Guard Tank</b> – ensure liquid level alarm set ≥ 10% (if liquid in GT). Record set point%                                                         |  |
| G.3.4. | Ensure GSE cabling connected between the SMD and the Electrical Module (P/N 5833812) and between the SMD and the Data Acquisition System (P/N 5833811). |  |
|        | Section Complete QA Witness:                                                                                                                            |  |
| Recor  | rd Initial Configuration and Conditions                                                                                                                 |  |
|        | Record initial liquid helium levels as appropriate.                                                                                                     |  |
| G.4.1. | 1. Main Tank (LL-1D or LL-2D)%                                                                                                                          |  |
|        | 2. Guard Tank (LL-5D or LL-6D) <u>%</u>                                                                                                                 |  |
| G 4 2  | Record initial pressures, as appropriate.                                                                                                               |  |
| G.4.Z. | Main Tank – Subatmospheric (EG-2/STG): torr.                                                                                                            |  |
|        | 2. Main Tank – NBP (EG-3/STG): torr.                                                                                                                    |  |
|        | 3. Guard Tank – (GTV-G) torr relative to 1 atm.                                                                                                         |  |

- G.4.3. Record condition of Main Tank (*one* of the following) and ensure corresponding valve configurations.
- o Main Tank not connected to Gas Module
  - 1. Ensure all EV valves closed.
  - 2. Ensure all AV valves closed.

a.

- Main Tank connected to Gas Module liquid at NBP.
  - 1. Ensure EV-9 open.
  - 2. Ensure all other EV valves closed.
  - 3. Ensure all AV valves closed.
  - o Main Tank connected to Gas Module liquid sub-atmospheric and pumped by Pump Module (PP-1/PP-2).
    - 1. Ensure EV-10 and EV-17 open.
    - 2. Ensure EV-4, EV-7a/b, and EV-21 open.
    - 3. Ensure all other EV valves closed.
    - 4. Ensure all AV valves closed.
    - 5. Ensure PV-1, PV-3, and PV-4 (or PV-1, PV-3, PV-5 and PV-6) open.
    - 6. Ensure PP-1 and PP-2 on.
  - Main Tank connected to Gas Module liquid sub-atmospheric and pumped by Gas Module (AP-1).
    - 1. Ensure EV-10 and EV-17 open.
    - 2. Ensure EV-7a/b open .
    - 3. Ensure all other EV valves closed.
    - 4. Ensure AP-1 on
    - 5. Ensure AV-6 open.
    - 6. Ensure all other AV valves closed

- G.4.4. Record condition of Guard Tank
  - Guard Tank contains liquid.
  - Guard Tank depleted and pressure independently regulated at GTV-Va-

| <b>QA Witness</b> | <b>:</b> : |
|-------------------|------------|
|-------------------|------------|

#### G.5. Remove Guard Tank Vent Cap and Install Vent Line

- G.5.1. Close/verify closed GTVC-V.
- G.5.2. Close GTV-V
- G.5.3. Enter comment in DAS "Closed Guard Tank vent valve GTV-V."
- G.5.4. Remove Guard Tank Vent Cap Assembly
- G.5.5. Remove o-ring from bayonet receptacle and inspect for defects or damage. Replace if any found and record results in o-ring log.
- G.5.6. Clean and grease o-ring with Apeizon N high vacuum grease before replacing.
- G.5.7. Install Guard Tank Long Vent Line at GTV-V.
- G.5.8. Ensure black marks on nut line up with black marks on threads.
- G.5.9. Connect Guard Tank Vent line at Gas Module (at inlet to Guard Tank heat exchanger).

| Section Complete QA | Witness: |
|---------------------|----------|
|---------------------|----------|

#### G.6. Leak Check Guard Tank Vent Line

- G.6.1. Turn on and verify calibration of leak detector. Record
  - 1. calibrated leak value \_\_\_\_\_ sccs
  - 2. measured leak value \_\_\_\_\_ sccs
- G.6.2. Connect leak detector to the UTS at access port (LD).
- G.6.3. Ensure EV-5 closed
- G.6.4. Install UTS/Leak detector to Access port #3 of Gas Module and start the UTS (Figure 3) pumping up to closed EV-5, as follows:
  - 1. Place valve interlock switch in "over-ride" position.
  - 2. Turn on vane pump and converter (Note: converter switch provides power to turbopump controller and pirani and cold-cathode vacuum-gauge display.
  - 3. Push the red "reset" button to activate the interlock over-ride circuit. (the yellow-orange indicator light will come on).
  - 4. Turn "foreline" switch on, to open TV-2, and verify that the switch is

Page 12

illuminated.

- 5. Push the "Sensor" button on the vacuum gauge display to read the foreline pressure (TG-4). This is the pirani gauge. The "Pir" annunciator will appear in upper left corner of the display).
- 6. Slowly open TV-4.
- 7. When foreline pressure (TG-4) < 1 torr, push "Start" button on turbo controller.
- 8. When the "Normalbetrieb" light illuminates on turbo controller, indicating turbopump is up to speed, close TV-4 and open gate valve TV-1.
- 9. Switch the valve interlock switch to the "protected" position.
- 10. Push the "Sensor" button on the vacuum gauge readout so that the "Hi-Vac" annunciator shows, and push the "Emis" button to turn on the cold cathode gauge (TG-1).
- 11. Record the pumping line pressure (TG-1) \_\_\_\_\_ torr.

#### **CAUTION**

If the Main Tank is connected to the Gas Module and being pumped, the next step will stop the pumping and put the Main Tank in a non-vented mode. During the period of Main Tank vent closure the temperatures at Station 200 and the top of the lead bag are to be continuously monitored.

| G.6.5. | Close/verify closed AV-6, EV-10, EV-17, and EV-21/22.                     |  |  |
|--------|---------------------------------------------------------------------------|--|--|
| G.6.6. | Open/verify open EV-4, EV-14, and EV-16.                                  |  |  |
| G.6.7. | Record settings of EV-7a and EV-7b and open fully.                        |  |  |
| G.6.8. | Evacuate Guard Tank vent plumbing with Gas Module                         |  |  |
|        | 1. Ensure AP-1 on.                                                        |  |  |
|        | 2. Open AV-6 and AV-8.                                                    |  |  |
|        | 3. Once pressure is < 25 mtorr as measured at AG-2b, close AV-6 and AV-8. |  |  |
| G.6.9. | Bake out Gas Module                                                       |  |  |
|        | 1. Open EV-5, now pumping up to closed GTV-V with UTS                     |  |  |
|        | Record TG-1:torr                                                          |  |  |
|        | Record Time:                                                              |  |  |
|        | 2. Turn on Guard Tank heat exchanger and set to 50C                       |  |  |
|        | 3. Bake out heat exchanger until TG-1 < 5*10^-6 torr                      |  |  |
|        | Record TG-1:torr                                                          |  |  |
|        | Record Time:                                                              |  |  |

|                                                                                         | 4. Turn off Guard Tank heat exchanger                                                                 |                           |               |                    |                          |               |             |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------|---------------|--------------------|--------------------------|---------------|-------------|
|                                                                                         | 5. When TG-1 pressure stablizes proceed to section G.6.10                                             |                           |               |                    |                          |               |             |
|                                                                                         |                                                                                                       | F                         | Record TG-    | 1:                 | _torr                    |               |             |
|                                                                                         |                                                                                                       | F                         | Record Time   | e:                 | _                        |               |             |
|                                                                                         |                                                                                                       |                           |               |                    |                          |               |             |
| G.6.10                                                                                  | . Le                                                                                                  | ak check all <sub>l</sub> | olumbing ar   | nd connection      | ons                      |               |             |
|                                                                                         | <ol> <li>Verify that leak detector is operational and pumping up to closed<br/>valve TV-3.</li> </ol> |                           |               |                    |                          |               |             |
|                                                                                         | 2.                                                                                                    | Leak check<br>TV-3        | all plumbing  | g and conne        | ections betw             | reen leak de  | etector and |
|                                                                                         | 3.                                                                                                    | Slowly oper               | TV-3 and      | close the fo       | reline valve             | (TV-2)        |             |
|                                                                                         | 4.                                                                                                    | Pump until                | background    | d level is on      | the 1x10 <sup>-5</sup> s | scc/s range.  |             |
|                                                                                         |                                                                                                       |                           | -             |                    |                          |               |             |
| G.6.11                                                                                  | . Ва                                                                                                  | ag seals of ve            | ent line, pur | ge bags wit        | h GHe for 2              | minutes an    | d record:   |
|                                                                                         | 1.                                                                                                    | O-ring locat              | ion:          |                    |                          |               |             |
|                                                                                         | Tin                                                                                                   | ne (min)                  | 0             | 1/2                | 1                        | 1 1/2         | 2           |
|                                                                                         | LD                                                                                                    | (ssc/s)                   |               |                    |                          |               |             |
|                                                                                         | 2.                                                                                                    | Pass/Fail: _              | (P            | ass= <b>no</b> ind | crease from              | initial backo | ground)     |
|                                                                                         |                                                                                                       |                           |               |                    |                          |               |             |
|                                                                                         |                                                                                                       |                           |               |                    | C                        | QA Witness:   |             |
|                                                                                         | 3.                                                                                                    | O-ring locat              | ion:          |                    |                          |               |             |
|                                                                                         | <b>T</b> :                                                                                            |                           | •             | 1/0                |                          | 4.4/0         | •           |
|                                                                                         | HIN                                                                                                   | ne (min)                  | 0             | 1/2                | 1                        | 1 1/2         | 2           |
|                                                                                         |                                                                                                       | (ssc/s)                   | (5            |                    |                          |               | D.          |
|                                                                                         | 4.                                                                                                    | Pass/Fail: _              | (P            | ass= <b>no</b> ind | rease from               | initiai backę | grouna)     |
|                                                                                         |                                                                                                       |                           |               |                    |                          | QA Witness    | · ·         |
|                                                                                         |                                                                                                       |                           |               |                    |                          | QA Willies    | o           |
| G.6.12                                                                                  | . Clo                                                                                                 | ose EV-4, EV              | '-5, and EV-  | -14. Re            | cord Date/T              | ime           |             |
| G.6.13. Remove UTS/leak detector (if not going to use for more operations), as follows: |                                                                                                       |                           |               | ations), as        |                          |               |             |
|                                                                                         | 1.                                                                                                    | Close valve               | TV-3 and o    | pen foreline       | e Valve (TV-             | -2)           |             |
|                                                                                         | 2.                                                                                                    | While monit               | • .           |                    |                          | ode gauge     | (TG-1),     |
|                                                                                         | 3.                                                                                                    | Close UTS                 | gate valve (  | TV-1).             |                          |               |             |
|                                                                                         | 4.                                                                                                    | Turn turbo p              | oump off.     |                    |                          |               |             |

Page 14

- 5. Close foreline valve (TV-2) and turn off vane pump.
- 6. Install GHe to UTS valve TV-5 upstream of gate valve and backfill to 760 torr, as read at TG-3.
- 7. Disconnect UTS from access port 3 at EV-5..

| G.6.14. Backfill Gas | Module to | one atmosp | here |
|----------------------|-----------|------------|------|
|----------------------|-----------|------------|------|

- 1. Open EV-10 and EV-12.
- 2. Open AV-9 and pressurize to 760 torr as read at gauge EG-1a and close AV-9.
- 3. Close EV-10, EV-12, and EV-16.

| Section | Complete | ΩA       | Witness:    |  |
|---------|----------|----------|-------------|--|
| Section | COMPLETE | $Q \cap$ | VVIII 1000. |  |

#### G.7. Establish Final Configuration

|         | _      | 1 .1  |     |        |
|---------|--------|-------|-----|--------|
| (3.7.1) | Record | a the | tol | lowina |
| U.1.1.  | 110001 | ว เมษ | 101 |        |

- 1. Date/time of day:\_\_\_\_/\_\_\_
- 2. Main Tank Temp (T-9D):\_\_\_\_ K
- 3. Guard Tank Temp (T-15D)\_\_\_\_ K
- 4. Vacuum Module pressure (VG-1) if connected:\_\_\_\_\_ torr

Guard Tank pressure GTV-G\_\_\_\_\_ torr (relative to atm.

G.7.2. Place Gas Module valves in initial configuration:

Note: before reestablishing Guard Tank venting place the Gas Module valves in the same states they were in to start with (i.e., the states established in Paragraph G.3.3. Those states are repeated below.

- o Main Tank not connected to Gas Module.
  - 1. Ensure all other EV valves closed.
  - 2. Ensure all AV valves closed.
- o Main Tank connected to Gas Module liquid at NBP.
  - 1. Ensure EV-9 open.
  - 2. Ensure all other EV valves closed.
  - 3. Ensure all AV valves closed.

- o Main Tank connected to Gas Module liquid sub-atmospheric and pumped by Pump Module (PP-1/PP-2).
  - Slowly release pressure in Guard Tank thru GTVVA until CN 46 drops to 120 torr
  - 2. Ensure EV-10 and EV-17 open.
  - 3. Ensure EV-4, EV-7a/7b, and EV-21 open.
  - 4. Ensure all other EV valves closed.
  - 5. Ensure all AV valves closed.
  - 6. Ensure PP-1 and PP-2 on.
  - 7. Ensure PV-1, PV-3, and PV-4 (or PV-1, PV-3, PV-5 and PV-6) open..
- Main Tank connected to Gas Module liquid sub-atmospheric and pumped by Gas Module (AP-1).
  - 1. Ensure EV-10 and EV-17 open.
  - 2. Ensure EV-7a/7b open .
  - 3. Ensure all other EV valves closed.
  - 4. Ensure AP-1 on
  - 5. Ensure AV-6 open.
  - 6. Ensure all other AV valves closed.

#### G.7.3. Establish one of the following Guard Tank vent configurations:

- Guard Tank contains liquid establish venting (Because the GT may be at much higher pressure than the MT, venting is established through EV-20.)
  - 1. Close/verify closed EV-13, EV-23, and GTV-Va.
  - 2. Open EV-20
  - Open GTV-V
  - 4. Enter comment into DAS "GT venting through EV-20."
  - 5. Only if Main Tank not subatmospheric, open EV-16.
- o Guard Tank depleted pressure must be independently regulated.
  - 1. Ensure EV-13 and EV-20 closed.
  - 2. Close GTV-Va
  - 3. Open GTV-V.
  - 4. Verify certified helium supply attached to APR-2.
  - 5. Ensure APR-2 adjusted to 1-2 psid.
  - 6. Open EV-23 fully.

7. **Only** if Main Tank **not** subatmospheric, open EV-16.

| G.7.4         | 4. Ensure DAS alarm enabled                                       | and record set points if ch  | anged                 |
|---------------|-------------------------------------------------------------------|------------------------------|-----------------------|
|               | o Thermal conditions substated lead bag is unchanged              | antially unchanged, alarm s  | set point for the     |
|               | o Thermal conditions substated reset as follows:                  | antially changed, temperati  | ure alarm points      |
|               | a. Top of Lead I<br>[CN 28 and C                                  | Bag set point<br>CN 29]      | K ( ≤ 6.0 K)          |
| G.7.5         | <ol><li>Ensure liquid level sensor a points if changed.</li></ol> | ılarms enabled, as appropr   | iate, and record set  |
|               | 1. Main Tank Level                                                | Set Point                    | %                     |
|               | 2. Guard Tank Level                                               | Set Point                    | %                     |
| G.7.6         | <ol> <li>Ensure Guard Tank pressured differential.</li> </ol>     | re on DAS alarm list and se  | et to alarm ≥0.3 torr |
| G.7.7         | 7. Once conditions have stabi                                     | lized, record the following: |                       |
|               | 1. Date/time of day:                                              |                              |                       |
|               | 2. Flowrate EFM-1                                                 |                              |                       |
|               | 3. Main Tank Temp (T-9D)                                          | ) CN [09] K                  |                       |
|               | 4. Guard Tank Temp (T-15                                          | 5D) CN [24] K                |                       |
|               | 5. Guard Tank pressure (6                                         | GTV-G) torr relat            | ive to atm.           |
|               | 6. Main Tank pressure                                             |                              |                       |
|               | a. If connected t                                                 | to GM (EG-2 or EG-3)         | torr                  |
|               | <ul><li>b. If disconnecte<br/>atm.</li></ul>                      | ed from GM(STG)              | _ torr relative to    |
|               | 7. Vacuum Module pressu                                           | re (VG-1) if connected:      | torr                  |
| G.7.8         | 3. Verify Completion of Post P                                    | rocedure Checklist.          |                       |
|               | 9                                                                 | Section Complete QA Witne    | ess:                  |
| Section H.    |                                                                   |                              |                       |
|               |                                                                   |                              |                       |
| Witnessed by: |                                                                   |                              |                       |
| Date:         |                                                                   |                              |                       |
| Time:         |                                                                   |                              |                       |

Gravity Probe B Program P0676 Rev-B

| Quality Manager       | Date |  |
|-----------------------|------|--|
| Payload Test Director | Date |  |

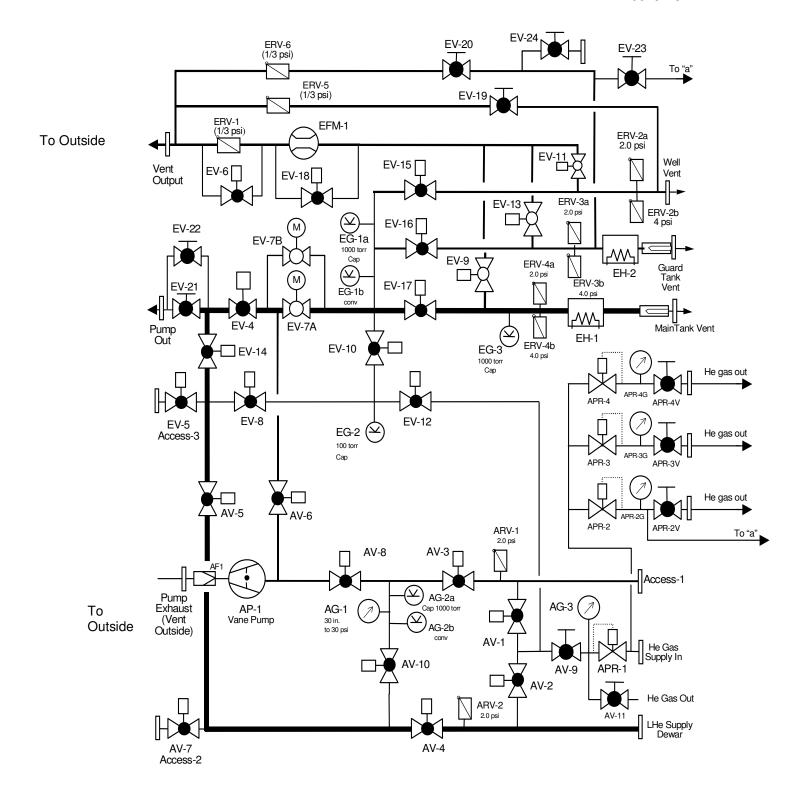



Figure 1. Gas Module

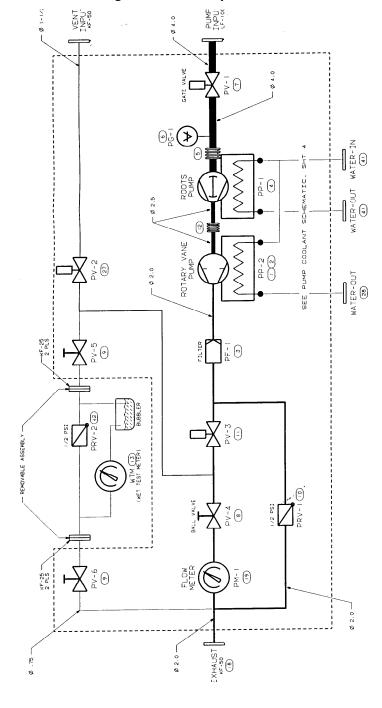
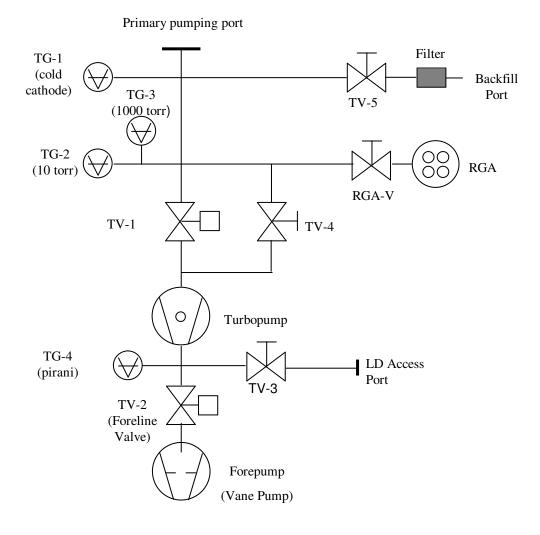
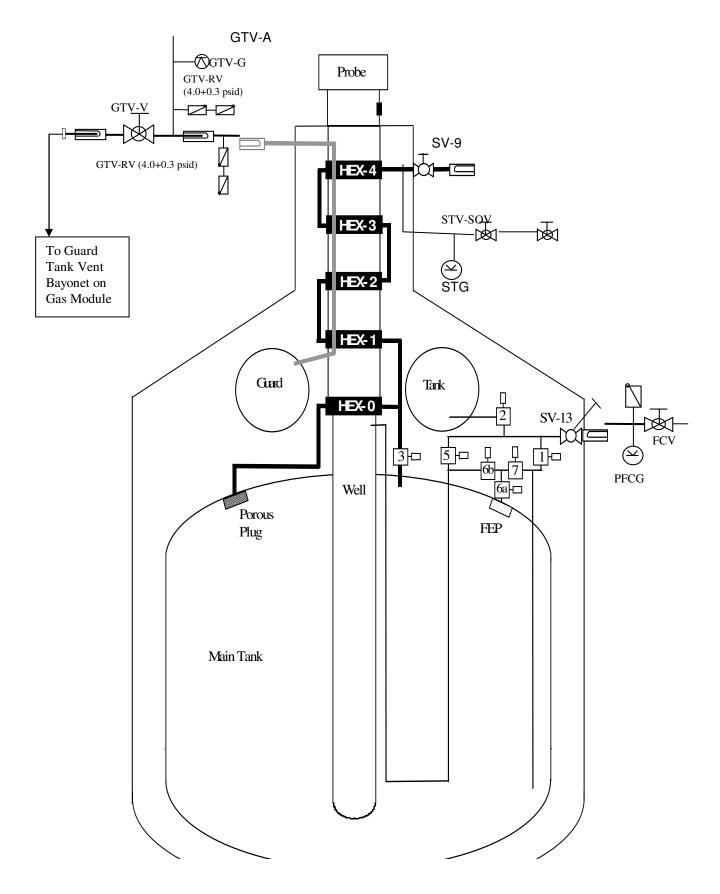
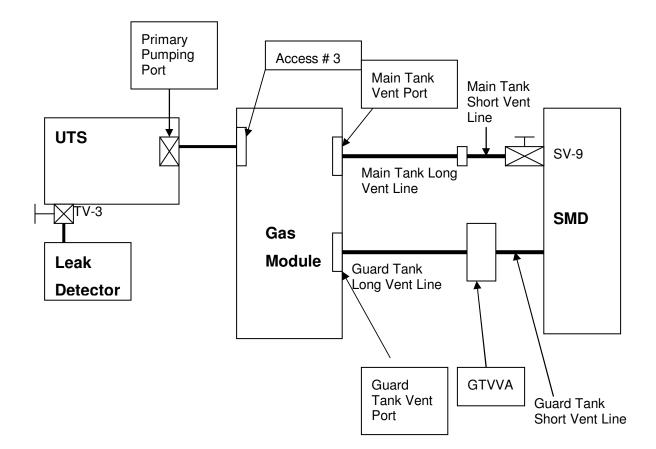



Figure 2-Schematic diagram of the Pump Module



Figure 3. Schematic diagram of Utility Pumping System (UTS)



**Figure 4.** Schematic of Science Mission Dewar plumbing.

Figure 5- Possible Main Tank and Guard Tank Vent Configurations \*note-dashed arrows indicated an option **Bayonet Fitting** Vacuum Clad Vent Line Endevco 2 psid Gauge To Room Circle Seal 532B-4MP-Circle Seal Main Tank Main Tank 1(1 psid) Short Vent 532B-4M-.5 Line Vent Cap Assy (0.5 psid) 2 Main Tank Long Vent Line ▶To Gas Module SV-9 Main Tank Long Vent ▶To Gas Module В To Room Circle Seal Circle Seal **SMD** 532B-4MP-1(1 psid) 532B-4M-.5 (0.5 psid) GTVC-RV a,b To GTV-Va Room GTVC-V GTV-V **Guard Tank** Short Vent Line **GTVC-Fill Vent** GTVC-G **Guard Tank Vent Cap GTVG** Guard Tank Long Vent GTV-RV To Gas **GTVVA** Module 4.0+0.3 psid GTSL-RV 4.0+0.3 psid Page 25

Figure 6: Block Diagram of GSE and SMD-See individual diagrams for more detail



# Appendix 1 **Pre Operations Checklist**

| DATE | CHECKLIST ITEM                                                                                                                                                                                                                     | COMPLETED | REMARKS |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|
|      | 1. Verify the test procedure being used is the latest revision.                                                                                                                                                                    |           |         |
|      | 2. Verify all critical items in the test are identified and discussed with the test team.                                                                                                                                          |           |         |
|      | 3. Verify all required materials and tools are available in the test area.                                                                                                                                                         |           |         |
|      | 4. Verify all hazardous materials involved in the test are identified to the test team.                                                                                                                                            |           |         |
|      | 5. Verify all hazardous steps to be performed are identified to the test team.                                                                                                                                                     |           |         |
|      | 6. Verify each team member knows their individual responsibilities.                                                                                                                                                                |           |         |
|      | 7. Confirm that each test team member clearly understands that he/she has the authority to stop the test if an item in the procedure is not clear.                                                                                 |           |         |
|      | 8. Confirm that each test team member clearly understands that he/she must stop the test if there is any anomaly or suspected anomaly.                                                                                             |           |         |
|      | 9. Notify management of all discrepancy reports or d-log items identified during procedure performance. In the event an incident or major discrepancy occurs during procedure performance management will be notified immediately. |           |         |
|      | 10. Confirm that each test team member understands that there will be a post-test team meeting.                                                                                                                                    |           |         |
|      | Team Lead Signature:                                                                                                                                                                                                               |           |         |

# Appendix 2 Post Operations Checklist

| DATE | CHECKLIST ITEM                                                                           | COMPLETED | REMARKS |
|------|------------------------------------------------------------------------------------------|-----------|---------|
|      | Verify all steps in the procedure were successfully completed.                           |           |         |
|      | 2. Verify all anomalies discovered during testing are properly documented.               |           |         |
|      | 3. Ensure management has been notified of all major or minor discrepancies.              |           |         |
|      | 4. Ensure that all steps that were not required to be performed are properly identified. |           |         |
|      | 5. If applicable sign-off test completion.                                               |           |         |
|      | Team Lead Signature:                                                                     |           |         |

# Appendix 3— Contingency Responses

| Condition                                | Circumstance | Response                                                                                                                                                                                            |
|------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature limits (CN 1 or 28) exceeded | Any time     | Close EV-17 (if open) and open EV-9. Crack open SV-9 to allow MT to vent. Adjust SV-9 as necessary to restore temperature(s) below alarm limits. Open EV-6 and EV-18 if higher flow rate is needed. |
| Burst disk rupture (MT/GT)               | Any time     | Evacuate room                                                                                                                                                                                       |