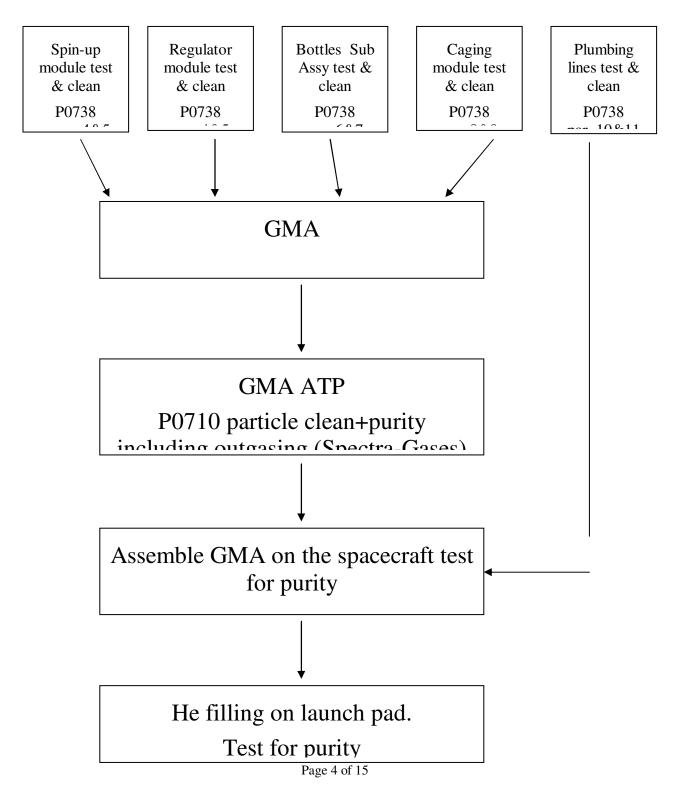
P0738 Rev. – August 14. 2000

SU/GP-B P0738 Rev-


STANFORD UNIVERSITY W.W. HANSEN EXPERIMENTAL PHYSICS LABORATORY GRAVITY PROBE B, RELATIVITY GYROSCOPE EXPERIMENT STANFORD, CALIFORNIA 94305-4085 GMA CLEANING PROCEDURE GPB SCIENCE MISSION PROCEDURE P0738 Rev - <i>August 14, 2000</i>						
				PREPARED	A. Halevy , GMA Engineer	Date
				CHECKED	R. Stephenson , GMA Engineer	Date
APPROVED	G. Asher, GMA REE	Date				
APPROVED	D. Ross, Quality Assurance	Date				

APPROVED			
			Date
TA	BLE OF (CONTENTS	
ΤΑΙ	BLE OF (CONTENTS	2
1.	GENER	AL DESCRIPTION	4
2.	TEST IN	FORMATION	5
2.2	Clea	nliness	5
2.4	Pers	onnel, QA, and Documentation	5
2.5	Red	line Authority	6
3.	DOCUM	IENTS AND EQUIPMENT	7
3.1	Арр	licable Documents	7
3.2	Test	Equipment	7
3.3 Preparations			
4. PL/		LE CLEANLINESS TEST OF SPIN-U	UP MODULE ON THE SHIPPING
5.			
		ES PARTICLE CLEANLINESS TEST	.(2+1 spin-up bottles and 3
7.	BOTTL	ES PARTICLE CLEANING	12
8.	CAGINO	SECTION TEST	12
9.	CAGINO	SECTION CLEAN	13
10.	PLUM	IBING SECTION PARTICLE TEST	13
11.	PLUM	IBING SECTION PARTICLE CLEAN	ING 13

		P0738 Rev - August 14, 2000 GMA cleaning
12.	GMA CLEANLINESS ACCEPTANCE TEST.	
13.	PROCEDURE COMPLETION	14
14.	DATA BASE ENTRY	15

1. GENERAL DESCRIPTION

This procedure describes the GMA test and cleaning operations. Particle cleaning shall be done on the subassemblies as shown on sketch below, followed by bagging. GMA cleaning and testing for gas purity shall be done in the ATP stage at Stanford university, followed by closing add-on valve.

P0738 Rev -August 14, 2000 GMA cleaning

2. TEST INFORMATION

- Proper care should be taken in handling components, and their cleanliness must be preserved.
- Temperature: Room temperature
- Humidity: not critical

2.2 Cleanliness

- 2.2.1 Normal lab environment when components are double bagged.
- 2.2.2 Under class 100 hood.

2.3 ESD precautions

2.3.1 None required.

ONR representative, and QA to be notified 24 hours prior to beginning this procedure SU QA_______ time & date ONR_______ time & date

2.4 Personnel, QA, and Documentation

2.4.1 Personnel Integration and Test Director

<u>The Test Director (TD)</u> shall be Aaron Halevy or an alternate that he shall designate. The TD has overall responsibility for the implementation of this procedure and shall sign off the completed procedure and relevant sections within it. The GMA RE shall also sign off the completed "As-Built" procedure.

<u>Testing Engineers and other personnel.</u> All engineers and technicians participating in this procedure shall work under the direction of the TD who shall determine personnel that are qualified to participate in this procedure. Participants in this procedure are to be C. Warren A. Halevy. And Spectra gases personnel.

<u>The test shall be conducted on a formal basis</u> to approved and released procedures. The QA program office shall be notified of the start of this procedure. A Quality Assurance Representative, designated by D. Ross shall be present during the procedure (if deemed necessary) and shall review any discrepancies noted and approve their disposition. Upon completion of this procedure, the QA Manager, D. Ross or her designate, shall certify their concurrence that the effort was performed and accomplished in accordance with the prescribed instructions by signing and dating in the designated place(s) in this document. <u>Discrepancies will be recorded in a D-log or as a DR per Quality Plan P0108</u>. If a re-test of any or all of the hardware is necessary, the TD will determine the appropriate changes in the procedure, with the QA Manager's approval.

2.5 Red-line Authority

<u>Authority to red-line</u> (make minor changes during execution) this procedure is given solely to the TD or his designate, or the GMA Manager, and shall be approved by QA. Additionally, approval by the Hardware Manager shall be required, if in the judgment of the TD <u>or</u> QA Representative, experiment functionality may be affected.

3. DOCUMENTS AND EQUIPMENT

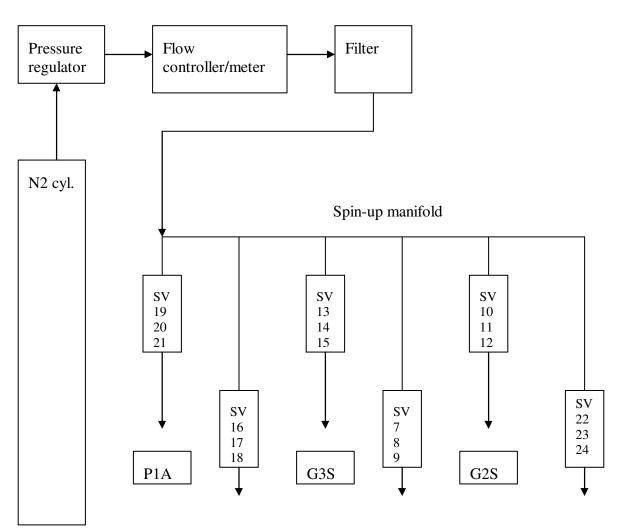
3.1 Applicable Documents

SUGPB Gas Management Assembly Drawings #25110 and 25502 Probe C contamination control plan P0059

3.2 Test Equipment

Equipment	Model and Serial Number	Calibration
Nitrogen Grade 6 gas supply with built-in regulator (2000psi)*		
Pressure gage		
Gas particle counter	MET1 217A or equivalent	
Custom bagging and hardware to contain gas exiting		
Moisture probe		
Engineering ECU or multi valve operating panel		
Vacuum pump		
Add-on valves for ports SD1, SD2A, SD2B, G1S to G4S,P1A,CD1,CD2,G1C, G2C, G3C		
Nozzle for bottle purging		
Spectra-Gases equipment as required		
Isopropanol	5 Gallon, semi grade	
0.01µ filter	TEM-715 made by EA	
Flow control meter	KFR-4131-V2 made by Kobold	

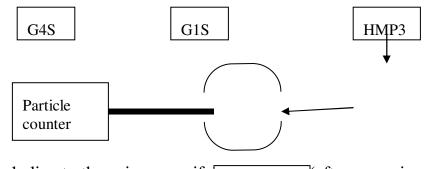
* Check regulator cleanliness and clean if needed


3.3 Preparations

3.3.1 Place the particle counter in the area of the test. Check the hood cleanliness by counting 0.5µm for one minute increments. The count should be less than 100. The particle counter should typically read 3 counts per scfm.

4. PARTICLE CLEANLINESS TEST OF SPIN-UP MODULE ON THE SHIPPING PLATE.

Started on:


4.1Set up dry nitrogen cylinder with regulator, Connect the line from regulator to the input of the flow controller/meter. Connect the 0.01 micron final filter to the output of the flow controller/meter. see sketch 1.

SD2A

- 4.2Connect the gas supply line to the spinup manifo part #9 in drawing # 25110). [Plastic bag] (after removing
- 4.3Fasion clean bag of approximately one liter of volume with small openings at opposite ends. This will attached to the gas source tube and the inlet of the particle counter respectively.
- 4.4Place the plastic bag opening at the SD2A exit, tape the end for sealing. Open Sv22, 23 & 24 and nitrogen valve. Set the gas flow at about 2830 sccm (0.1 scfm) by adjusting the flow controller/meter.
- 4.5Carefully insert the sampling tube of the particle counter, as shown in into the exit hole of the bag and tape in place. Do not seal this opening. Verify that the bag is loosely inflated which ensures that the pressure in the bag is approximately at ambient pressure. Check counting data after at least 2 minutes. Take 3 readings and record in table 1. <u>Pass number is 100.</u>
- 4.6If pass, remove the particle counter, close SV22, 23& 24 and double bag SD2A port.
- 4.7If more purge required (per para.5.1) continue per para.5.2.
- 4.8If par. 5.3 applies than continue to the next port.
- 4.9Test the other lines, valve status per test line in the matrix below:

Test line	Open valves	Closed valves
SD2A	SV22, 23 &24	SV7 to 21
G1S	SV7,8 and 9	SV10 to 24
G2S	SV10,11 and 12	SV7,8,9 and13 to 24
G3S	SV13,14 and 15	SV7 to 12 and 16 to 24
G4S	SV16,17 and 18	SV7 to 15 and 19 to 24

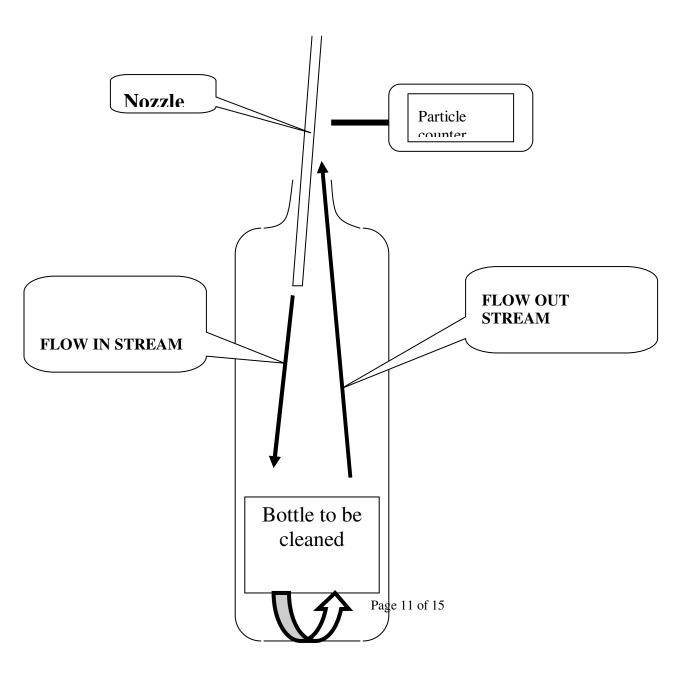

P1A	SV19, 20 and 21	SV7 to 18 and 22 to 24
1 11 1	5 + 17, 20 and 21	

Table 1

Checked section	Counts of particle per scfm	Particle size	remarks
Spin-up SC1		2μ	
Spin-up SC2		2μ	
Spin-up SC3		2μ	
Spin-up SC4		2μ	
Spin-up P1A		2μ	
Spin-up bottle 1		5μ	
Spin-up bottle 2		5μ	
Ballast bottle 1		5μ	
Ballast bottle 2		5μ	
Ballast bottle 3		5μ	
Plumbing line S1		2μ	
Plumbing line S2		2μ	
Plumbing line S3		2μ	
Plumbing line S4		2μ	
Plumbing line P1A		2μ	
Plumbing line CC1		2μ	
Plumbing line CC2		2μ	
Plumbing line CC3		2μ	
Caging line G1C		2μ	
Caging line G2C		2μ	
Caging line G3C		2μ	

5. SPIN-UP MODULE PARTICLE CLEANING

- 5.1 If in any of the check point fail but the result is less than 200 particles size 2μ , or particles size 5μ are less than 5 then keep on purging with the same setting.
- 5.2Purge for 30 minutes per line and repeat paragraph 4.5.
- 5.3If in any of the check point the result is fail and there are more than 200 particles size 2μ , or particles size 5μ are more than 5 then more energetic cleaning operation should be perform.
- 5.4Send the whole assembly to Lockheed for liquid (water, alcohol freon etc.) clean. In this case the regulator module should be cleaned also. The cleaning operation should be done after removing the components.
- 5.5Use Lockheed cleaning procedure.
- 5.6Double bag each end, use clean room adhesive tape.

- 6. **BOTTLES PARTICLE CLEANLINESS TEST**.(2+1 spin-up bottles and 3 cagingballast bottles).
- 6.1 Place the bottle in horizontal position and purge thoroughly with clean dry nitogen. The purged nitrogen will flow through a nozzle that will be inserted into the bottle (sketch 2).
- 6.2Place the particle counter at the exit, control the nitrogen valve to receive an adequate flow.(2830 sccm=0.1scfm)
- 6.3Pass criteria for the bottles: less than 100 particles of 5μ is allowed.
- 6.4Record particle cleanliness level in Table1. If pass, double bag the ports.

7. BOTTLES PARTICLE CLEANING.

- 7.1 If fail but the result is less than 200 particles size 5μ , or particles size 10μ are less than 5 then keep on purging with the same setting for 30 minutes.
- 7.2Test again per para. 6.
- 7.3If fail and there are more than 200 particles size 5μ , or particles size 10μ are more than 5 then more energetic cleaning operation should be perform.
- 7.4Fill bottle with Isopropanol to about half of it's volume. Shake well for two minutes and drain. Repeat this operation three times. Purge again to dry the inside and check particle cleanliness again (paragraph 6).
- 7.5When pass criteria achieved, double bag the end.

8. CAGING SECTION TEST.

- 8.1Connect dry nitrogen bottle to CD2, while placing the particle counter at port G1C. Open valves CV4,3 and 3A.
- 8.2Open nitrogen valve and start the particle cleanliness counting.
- 8.3Pass criteria is less than 100 particles of size 2μ .
- 8.4Record the results in table 1.
- 8.5If pass, double bag G1C.

- 8.6If fail continue to par. 9.
- 8.7Close CV3 and CV3A, open CV1 and CV1A. Particle test ports G2C and record.
- 8.8Close CV1 and open CV1A, particle cleanliness test port G2C.
- 8.9Record and double bag.
- 8.10 CloseCV4,1 and 1A, and the nitrogen bottle valve. Disconnect the nitrogen bottle from CD2. Double bag CD2.
- 8.11 Connect nitrogen bottle to CD1, open Cv5, 2 and 2A. Test port G3C/G4C, and record.
- 8.12 Close all valves, disconnect nitrogen and verify that all open ports are bagged

9. CAGING SECTION CLEAN.

9.1Clean the corresponding line per paragraph #5.

10. PLUMBING SECTION PARTICLE TEST.

- 10.1 Ballast bottles test according to paragraphs 6. Pass criteria: less than 100 particles 5µ size allowed
- 10.2 Plug the bottle ports on the plumbing lines.
- 10.3 Connect dry nitrogen to G1C, open LPM5.
- 10.4 Open slowly nitrogen valve and test particle cleanliness in port CG5 and record. If pass, double bag. If fail continue to par. 11.
- 10.5 Repeat last operation in CG6 port.
- 10.6 Connect dry nitrogen to G2C, open LPM3. Test ports CG3 and CG4 respectively. If pass, double bag. If fail continue to par. 11.
- 10.7 Connect dry nitrogen to G3C, open LPM1. Test ports CG1 and CG2 respectively. If pass, double bag. If fail continue to par. 11.

11. PLUMBING SECTION PARTICLE CLEANING.

11.1 Clean the corresponding line per paragraph #5.

12. GMA CLEANLINESS ACCEPTANCE TEST.

12.1 Use P0710 for ATP gas purity tests.

13. PROCEDURE COMPLETION

13.1 The results obtained in the performance of this procedure are acceptable:

Done by:

_____ date: _____ date: _____

_____ date: _____

Discrepancies if any:

Approved:

G. Asher GMA RE

date:

date: _____

Approved:

D. Ross, QA Manager

14. DATA BASE ENTRY

The following data shall be entered into the GP-B Data base:

- Name, number and revision of this procedure
- Date of successful completion of procedure.
- Part numbers and serial numbers of Vatterfly valve and their components