GRAVITY PROBE B PROCEDURE FOR SCIENCE MISSION DEWAR

Spacecraft Battery Magnetic Field Survey

This operation to be performed in VAFB building 1610

THIS DOCUMENT CONTAINS NON-HAZARDOUS OPERATIONS

September 15, 2003

P1069 Rev-

Written by:		Reviewed By	
	Date		Date
Ned Calder Cryogenics Team		John Mester	
Approvals:			
	Date		Date
Dorrene Ross Quality Assurance		Harv Moskowitz LMMS Safety	
	Date		_Date
Mike Taber Payload Test Director		Rob Brumley Payload Technical Manage	ir

Revision Record

REVISION	ECO	PAGES	DATE

Table of Contents

SP	ACECF	AFT BATTERY MAGNETIC FIELD SURVEY	1
THI	S OPE	RATION TO BE PERFORMED IN VAFB BUILDING 1610	1
Α.	SCOP	E	1
В.	-	TY Potential Hazards Mitigation of Hazards	1
	B.3.	Mishap Notification	
C.	QUAL C.1.	ITY ASSURANCE	
	C.2. C.3.	Red-line Authority Discrepancies	
D.	D.1.	PERSONNEL Personnel Responsibilities	3
	D.2. D.3.	Personnel Qualifications	
E.	REQU E.1. E.2.	IREMENTS Hardware/Software Requirements Configuration Requirements	4
F.	REFEI F.1. F.2.	RENCE DOCUMENTS Drawings Supporting documentation	5
	F.3.	Additional Procedures	
G.	OPER G.1. G.2. G.3.	ATIONS Pre-Operations Verifications Spacecraft Battery Magnetic Field Survey Induce Magnetic Field and Monitor SQUID and payload magnetometer response	6 6
	G.4.	Final Verifications	

List of Abbreviations and Acronyms

AG-x	Gauge x of Gas Module auxiliary section	MT	Main Tank
AMI ATC	American Magnetics Inc. Advanced Technology Center	MTVC MTVC-G	Main Tank Vent Cap Main Tank Vent Cap pressure gauge
AR Aux AV-x	As required Auxiliary Valve x of Gas Module auxiliary section	MTVC-RV MTVC-V	Main Tank Vent Cap relief valve Main Tank Vent Cap valve
Bot CN [xx]	Bottom Data acquisition channel number	NBP NASA	Normal boiling point National Aeronautics and Space Administration
DAS	Data Acquisition System	PFCG	Fill Cap assembly pressure Gauge
DR EG-x	Discrepancy Report Gauge x of Gas Module exhaust section	PFM PG-x	Pump equipment Flow Meter Gauge x of Pump equipment
EM	Electrical Module	PRT	Platinum Resistance Thermometry
ERV-x	Relief valve of Gas Module exhaust section	psi	pounds per square inch
EV-x	Valve number x of Gas Module exhaust section	psig	pounds per square inch gauge
FCV FIST GHe GM GP-B GSE GT GTVC-G GTVC-G GTVC-RV GTVC-V GTV-V GTV-RV GTV-RV GTV-V HX-x	Fill Cap Valve Full Integrated System Test Gaseous Helium Gas Module Gravity Probe-B Ground Support Equipment Guard Tank Guard Tank Vent Cap Guard Tank Vent Cap pressure gauge Guard Tank Vent Cap relief valve Guard Tank Vent Cap valve Guard Tank Vent Cap valve Guard Tank vent pressure gauge Guard Tank vent pressure gauge Guard Tank vent relief valve Guard Tank vent relief valve Vent line heat exchanger in Gas Module	PTD PV-x QA QE RGA SMD STV SU SV-x TG-x TV-x UTS VAFB VCP-x VCPV-x	Payload Test Director Valve x of the Pump equipment Quality Assurance Quality Engineer Residual Gas Analyzer Science Mission Dewar SMD Thruster vent Valve Stanford University SMD Valve number x Gauge x of Utility Turbo System Valve x of Utility Turbo System Utility Turbo System Vandenberg Air Force Base Vent cap pressure gauge Vent cap relief valve
KFxx	Quick connect o-ring vacuum flange (xx mm diameter)	VCV-x	Vent cap valve
LHe LHSD Liq	Liquid Helium Liquid Helium Supply Dewar Liquid	VDC VF-x VG-x	Volts Direct Current Liquid helium Fill line valve Gauge x of Vacuum Module
LL LLS LMMS	Liquid level Liquid level sensor Lockheed Martin Missiles and Space	VM VV-x VW-x	Vacuum Module Valve x of Vacuum Module Valve x of Dewar Adapter

LV-x Large Vatterfly-x

A. SCOPE

This procedure describes the steps necessary to measure the magnetic field produced by the GP-B Spacecraft battery using an APS three-axis magnetometer. In addition, it provides the steps necessary to generate a magnetic field identical in magnitude to the measured field and to monitor the payload SQUID and magnetometer response.

B. SAFETY

B.1. **Potential Hazards**

Personal injury and hardware damage can result during normal positioning, assembly and disassembly of hardware.

Liquid helium used in the SMD represents a hazardous material for the personnel involved in the operations. Cryogenic burns can be caused by contact with the cold liquid or gas, high pressures can result if boiling liquid or cold gas is confined without a vent path, and asphyxiation can result if the vent gas is allowed to accumulate.

The SMD Safety Compliance Assessment, document GPB-100153C and the Missile System Prelaunch Safety Package LM/P479945 discuss the safety design, operating requirements and the hazard analysis of the SMD.

B.2. Mitigation of Hazards

B.2.1. Lifting hazards

There are no lifting operations in this procedure

B.2.2. Cryogenic Hazards

In VAFB building 1610, there may be an oxygen deficiency monitor that alarms when the oxygen level is reduced to 19.5%. In addition, the GP-B cryogenic team provides an oxygen deficiency monitor that alarms when the oxygen level is reduced to 19.5%. Appropriate action(s) to be taken in the event of oxygen deficiency monitor alarming at 19.5% (evacuation, safety verification of acceptable O2, etc) Additional temperature and pressure alarms, provided by the DAS, warn of potential over-pressure conditions. Emergency vent lines are installed over the four burst disks to direct any flow to an outside area.

Only authorized and trained personnel are allowed in VAFB facilities without escort. All personnel working on platforms at a height 30 inches or more off the floor are required to have an approved air tank (emergency life support apparatus ELSA) within easy reach. Note that tank need not be kept available when working from ladder. In the unlikely event of a large Lhe spill all employees have been instructed to evacuate the room and proceed to designated fallback area Bldg 1605, and contact NASA safety.

The following additional requirements apply to all personnel involved directly in cryogenic operations. Gloves that are impervious to liquid

helium and liquid nitrogen are to be worn whenever the possibility of splashing or impingement of high-velocity cryogens exists or when handling equipment that has been cooled to cryogenic temperatures. Protective clothing, non-absorbent shoes and full-face shields with goggles/glasses are to be worn whenever the possibility of splashing cryogens exists.

B.2.3. Other Hazards

All tools or other items used with the potential to damage the SMD or Probe shall be tethered.

B.3. Mishap Notification

B.3.1. Injury

In case of illness/injury requiring EMERGENCY medical treatment, **DIAL 911.**

B.3.2. Hardware Mishap

In case of an accident, incident, or mishap, notification is to proceed per the procedures outlined in Lockheed Martin Engineering Memorandum EM SYS229 and Stanford University GP-B P0879. Additionally, VAFB NASA Safety and 30th Space Wing Safety will be notified as required.

B.3.3. Contingency Response

Responses to contingencies (e.g., power failure) are listed in Appendix 3.

C. QUALITY ASSURANCE

C.1. **QA Notification**

The NASA representative and SU QA shall be notified 24 hours prior to the start of this procedure. Upon completion of this procedure, the QE Manager will certify his/her concurrence that the effort was performed and accomplished in accordance with the prescribed instructions by signing and dating in the designated place(s) in this document.

C.2. Red-line Authority

Authority to red-line (make minor changes during execution) this procedure is given solely to the PTD or his designate and shall be approved by the QA Representative. Additionally, approval by the Payload Technical Manager shall be required, if in the judgement of the PTD or QA Representative, experiment functionality may be affected. Within hazardous portions of this procedure, all steps shall be worked in sequence. Out-of-sequence work or redlines shall be approved by NASA Safety prior to their performance.

C.3. Discrepancies

A Quality Assurance Representative designated by D. Ross shall review any discrepancy noted during this procedure, and approve its disposition. Discrepancies will be recorded in a D-log or a DR per Quality Plan P0108. Any time a procedure calls for verification of a specific configuration and that configuration is not the current configuration, it represents a discrepancy of one of three types. These types are to be dealt with as described below.

- 1. If the discrepancy has minimal effect on procedure functionality (such as the state of a valve that is irrelevant to performance of the procedure) it shall be documented in the procedure, together with the resolution. Redlines to procedures are included in this category.
- 2. If the discrepancy is minor and affects procedure functionality but not flight hardware fit or function, it shall be recorded in the D-log. Resolution shall be in consultation with the PTD and approved by the QA representative.
- 3. All critical and major discrepancies, those that effect flight hardware fit or functions, shall be documented in a D-log and also in a Discrepancy Report, per P0108.

D. TEST PERSONNEL

D.1. Personnel Responsibilities

The performance of this procedure requires a minimum complement of personnel as determined by the Test Director. The Test Director is the designated signer for the "witnessed by" sign-off located at the end of each procedure. The person in charge of the operation (Test Director or Test Engineer) is to sign the "completed by" sign-off. The Test Director will perform Pre-Test and Post-Test Briefings in accordance with P0875 "GP-B Maintenance and Testing at all Facilities." Checklists will be used as directed by P0875

D.2. **Personnel Qualifications**

The Test Director must have a detailed understanding of all procedures and facility operations and experience in all of the SMD operations. Test Engineers must have SMD Cryogenic operations experience and an understanding of the operations and procedures used for the cryogenic servicing/maintenance of the Dewar.

D.3. Required Personnel

The following personnel are essential to the accomplishment of this procedure:

FUNCTIONAL TITLE	NUMBER	AFFILIATION
Test Director/Test Engineer	1	Stanford
GP-B Quality Assurance	1	Stanford
NASA Safety Rep	1	SFAO or ANALEX

E. **REQUIREMENTS**

There are no lifting operations in this procedure

E.1. Hardware/Software Requirements

E.1.1. Commercial Test Equipment

No commercial test equipment is required for this operation.

E.1.2. Ground Support Equipment

The Ground Support Equipment includes the Gas Module, the Electrical Module. The Gas Module provides the capability to configure vent paths, read pressures and flow rates, and pump and backfill vent lines. The Pump Module provides greater pumping capacity than the Gas Module, together with additional flow metering capabilities. The vent output of the Gas Module flows through the Pump Module. The Electrical Module contains the instruments listed in Table 1, and provides remote control of valves in the Gas Module, Pump Module, and SMD.

E.1.3. Computers and Software:

The Data Acquisition System (DAS) is required for this procedure. The DAS reads and displays pressures, temperatures, and flow rates and monitors critical parameters. No additional computers or software are required.

E.1.4. Additional Test Equipment

Description	
APS Fluxgate Magnetometer with 3-axis probe	
8"magnetic field coil	
HP Power Supply	

E.1.5. Additional Hardware

	Description	
N/A		

E.1.6. Tools

	Description
N/A	

E.1.7. Personnel Protective Equipment

1. N/A

E.1.8. Expendables

Description	Quantity	Mfr./Part No.
N/A	-	-

E.2. Configuration Requirements

E.2.1. Spacecraft battery magnetic field survey The spacecraft must be drawing power from the battery during this test. In addition, the SQUID electronics should be powered on if possible

E.2.2. Spacecraft battery/SQUID interference test

The spacecraft must not be drawing power from the battery and should be powered through the Umbilical. The SQUID electronics and payload magnetometers must be on.

F. **REFERENCE DOCUMENTS**

F.1. Drawings

0	
Drawing No.	Title
LMMS-5833394	Instrumentation Installation

F.2. Supporting documentation

Document No.	Title
LMMC-5835031	GP-B Magnetic Control Plan
GPB-100153C	SMD Safety Compliance Assessment
LM/P479945	Missile System Prelaunch Safety Package
SU/GP-B P0141	FIST Emergency Procedures
LMSC-P088357	Science Mission Dewar Critical Design Review
SU/GP-B P0108	Quality Plan
LMMS GPB-100333	Science Mission Dewar Failure Effects and Causes Analysis
SU/GP-B P059	GP-B Contamination Control Plan
EM SYS229	Accident/Mishap/Incident Notification Process
EWR 127-1	Eastern and Western Range Safety Requirements
KHB 1710.2 rev E	Kennedy Space Center Safety Practices Handbook

F.3. Additional Procedures

Document No.	Title
SU/GP-B P0879	Accident/Incident/Mishap Notification Process
SU/GP-B P0875	GP-B Maintenance and Testing at all Facilities

Operation Number:_	
Date Initiated:	
Time Initiated:	

G. **OPERATIONS**

G.1. **Pre-Operations Verifications**

- o Verify SU QA notified. Record: Individual notified ______, Date/time / .
- Verify NASA representative notified.
 Record: Individual notified _______,
 Date/time ______/___.
- o Verify completion of the Pre-Operations Checklist (Appendix 1).

QA Witness:_____

G.2. Spacecraft Battery Magnetic Field Survey

- G.2.1. Ensure that power is being drawn from the spacecraft batteries and that it will continue to draw power from the batteries until the completion of the test.
 - 1. Record current draw:_____A
- G.2.2. Measure magnetic field below spacecraft battery pallet

Note:
Refer to Figure 1 for the following section.
1. Record ambient magnetic field background
 Away from any sources of magnetic fields, align the magnetometer with X, Y and Z axis of the vehicle and record the following
b. X-axis field:
c. Y-axis field:
d. Z-axis field:

- 2. While aligning magnetometer with vehicle axis' below the battery pallet, record X, Y, and Z-axis fields in table 1. Record the field values for as many of the 144 points labeled in figure 1 as time allows.
 - a. Record distance below battery pallet where measurements are made:_____
- G.2.3. Record magnetic field along top (+Z) of battery pallet
 - 1. While aligning magnetometer with vehicle axis' above (+Z) the batteries, record X, Y, and Z-axis fields per engineering direction
 - 2. Record results in table 2 and fill in drawing 2 with the relevant locations of measurement points
- G.2.4. Record magnetic field along –Y/+X side of batteries
 - While aligning magnetometer with space vehicle axis', record X, Y, and Z-axis fields for the -Y side of the batteries per engineering direction
 - 2. Record results in table 3 and fill in drawing 3 with the relevant locations of measurement points
- G.2.5. Record magnetic field along +Y/-X side of batteries
 - While aligning magnetometer with space vehicle axis', record X, Y, and Z-axis fields for the +Y side of the batteries per engineering direction
 - 2. Record results in table 4 and fill in drawing 4 with the relevant locations of measurement points
- G.2.6. Record magnetic field along -Y/+X side of batteries
 - While aligning magnetometer with space vehicle axis', record X, Y, and Z-axis fields for the –X side of the batteries per engineering direction
 - 2. Record results in table 5 and fill in drawing 5 with the relevant locations of measurement points

Note:	
It is not possible to axis the +X side of the batteries	

QA Witnesss:_____

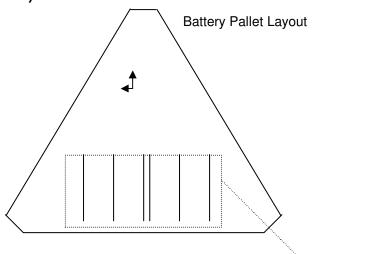
G.3. Induce Magnetic Field and Monitor SQUID and payload magnetometer response.

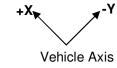
- 1. Ensure space vehicle to powered via the UIS and not the battery
- 2. Ensure SQUID electronics and payload magnetometers are powered up and operating
- 3. Monitor SQUID and payload magnetometer response
- 4. Record highest magnetic field and location found in section G.3
 - a. Field:_____
 - b. Location:
- 5. Position field coil below battery pallet
- 6. Connect field coil to HP power supply
- 7. Record transfer function used
 - a. Amp/Gauss:_____
- 8. Set current and voltage on HP power supply to generate a field below the battery pallet equal in magnitude to that record in G.3.1
- 9. Record settings
 - a. Voltage (V):_____
 - b. Current (A):_____
- 10. Using APS magnetometer, record magnetic field generated by field coil
 - a. X-axis:_____
 - b. Y-axis:_____
 - c. Z-axis:_____
 - d. Ensure field is as expected
- 11. Monitor SQUID and payload magnetometer response
- 12. At test directors direction, remove field coil and power supplies

G.4. Final Verifications

G.4.1. Verify completion of post-operations checklist.

Completed by:_____


Witnessed by:_____


Date: _____

Time:_____

Quality Manager	Date
Payload Test Director	Date

	121	122	123	124	125	126	127	128	129	130	131	132	
		\oplus		∳		¢	→ 🔶		¢)	¢		
	1	11	21	31⊕	41	51	, 61 ⊕	71	81 €	91	101	, 111	
	2	12	22	32	42	52		72	82 ₍	92	102	, 112	
	3	13	23	33⊕	43	53	, 63 ⊕	73	83	93	103	, 113	
	4	14	24	34	44	54	, 64 ⊕	74	84⊕	94	104	, 114	
	5	15	25	35	45	55		75	85	95	105	, 115	
	6	16	26	36⊕	46	56	, 66 ⊕	76	86	96	106	, 116	
	7	17	27	37	47	57	, 67	77	87	97	107	, 117	
	8	18	28	38	48		, 68 ⊕	78	88	98	108	, 118	
2" 🕇	9	19	29	39	49	59	T	79	89	99	109	, 119	
•	10	20	30	40	50	60	70	80	90	100) 110	120	
2"													
			-135	-136	137	138	139	140	-141	142	143	-144	
•			100	100	107	100	105	140	141	174	140	144	
		2"				4							
		-	~ ►<	/			2"						
			\backslash	/									
			Ì	V									

 \oplus -Represents battery bolt head

DATE	CHECKLIST ITEM	COMPLETED	REMARKS
	1. Verify the test procedure being used is the latest revision.		
	2. Verify all critical items in the test are identified and discussed with the test team.		
	3. Verify all required materials and tools are available in the test area.		
	4. Verify all hazardous materials involved in the test are identified to the test team.		
	5. Verify all hazardous steps to be performed are identified to the test team.		
	6. Verify each team member is certified and knows their individual responsibilities.		
	7. Confirm that each test team member clearly understands that he/she has the authority to stop the test if an item in the procedure is not clear.		
	8. Confirm that each test team member clearly understands that he/she must stop the test if there is any anomaly or suspected anomaly.		
	9. Notify management of all discrepancy reports or d-log items identified during procedure performance. In the event an incident or major discrepancy occurs during procedure performance management will be notified immediately.		
	10. Confirm that each test team member understands that there will be a post-test team meeting.		
	Team Lead Signature:		

Appendix 1 Pre Operations Checklist

DATE	CHECKLIST ITEM	COMPLETED	REMARKS
	1. Verify all steps in the procedure were successfully completed.		
	2. Verify all anomalies discovered during testing are properly documented.		
	 Ensure management has been notified of all major or minor discrepancies. 		
	4. Ensure that all steps that were not required to be performed are properly identified.		
	5. If applicable sign-off test completion.		
	Team Lead Signature:		

Appendix 2 Post Operations Checklist

Condition	Circumstance	Response
Temperature limits (CN 1 or 28) exceeded	Any time	Promote MT venting: Open SV-9 and/ or EV-9 as appropriate to increase MT venting
Burst disk rupture (MT/GT)	Any time	Evacuate room
Vatterfly valve cover below atmospheric	Any time	Consult Payload Test Director and Payload Technical Manager
Main Tank or Guard Tank liquid level falls below alarm limit	Any time	Configure Dewar and Fill as appropriate
Oxygen Monitor Alarm	Anytime	Evacuate Room
Liquid Nitrogen Spill	Anytime	Clear area until all spilled liquid has evaporated
High boiloff rate	Any time	Reduce pressure in vatterfly caps: Adjust UTS valving so as to begin pumping on caps

Table 1: Space Craft Battery Magnetic Field Measurement -Z

Position	X-Axis	Y-Axis	Z-Axis	Position	X-Axis	Y-Axis	Z-Axis
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
Table 1	Cont.	I	I	I	1	I	I
Position	X-Axis	Y-Axis	Z-Axis	Position	X-Axis	Y-Axis	Z-Axis

		1	r	r	1	r
<u> </u>						
Table 1	cont	 				

Table 2: Space Craft Battery Magnetic Field Measurement +Z

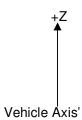

Position	X-Axis	Y-Axis	Z-Axis	Position	X-Axis	Y-Axis	Z-Axis
Figure 2							
					+X 🔨	×	Y
					\ / - I-	iele Aulei	
					ven	icle Axis'	

Table 3: Space Craft Battery Magnetic Field Measurement –Y/-X

Position	X-Axis	Y-Axis	Z-Axis	Position	X-Axis	Y-Axis	Z-Axis

Figure 3:

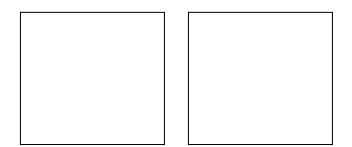
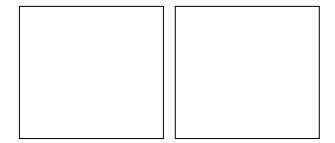


Table 4: Space Craft Battery Magnetic Field Measurement –X/+Y

Position	X-Axis	Y-Axis	Z-Axis	Position	X-Axis	Y-Axis	Z-Axis

Figure 4


Vehicle Axis'

+Z

Table 5: Space Craft Battery Magnetic Field Measurement –Y/+X

Position	X-Axis	Y-Axis	Z-Axis	Position	X-Axis	Y-Axis	Z-Axis

Figure 5:

Vehicle Axis'

+Ζ