Science Gyroscope Test Readiness Review

Date & Time: November 12, 1997, 9:00 AM to noon Location: GP-B conference room

Purpose:

To ensure that the test article hardware, test facility, ground support personnel, and test procedures are ready for testing, data acquisition, reduction, evaluation, and control.

Scope:

The Science Gyroscope Test Readiness Review (TRR) will encompass all Science Gyroscope (SG) flight hardware. The Science Gyroscope flight hardware includes the completed Science Gyroscope assemblies and their components, including: rotors, housings, and support hardware and cabling.

Agenda:

- Requirements Traceability Status
- Procedure Status
- Test Personnel Status
- Test Resources Status
- Test Support Software Status

Review Team:

John Turneaure	Hardware Manager
Yueming Xiao	Manager, Gyroscope Commissioning
Sasha Buchman	Manager, Gyroscope Development
George "Mac" Keiser	Lapping and Polishing Manager
Barry Muhlfelder	Manager, SQUID Development
Ben Taller	Quality Assurance
Jeremy Kasdin	Chief Systems Engineer
Ken Hooper	Review Leader
Ed Ingraham	ONR (ex officio)

Objectives:

- Confirm that in-place test plans and procedures meet verification requirements and specifications.
- Confirm that sufficient and detailed resources (of the right type) are allocated to the test effort.
- Examine detailed test procedures for completeness and safety during test operations. Note who is in charge of the test operations and test article and who is in charge of the facilities.
- Determine the critical test personnel who are authorized to perform test.
- Confirm that test support software is adequate, pertinent, and verified (validated for intended use).
- Confirm that all interfaces with the test article, test equipment, and facilities, especially power, data, instrumentation, etc., are adequate, safe, and in accordance with the test procedure. Ensure the customer, witnessing agents, test personnel, quality assurance, and support personnel understand the objective of the test and the parameters that are critical for successful operation.
- Confirm that the documentation has proper traceability.
- Confirm that test equipment has been appropriately calibrated.

Exit Criteria:

The following items identify the categories of items to be checked; the individual checks are enumerated in the attached checklists:

- Do the test procedures verify all applicable requirements?
- Have the test procedures been "dry-runned"? Do they indicate satisfactory operation?
- Have test personnel received training in test operations procedures?
- Are resources available to adequately support the planned tests as well as contingencies, including failed hardware replacement?
- Has the test support software been demonstrated to handle test configuration assignments, and data acquisition, reduction, evaluation, control, and archiving?

Attachments:

- A. Gyroscope Manufacturing Flow Diagrams
- B. Requirements Verification Matrix
- C. Document Status Checklist
- D. Test Personnel Status Checklist
- E. Test Resources Checklists and Test Support Software Checklist
- F. Completion Certificate

A. Gyroscope Manufacturing Flow

Rotor Polishing		Hardware, Cables, and Sensors Fabrication
P0074 Lapping Procedure for Quartz Rotors	Housing	P0087 Suspension and Grounding Wire Assembly
P0075 Polishing Procedure for Quartz Rotors	Fabrication	P0120 Heater Assembling, Chip Resistor
P0076 Rotor Diameter Measurement Procedure	and Coating	P0304 Procedure for Stripping the Aluminum Cladding from the Fiber Optic Cable
P0077 Rotor Sphericity Measurement Procedure		P0086 UV and Optical Readout Hardware and Cable Assy
Rotor Coating		P0202 Procedure for Cable Assembly, Ground
P0025 Rotor Coating Wet Bench Operating Procedure		
P0079 Rotor Coating Procedure		P0306 Procedure for Assembling Ultra Violet Fiber Optic Cable Assembly
P0062 Procedure for Sulfuric Acid Boil to Remove Organic Contaminants from Fused Ouartz		P0085 Gyroscope Hardware Assembly
P0056A Automated Betascope Rotor Uniformity Measurements		
P0080 Cryogenic Magnetic Screening Procedure		
Gyroscope Integration		
P0296 Pre-Commissioning Test In	spections of SM G	byroscopes
P0369 Procedure for Resistance	Testing of Gyrosco	pe Coatings to Rotor
P0370 Procedure for Installing R	leadout Cable to Gy	yroscope
P0313 Pre-Commissioning Visua	al Inspection of SM	Gyroscope
P0297 Functionality Test of The	rmometry & Heater	for SM Gyroscopes (optional)

Gyroscope Commissioning (P0281)

Housing Fabrication and Coating

Housing Fabrication

P0002 R/O Surface Polishing and Etching Procedure

P0003 Inspection of Stanford Housing Blanks

P0014 General Inspection of Housings,

P0016 Fast Cleaning Procedure for the Inspection of Quartz Housings,

DAM1 Housing Dimensions Check

P0004 Inspection by Stanford after Cavitron Operations

P0018 Inspection of Protective Coatings of R/O Surface (K-10, Al-Ti),

P0017 A Removal of K-10 Epoxy Resin,

P0014 General Inspection of Housings,

P0021 Housing Dimensions Check,

P0005 Etching and Reinspection by Stanford after Cavitron Operations

P0015 Procedure for Etching of Quartz Housing to Relieve Strain Around Drilled Holes, P0016, P0014. P0021

P0006 Procedure to Clean Housings Prior to Al/Ti Deposition

P0007 Tumble Lapping of Cavity

P0008 Inspection by Stanford of Tumble Lapped Housing

P0015, P0016, P0014

P0009 Cavity Sphericity and Depth Measurement of Tumble Lapped Housing by Stanford

P0010 Removal of Al/Ti Coating and Inspection of R/O Surface

P0011 Coating of R/O Surface with K-10 Epoxy by Stanford

P0012 Inspection by Stanford of Finished Quartz Housing

P0018, P0017, P0016, P0014, P0021

P0013 Etching and Reinspection by Stanford of Finished Quartz Housing

P0015, P0016, P0014, P0021

Housing Coating

P0114 Deposition of Niobium Loop Layer on Development Quartz Housings

P0105 Gravity Probe B Gyro Housing Lithography Process 4/93

P0044 Quartz Housing Coating Procedure

Gyroscope Commissioning Test Flow (P0281)

P0111 Room Temperature Gyro Installation and Removal	GCP-Op6
P0203 UV Charge Control Commissioning for SM Gyro (optional)	FGT#3 Tables 1-3
P0279 Magnetic Screening of the Gyroscope in the Large Scale Magnetics Testing FGT#1, stripchart, Magn	Facility etic Screening Test Report
P0299 Gyro Levitation with the DDC Suspension System	FGT#3, Traveler
P0298 Additional Information on Gyroscope Geometry (optional)	FGT#2
P0307 Confirmation of No Charging During Levitation	FGT#2
P0321 Room Temperature Gyro Spin-up and Spin-down	FGT#2, file, lab notebook
P0277 Installation of Support Hardware in the Gyroscope Commissioning Probe	
0275 Low Temperature SM Gyroscope Commissioning Tests	
P0204 Installation of SM Gyroscopes in the Low Temperature Commissioning Pro	P-Doc, GCP-Op1 & 2
P0300 Gowning Procedure for the Gyroscope Commissioning Probe Clean Room	1
P0273 Gyroscope Commissioning Probe Insertion	P-Doc
P0308 Post Insertion Electrical Checklist	GCP-Op3 & 4
P0297 Functionality Test of Thermometry & Heater for SM Gyroscopes (optional) FGT#1
P0203 UV Charge Control Commissioning for SM Gyro (optional)	FGT#3, Table 1-3
P0274 Verification of DC Coupling of SM Gyroscopes	FGT#5
P0299 Gyro Levitation with the DDC Suspension System	Traveler, FGT#4
P0298 Additional Information on Gyroscope Geometry (optional)	FGT#3
P0307 Confirmation of No Charging During Levitation	FGT#3
P0276 Flux Flushing in Commissioning Probe	FGT#6 & 3
P0311 Performance Testing (optional)	FGT#3
P0310 Low Temperature Gyro Spinup Procedure	
P0314 Fast Spin Test in the Gyroscope Commissioning Probe	FGT#4, 3
P0278 Post Commissioning Handling and Storage	Traveler

P0300 Gowning Procedure for the Gyroscope Commissioning Probe Clean Room

B. Science Gyroscopes (Science Payload Specification [PLSE-12, F277277] 3.7.1.5) Verification Matrix

Section	Title	Text	Method	Comments	REE, ECD	Plan
3.7.1.3.2.5	Magnetic Control of Materials	All SIA parts shall be screened in accordance with the Magnetics Control Plan P0057.	I, T	Design Verification:Magnetic Screening of all meterials used in SIAand probe assembly.P0276 Procedure for Flux Flushing theGyroscope in the Gyroscope CommissioningProbeFlight Unit Acceptance:Magnetic testing during Science Payloadassembly and Science Payload TestP0080 Cryogenic Magnetic Screening Procedure	J Lockhart	✓
3.7.1.5	Science Gyroscopes					

3.7.1.5.1 3.7.1.5.1 3.7.1.5.2 3.7.1.5.2.1	Prime Item Definition	 Gyro Spherical Science Gyroscope (one of four) Housing Fused quartz Housing to support a single Gyro Support Hardware and Cabling: 1) Electrode hardware - for electrostatic suspension and capacitive position readout of the rotor. 2) UV Charge Control Hardware - for photoelectric control of the rotor charge. 3) Readout Hardware - for pickup and detection of the London moment signal associated with the Gyro rotor spin axis. 4) Thermal Control Hardware - for sensing and increasing (as needed) the Gyro Assembly temperature. Each Gyro assembly consists of an assembly including a Gyro and a fused quartz Housing. The Gyro shall be a fused quartz or monocrystalline Silicon sphere with a Niobium coating which becomes superconducting at the cryogenic operation temperature. The Housing contains support hardware necessary to sense the Gyro position within the cavity, levitate it, and spin it up and read out its axis of spin using the London moment of the spinning superconducting Gyro. Gyro systems including their SQUID readouts are used to provide a reference fixed to local inertial space. The Drag Free Gyro system is used to provide a translational reference fixed to local inertial space (a drag- free sensor). Gyro systems shall be compatible with serving as the drag-free sensor. 				
3.7.1.5.2.1.	Trapped Flux	The assembled gyroscopes shall be compatible with the trapped magnetic flux requirement of Section 1.5 of T003. <i>T003 spec:</i> <= 1.0e-10 T (13.0e-6 G) average rotor trapped field.	A, T	Procedures verified in GTU-1, GTU-2, and Science Payload Integrated testing (acceptance test). Actual trapped flux verified on orbit. <u>P0276 Procedure for Flux Flushing the</u> <u>Gyroscope in the Gyroscope Commissioning</u> <u>Probe during LTC (P0275) - results recorded in</u> <u>FGT#6, #3 §III</u>	S Buchman	V

3.7.1.5.2.1.	Spin Speed	The set of Gyros as installed in the SIA shall be capable of achieving final spin speeds for all four Gyros in the range specified in Section 4.1 of T003 under the constraints of Sections 3.2.1.7 and 3.7.8.7.1.2. The maximum gyroscope temperature during spinup (measured at the housing) must be less than or equal to 6.4 K. The spinup gas must exert a force of less than or equal to 0.05 N on the Gyroscope Rotor. The current specification is 100 to 180 Hz spin speeds. Spinup gas is baselined as Helium-3, with a nominal flow rate <= 2.1 mg/s at a temperature <= 8 K, and a total supply volume of 1400 l STP. The spinup time constant should be less than 60 min.	Α, Τ	Analysis (TBS) <u>P0314 Procedure for the Fast Spin Test in the</u> <u>Gyroscope Commissioning Probe - results</u> <u>recorded in FGT#4, #3 §IV</u>	S Buchman	
3.7.1.5.2.1. 2.1	Deteted	Deleted at PCB #301	·			
3.7.1.5.2.1. 2.2	Deteted	Deleted at PCB #301				
3.7.1.5.2.1. 3	Deteted	Deleted at PCB #301				
3.7.1.5.2.1. 4	Spin-Down Rate	The one-g spin-down rate shall be less than or equal to $(df/dt)/f = 2.0e-3$ per hour in the spin speed range 0.3 Hz to 3 Hz.	Т	P0314 Procedure for the Fast Spin Test - results recorded in FGT#3 §IV	Y Xiao	~
3.7.1.5.2.1. 5	Spin Alignment with Respect to Telescope Axis					
3.7.1.5.2.1. 5.1	Initial Alignment	The geometry of the gas spin-up system shall be compatible with the initial alignment required in Section 4.3 of T003 assuming a rolling spacecraft. <i>T003 spec: within 1 degree of the desired final direction.</i>	A	S0291 Initial Gyroscope Alignment	M Keiser ECD 1/15/97	~
3.7.1.5.2.1. 5.2	Final Alignment	The rotor shape for spin speeds in the range specified in Section 4.1 of T003 shall be compatible with final spin alignment given in Section 5.2 of T003 assuming a 10% modulation of the 0.1 g suspension preload at roll frequency in less than 50 hour. Lower levels of suspension preload may be used for the final fine adjustment. <i>T003 spec: within 10 arcsec of the initial apparent line of</i> <i>sight to the Guide Star.</i>	A	S0256 Gyroscope Spin Axis Alignment Algorithm for the Gravity Probe B Spacecraft (P0311 measures ground alignment capability)	B Bencze	~

3.7.1.5.2.1. 6	Readout Loop/Readout					
	Cable Assembly					
3.7.1.5.2.1. 6.1	Decay Time	The decay of the signal produced by magnetic flux injected into the superconducting input circuit shall be less than 1% in a 10 min period, under the condition that the R/O loop is connected to the input of a dc SQUID through the readout cable. The dc SQUID supporting this test shall have an input inductance and coupling equal to the requirements for the flight dc SQUID.	Т	P0274 Procedure for Verification of DC Coupling of SM Gyroscopes - results recorded in FGT#5, #3 §III	B Muhlfelder	~
3.7.1.5.2.2	Physical Characteristics					
3.7.1.5.2.2. 1	Gyroscope Rotor					
3.7.1.5.2.2. 1.1	Substrate					
3.7.1.5.2.2. 1.1.1	Material	The rotor substrate material shall be as specified in Section 1.2 of T003. T003 spec: fused quartz or single-crystal silicon.	I	Visual inspection and vendor acceptance dataQuartz rotor: Vendor provided certificate of compliance - copy is in hardware folderSi rotor: Purchase order is available in hardware folder, coupons of material are availableS287 Homogeneity and Composition of GP-B Rotors	M Keiser ECD 12/15/97	~
3.7.1.5.2.2. 1.1.2	Homogeneity	The density homogeneity d(rho)/(rho) across any diameter shall be less than or equal to 1.0e-5	I, A	Fused Quartz will be verified by <u>inspection of</u> <u>vendor and U. of Aberdeen data - copy in</u> <u>hardware folder.</u> Single-crystal Silicon will be verified by analysis. <u>S287 Homogeneity and Composition of GP-B</u> Rotors	M Keiser ECD 12/15/97	V
3.7.1.5.2.2. 1.1.3	Diameter	The diameter of the substrate shall be within +/- 500 nm (+/- 20 microinch) of the diameter of the reference sphere 93H57 at 22 degree C +/- 4 degree C. Diameter of 93H57 was measured several times, here and other places, with varying results. Its diameter is 1.495881 inch +/- 0.000045 inch.	Т	P0076 Rotor Diameter Measurement Procedure - results recorded in hardware folders	M Keiser	~
3.7.1.5.2.2. 1.1.4	Asphericity of substrate	The substrate shall have a measured peak-to-valley asphericity less than or equal to the following: For the l=2 (oblateness) term, 30 nm (1.2 microinch) For odd harmonics l = 3 to 15, 23 nm (0.9 microinch) For even harmonics l = 4 to 16, 23 nm (0.9 microinch)	Т	P0077 Rotor Sphericity Measurement Procedure - results recorded in files on PC connected to Talyrond machines	M Keiser	V

3.7.1.5.2.2. 1.2	Coating					
3.7.1.5.2.2. 1.2.1	Coating Material	The coating material shall be niobium.	Ι	P0079 Rotor Coating Procedure All rotors were sputtered using same target: Target certification is in hardware folder: Log book for sputtering system records when each rotor was sputtered and which target was used.	B Muhlfelder	~
3.7.1.5.2.2. 1.2.2	Coating Uniformity	Coating uniformity shall be Less than or equal to 50 nm (p-v).	Т	P0056 Automated Betascope Rotor Uniformity Measurements - results recorded in files on PC connected to Betascope	B Muhlfelder	~
3.7.1.5.2.2. 1.2.3	Superconductin g Transition Temperature	The superconducting transition temperature shall be greater than or equal to 8 K.	S	Similarity to test sample data - in hardware folder.	B Muhlfelder	~
3.7.1.5.2.2. 1.2.4	Electron Field Emission	The electron field emission current shall be less than or equal to 2 pA at 3.0e7 V/m.	S	P0307 Confirmation of No Charging of the Gyroscope During Levitation	Y Xiao	~
3.7.1.5.2.2. 1.2.5	Thermal Emissivity	The thermal emissivity shall be greater than or equal to 0.01.	S	Qualification test by similarity to test samples using approved procedures.	R Brumley	
				Similarity to "calorimetry tests performed long ago". Rob has provided paper presented at the 21st Int'l Conf. on Low Temp. Physics (LT21 in Proceedings) with a cover letter relating it to the flight rotors.		
3.7.1.5.2.2. 1.2.6	UV 254 nanometer Photoemissivity of Rotor	The photo emission coefficient shall be greater than or equal to 1.0e-6 electrons/photon for 254 nm photons.	Т	P0203 UV Charge Control Commissioning Procedures for SM Gyroscopes - results recorded in tables in P0203	B Clark	×
3.7.1.5.2.2. 1.3	Mass Unbalance	Gyro: The coated rotor mass unbalance shall meet the requirement in Section 1.3.2 of T003. <i>T003 spec:</i> <= 50 nm.	Α, Τ	Analysis S0288 GP-B Rotor Mass Unbalance Acceptance Test P0056 Automated Betascope Rotor Uniformity Measurements - results recorded in files on PC	D Gill ECD 12/15/97	~
				connected to Betascope		

3.7.1.5.2.2. 1.4	Rotor Shape	The coated rotor shall meet the rotor shape requirements of T003 (System Design and Performance Requirements) Section 1.4.	A, T, S	Analysis S0289 GP-B Rotor Shape Qualification Test P0056 Automated Betascope Rotor Uniformity Measurements (on each flight rotor) - results recorded in files on PC connected to Betascope P0077 Rotor Sphericity Measurement Procedure (on uncoated flight rotors) - results recorded in files on PC connected to Talyrond Similarity to anodized rotor test (non-flight rotor was anodized to measure sphericity in P0077) data TBS (3 rotors were measured, of which data for 2 are available from Mac)	M Keiser ECD 1/15/98	
3.7.1.5.2.2.	Gyroscope					
2 3.7.1.5.2.2. 2.1	Housing Substrate					
3.7.1.5.2.2. 2.1.1	Material	The housing substrate shall be made from the material specified in Section 1a.1 of T003. <i>T003 spec: fused quartz.</i>	Ι	P0014 General Inspection of Housings (within P0008 Inspection by Stanford of Tumble Lapped Housing and P0013 Etching and Reinspection by Stanford of Finished Quartz Housing)	S Buchman	-
3.7.1.5.2.2. 2.1.2	Cavity Diameter	The cavity diameter shall be 38.070 mm (1.4988 inch) with the accuracy given in Section 1a.2 of T003. <i>T003 spec:</i> + 0.003/ -0.000 mm (+0.0001/ -0.0000 inch).	Ι	Acceptance data package from vendor (Speedring) in hardware folder	S Buchman	~
3.7.1.5.2.2. 2.1.3	Cavity Asphericity	The internal spherical surface of the cavity shall meet the asphericity requirement of Section 1a.2 of T003. $T003 \text{ spec:} \le 250 \text{ nm} (p-v).$	Ι	Acceptance <u>data package from vendor</u> (Speedring) in hardware folder	S Buchman	~
3.7.1.5.2.2. 2.1.4	Cavity Centering to Parting Plane	The center of the cavity shall coincide with the parting plane within 2.5 micrometer .	Ι	Acceptance <u>data package from vendor</u> (Speedring) in hardware folder	S Buchman	~
3.7.1.5.2.2. 2.1.5	Electrodes Position Accuracy	The positions of the six electrodes shall meet the requirement of Section 1a.3.3 of T003. <i>T003 spec:</i> <= 15 arcmin from their targets.	Ι	Acceptance <u>data package from vendor</u> (Speedring) in hardware folder	S Buchman	~
3.7.1.5.2.2. 2.1.6	Electrodes Area Variation	The area variations of the six electrodes shall meet the requirement in Section 1a.3.2 of T003. $T003 \text{ spec:} \le 2\% \text{ p-v}$).	Ι	Acceptance <u>data package from vendor</u> (Speedring) in hardware folder	S Buchman	~
3.7.1.5.2.2. 2.2	Electrode Coatings				·	

3.7.1.5.2.2. 2.2.1	Uniformity	The electrode coating uniformity shall meet the requirements of Section 1a.3.1 of T003.	S	Qualification	S Buchman	~
				Similarity to test item measurement package in		
		T003 spec: ≤ 0.25 micrometer (p-v) axial variation and $\leq =$		hardware folder		
		1.25 micrometer (p-v) radial variation.				
3.7.1.5.2.2.	Electron Field	The electron field emission current shall be less than or equal	S	P0307 Confirmation of No Charging of the	Y Xiao	✓
2.2.2	Emission	to 2 pA at 3.0e7 V/m.		Gyroscope During Levitation - results recorded		
				<u>in FGT#2, #3 §II</u>		
3.7.1.5.2.2.	Electrical	The electrode coating resistivity shall be less than or equal to	S	Qualification	S Buchman	
2.2.3	Resistivity	25 microohm-m at 2.5 K.		Similarity to test item (TBS - to be written)		
3.7.1.5.2.2.	Support Land	The support land coatings shall insure that rotors and	Т	acceptance test	S Buchman	✓
2.3	Coatings	electrodes do not come in contact.		land and electrode heights determined by P0009		
				Cavity Sphericity and Depth Measurement of		
				Tumble Lapped Housing by Stanford - results		
				recorded on polar chart in hardware folder		
3.7.1.5.2.2. 2.4	Caging Land Coatings	The caging land coatings shall insure rotor positioning while caged.	А	Analysis (TBS - to be written)	S Buchman	
3.7.1.5.2.2.	Spinup Land	The spinup land coatings shall insure functional leakage rate	I, T	acceptance inspection	S Buchman	\checkmark
2.5	Coating	during spinup.		P0014 General Inspection of Housings		
	C					
				P0314 Procedure for the Fast Spin Test in the		
				Gyroscope Commissioning Probe appears to		
				measure leakage rate (FGT#3 section IV)		
3.7.1.5.2.2.	Cavity	A cavity grounding coating shall be provided for all surfaces	Ι	acceptance inspection	S Buchman	\checkmark
2.6	Grounding	less than 125 micrometer (5 millinch) from the rotor surface		P0014 General Inspection of Housings		
	Coating	with the exception of: suspension and charge management				
	C	electrodes, and the isolating areas round these electrodes (Up		P0305 Procedure for Gyroscope High Voltage to		
		to 50 missing areas not exceeding 5 mill are allowed in the		Ground Plane Breakdown - results recorded in		
		grounding coating.).		table in P0305		
3.7.1.5.2.2. 2.7	Readout Loops					
3.7.1.5.2.2.	Geometry	The readout loop shall be located on the parting plane of the	Ι	acceptance inspection	В	\checkmark
2.7.1	Section y	readout housing half and consist of 4 turns.	1	P0014 General Inspection of Housings	Muhlfelder	
3.7.1.5.2.2.	Materials and	The readout loop shall be made from niobium.	Ι	acceptance inspection	B	\checkmark
2.7.2	Composition	The readout roop shan be made from moorani.	1	Material all came from one lot.	Muhlfelder	
2.7.2	composition			Certification of the target is not necessarily	Wannerder	
				available (from '88-89).		
				Deposition equipment log book records the target		
				used and housing material was applied to.		
3.7.1.5.2.2.	Thickness	The readout loop thickness shall be 400 nm +/- 100 nm.	S	qualification test of coupon samples	В	\checkmark
2.7.3	1 mexiless		5	P0114 Deposition of Niobium Loop Layer on	Muhlfelder	
2.1.5				Development Quartz Housings - results recorded	municiuci	
				in attachment to P0114 hardcopy kept by Mae		
			1	In attachment to POT14 nardcopy kept by Mae		

3.7.1.5.2.2.	Superconductin	The readout loop shall have a superconducting transition	S	acceptance gualification test of coupon samples	В	\checkmark
2.7.4	g Transition	temperature greater than or equal to 8 K.		P0114 Deposition of Niobium Loop Layer on	Muhlfelder	
	Temperature			Development Quartz Housings- results recorded		
	-			in attachment to P0114 hardcopy kept by Mae		
3.7.1.5.2.2.	Centering to	The readout loop shall be centered on the gyro housing cavity	Ι	acceptance test	В	\checkmark
2.7.5	Cavity	within 10 micrometer.		P0105 Gravity Probe B Gyro Housing	Muhlfelder	
	5			Lithography Process 4/93 - results recorded in		
				data sheet in P0105		
3.7.1.5.2.2.	In-Plane	The in-plane asymmetric loop area of the pickup loop shall	I, A	acceptance inspection (to confirm that correct	В	✓
2.7.6	Asymmetry	be less than or equal to 0.6% of the total pickup loop area.	,	mask was used)	Muhlfelder	
		This includes both geometric and diamagnetic contributions		P0105 Gravity Probe B Gyro Housing		
		to the asymmetry.		Lithography Process 4/93		
				<u>Endlography Process 475</u>		
				S0290 In-Plane Assymetry of Pick-Up Loops (to		
				include other contributions)		
3.7.1.5.2.2.	Inductance	The readout loop inductance shall be less than or equal to 2	S	qualification test	В	
2.7.7	inductance	microhenry.	5	Similarity to test article - results recorded in TBS	D Muhlfelder	
	D'ana tan		т			\checkmark
3.7.1.5.2.2.	Diameter	Inside diameter of inner turn $\geq 19.81 \text{ mm} (0.780 \text{ inch}).$	Ι	acceptance inspection (to confirm that correct	B	•
2.7.8		Outside diameter of outer turn $\leq 20.68 \text{ mm} (0.814 \text{ inch}).$		<u>mask was used)</u>	Muhlfelder	
		The minimum ID is to control the rate of magnetic flux		P0105 Gravity Probe B Gyro Housing		
		change due to trapped flux.		Lithography Process 4/93		
		The maximum OD is to control the coupling to external				
		magnetic fields.				
3.7.1.5.2.2.	Readout Cable					
2.8	T 1			1100	1	
3.7.1.5.2.2.	Inductance	The readout cable shall have an inductance of less than 0.1	S, A	qualification test	В	
2.8.1		microhenry, and the inductance shall be stable to 5 parts in		similarity to test article to be tested - results will	Muhlfelder	
		1.0e5 per year.		go in hardware folder		
				Analysis (TBS) for stability	1	
3.7.1.5.2.2.	Out of Plane	Asymmetric loop area perpendicular to the plane of the	I, A	Inspection of completed gyro assy.	В	
2.8.2	Asymmetry	pickup loop times the cosine of the angle between the spin			Muhlfelder	
		axis and out of plane asymmetry shall be less than 5.0e-5 of		Analysis (TBS)		
		the loop area.				
		With the current design, this amounts to an area of less than				
		$2 mm^2$.				
3.7.1.5.2.2.	Transition	The readout cable shall have a superconducting transition	S	qualification test	В	\checkmark
2.8.3	Temperature	temperature of greater than 8.5 K.		Similarity to material coupon test to be	Muhlfelder	
				performed (by J Mester)		

3.7.1.5.2.2.	Flux Coupling	The flux coupling from an applied external field shall be less	Α	qualification tests	В	✓
2.8.4	from Applied	than or equal to 1.0e-7 flux-quanta/pT (flux is referred to		Analysis TBS	Muhlfelder	
	External Field	flux in SQUID loop). The applied external field is the free				
		magnetic field applied to the shield of the readout cable.				
3.7.1.5.2.2. 3	Gyroscope Assembly					
3.7.1.5.2.2.	Rotor Gap to	When the rotor is centered, the gap between the rotor and	Ι	P0009 Cavity Sphericity and Depth	S Buchman	✓
3.1	Electrodes	electrodes shall be as required in Section 1.6.1 of T003.	1	Measurement of Tumble Lapped Housing by	5 Ducimian	
5.1	Lieeu odes	clear outs shall be as required in Section 1.0.1 of 1003.		Stanford - results recorded in files on PC		
		T003 spec: 31 micrometer +/- 3 micrometer.		connected to Talyrond and on polar chart in		
				hardware folder		
3.7.1.5.2.2.	Rotor Gap to	When the rotor is centered, the gap between the rotor and the	Ι	P0009 Cavity Sphericity and Depth	S Buchman	✓
3.2	Support Lands	support lands shall be as required in Section 1.6.2 of T003		Measurement of Tumble Lapped Housing by		
		with a tolerance of +/- 3.7 micrometer.		Stanford - results recorded in files on PC		
				connected to Talyrond and on polar chart in		
		T003 spec: 19 micrometer.		hardware folder		
3.7.1.5.2.2.	Rotor Gap to	When the rotor is centered, the gap between the rotor and the	Ι	P0009 Cavity Sphericity and Depth	S Buchman	✓
3.3	Caging Lands	caging lands shall be 19 micrometer +/- 3.7 micrometer.		Measurement of Tumble Lapped Housing by		
				Stanford - results recorded in files on PC		
				connected to Talyrond and on polar chart in		
3.7.1.5.2.2.	Character 1			hardware folder		
5.7.1.5.2.2. 4	Charge Control					
3.7.1.5.2.2.	Photo	The photoemission from the UV electrode shall be greater	Т	P0203 during RTC (P0272) and LTC (P0275) -	B Clark	\checkmark
4.1	Emissivity from	than or equal to 5.0e-7 electron/photon.	1	results recorded in files on data acquisition	D Clark	
7.1	UV Electrode	than of equal to 3.60 7 electron/proton.		system		
3.7.1.5.2.2.	Gyro					
5	Instrumentation					
	Characteristics					
3.7.1.5.2.2.	Germanium	The GRTs shall have a nominal resistance of 1500 ohm at	Ι	Incoming acceptance inspection of manufacturer	M Taber	✓
5.1	Resistance	4.2 K and be calibrated over the temperature range 1.4 K to		data sheet in Flight Hardware Storage area		
	Thermometer	100 K with an accuracy of 5 mK over the temperature range				
	Characteristics	from 1.4 K to 10 K traceable to the International				
		Temperature Scale of 1990 per MIL STD 45662A.				
3.7.1.5.2.2.	Heater					
5.2	Characteristics					
3.7.1.5.2.2.	Resistance	The resistance shall be 1320 ohm +/- 100 ohm at 4.2 K.	Т	P120 Heater Assembling, Chip Resistor	В	✓
5.2.1	D. I.M.		C		Muhlfelder	✓
3.7.1.5.2.2.	Dipole Moment	The current induced magnetic dipole moment shall be less than 2.0×0.4 m ² (mA) (2.0 \times 0.4 m ² (mA))	S	Similarity to qual. article - test data in J Mester's	B Mach 16al dan	▼
5.2.2	due to Current	than 2.0e-9 A-m ² /mA (2.0e-6 emu/mA).		<u>"Miscellaneous" folder</u>	Muhlfelder	

C. Science Gyroscope Requirements Verification Documents Checklist

Gyroscope Fabrication

Document	Revision Date	Author	Title	Written	In Database	Approval Status
P0001	4/16/90	P Bayer	Standard Cleaning Procedure for Housings	v	 ✓ 	Approved
P0003	3/1/89	S Buchman	Inspection of Stanford Housing Blanks	 ✓ 	×	Approved
P0004	3/1/89	S Buchman	Inspection by Stanford after Cavitron Operations	~	 ✓ 	Approved
P0005	3/1/89	S Buchman	Etching and Reinspection by Stanford after Cavitron Operations	~	 ✓ 	Approved
P0006B	9/1/93	B Muhlfelder	Procedure to Clean Housings Prior to Al/Ti Deposition	√	 ✓ 	Approved
P0008	3/1/89	S Buchman	Inspection by Stanford of Tumble Lapped Housing	\checkmark	✓	Approved
P0010	1/1/92	S Buchman	Removal of Al/Ti Coating and Inspection of R/O Surface	\checkmark	 ✓ 	Approved
P0012	3/89	S Buchman	Inspection by Stanford of Finished Quartz Housing	~	 ✓ 	Approved
P0014	2/89	D Gill	General Inspection of Housings	\checkmark	✓	Approved
P0016	2/1/89	S Buchman	Fast Cleaning Procedure for the Inspection of Quartz Housings	~	~	Approved
P0020	4/1/89	S Buchman	Housing Numbering	~	 ✓ 	Approved
P0021	4/1/89	S Buchman	Housing Dimensions Check	\checkmark	 ✓ 	Approved
P0022	4/1/89	P Bayer	Packing and Shipping	~	 ✓ 	Approved
P0025	3/23/93	D Gill	Rotor Coating Wet Bench Operating Procedure	\checkmark	~	Approved
P0044	9/1/89	P Zhou	Quartz Housing Coating Procedure	√	 ✓ 	Approved
P0056A	12/29/94	D Gill	Automated Betascope Rotor Uniformity Measurements	\checkmark	✓	Approved
P0062	2/1/92	D Gill	Procedure for Sulfuric Acid Boil to Remove Organic Contaminants	~	~	Approved
			from Fused Quartz			
P0074	1/1/93	M Keiser	Lapping Procedure for Quartz Rotors	~	~	Preliminary
P0075	1/1/93	M Keiser	Polishing Procedure for Quartz Rotors	~	~	Preliminary
P0076	1/1/93	M Keiser	Rotor Diameter Measurement Procedure	\checkmark	~	Preliminary
						ECD imminent
P0077	12/22/94	M Keiser	Rotor Sphericity Measurement Procedure	\checkmark	\checkmark	Preliminary
P0078	08/01/92	M Keiser	Rotor Handling Procedures	~	~	Preliminary
P0079	08/01/92	D Gill	Rotor Coating Procedure	\checkmark	~	Preliminary
P0080	08/01/92	J Lockhart	Cryogenic Magnetic Screening Procedure			
P0085	10/1/92	P Bayer	Gyroscope Hardware Assembly	~	~	Approved
P0086	10/1/92	P Bayer	UV and Optical Readout Hardware and Cable Assy	~	~	Approved
P0087	10/1/92	C Gray	Suspension and Grounding Wire Assembly	~	~	Approved
P0105	5/21/97	R Shile	Gravity Probe B Gyro Housing Lithography Process 4/93	~	~	Approved

K Hooper - printed 1/24/2010

P0114	9/1/94	D Gill	Deposition of Niobium Loop Layer on Development Quartz	~	v	Approved
			Housings			
P0120	11/2/94	M Luo	Heater Assembling, Chip Resistor	\checkmark	~	Draft
P0197	2/28/97	C Gray	KJL Coating Facility Gyro Housing Coating Procedure for Manual	\checkmark	no soft	Approved
			Operation		сору	
P0202	7/21/97	C Gray	Procedure for Cable Assembly, Ground	\checkmark	~	Approved
P0304	6/26/97	C Gray	Procedure for Stripping the Aluminum Vcladding from the Fiber	v	\checkmark	Approved
			Optic Cable			
P0306	7/21/97	C Gray	Procedure for Assembling Ultra Violet Fiber Optic Cable Assembly	v	\checkmark	Approved

Gyroscope Integration & Commissioning

Document	Revision Date	Author	Title	Written	In Database	Approval Status
P0111	7/10/97	C Gray	Room Temperature Gyro Installation and Removal Procedure	✓	\checkmark	Approved
P0203	6/9/97	B Clarke	UV Charge Control Commissioning Procedure for SM Gyroscopes	✓	\checkmark	Approved
P0204	6/16/97	D Hipkins	Procedure for Installation of SM Gyroscopes in the Low Temperature Commissioning Probe	~	~	Approved
P0272	7/10/97	D Hipkins	Room Temperature SM Gyroscope Commissioning Tests	\checkmark	\checkmark	Approved
P0273	7/10/97	D Hipkins	Gyroscope Commissioning Probe Installation Procedure	✓	\checkmark	Approved
P0274	7/16/97	D Hipkins	Procedure for Verification of DC Coupling of SM Gyroscopes	\checkmark	\checkmark	Approved
P0275	7/16/97	D Hipkins	Low Temperature SM Gyroscope Commissioning Tests	\checkmark	\checkmark	Approved
P0276	7/16/97	D Hipkins	Procedure for Flux Flushing the Gyroscope in the Gyroscope Commissioning Probe	~	✓	Approved
P0277	7/ 14/97	D Hipkins	Installation of the Gyroscope Support Hardware for the Gyroscope Commissioning Probe	~	 ✓ 	Approved
P0278	7/22/97	D Hipkins	Procedure for Post Commission Handling and Storage of SM Gyroscopes	~	✓	Approved
P0279	7/11/97	D Hipkins	Magnetic Screening of the SM Gyroscope in the Large Scale Magnetics Testing Facility	~	✓	Approved
P0281	6/15/97	D Hipkins	Procedure for Commissioning Gyroscopes for the Science Mission Probe (incl. Gyroscope Acceptance Traveller and FGT#26)	~	 ✓ 	Approved
P0296		D Hipkins	Pre-Commissioning Test Inspections of SM Gyroscopes	✓	\checkmark	Approved
P0297-2	7/22/97	D Hipkins	Functionality Test of Thermometry and Heater for SM Gyroscopes (Optional)	~	✓	Approved
P0298	7/18/97	D Hipkins	Procedure for Verifying Rotor Freedom of Movement (TBR)	\checkmark	\checkmark	Approved

P0299	7/16/97	D Hipkins	Procedure for Gyroscope Levitation With the DDC Suspension	\checkmark	\checkmark	Approved
			System			
P0300	7/10/97	D Hipkins	Gowning Procedure for the Gyroscope Commissioning Probe Clean	\checkmark	\checkmark	Approved
			Room			
P0307	7/14/97	Y Xiao	Confirmation of No Charging of the Gyroscope During Levitation	\checkmark	\checkmark	Approved
P0308	7/14/97	D Hipkins	Post Insertion Electrical Checklist (incl. GCP-Op3 & 4)	\checkmark	\checkmark	Approved
P0310	8/10/97	Y Xiao	Low Temperature Gyro Spinup Procedure	\checkmark	\checkmark	Approved
P0311	7/17/97	D Hipkins	Performance Testing Procedure (Optional)	\checkmark	\checkmark	Approved
P0313	12/1/97	D Hipkins	Pre-Commissioning Visual Inspection of SM Gyroscope	\checkmark	\checkmark	Approved
P0314	7/1/97	D Hipkins	rocedure for the Fast Spin Test in the Gyroscope Commissioning		\checkmark	Approved
			Probe			
P0321	7/15/97	C Gray	Room Temperature Gyroscope Spin-Up & Spin-Down Procedure	\checkmark	\checkmark	Approved
P0369	11/21/97	C Gray	Procedure for Resistance Testing of Gyroscope Coatings to Rotor	\checkmark	\checkmark	Approved
P0370	11/21/97	C Gray	Procedure for Installing Readout Cable to Gyroscope	\checkmark	\checkmark	Approved

Additiona	al Documen	nts				
Document	Date	Author	Title	Written	In Database	Approval Status
P0057 A	9/29/94	J Lockhart	GP-B Magnetic Control Plan - Science Mission	\checkmark		Approved
P0305	7/21/97	C Gray	Procedure for Gyroscope High Voltage to Ground Plane Breakdown	✓	\checkmark	Approved
P0381	1/8/98	W Bencze	70 Khz Digital D.C. Suspension System Checkout and Release Procedure	~		Approved
23200- 112 B	10/1/96	F Berkowitz	DRAWING TREE, GYRO ASSY, SM	~	\checkmark	Approved
23185- 101104	11/8/96	E Romero	GYRO/PROOF MASS ASSEMBLY	~	\checkmark	Approved
S0256	9/25/97	B Bencze	Gyroscope Spin Axis Alignment Algorithm for the Gravity Probe B Spacecraft	~		
S0287	ECD 12/15/97	M Keiser	Homogeneity and Composition of GP-B Rotors			
S0288	ECD 12/15/97	D Gill	GP-B Rotor Mass Unbalance			
S0289	ECD 1/15/98	A Silbergleit	In-Plane Asymmetry of Pick-Up Loops			
S0290	ECD 1/15/98	A Silbergleit	GP-B Rotor Shape			
S0291	ECD 1/15/98	M Keiser	Initial Gyroscope Alignment			
	8/96	R Brumley	Measurements of the Thermal Emissivity of a Superconducting Niobium Film (in Proceedings of the 21st International Conference on Low Temperature Physics	~	N/A	N/A

Note: Status data comes from Stanford Database; entries in *italics* do not directly verify requirements, but are part of the mfg. & test process.

D. Science Gyroscope Test Personnel Status Checklist

Test Conductors / Inspectors for the Gyroscope Commissioning Facilities (including the Gyroscope Suspension Systems)

Name	Received Training in Test Operations
Barry Muhlfelder	
Bruce Clark	
Chris Gray	
David Hipkins	
Paul Bayer	
Ping Zhou	
Rob Brumley	
Sasha Buchman	
Yueming Xiao	
Yoshimi Oshima	

Note: all Science Gyro commissioning test personnel are both conductors and inspectors.

Qualified Test Directors for Gyroscope Commissioning

Name
Sasha Buchman
Yueming Xiao

Critical test procedures for gyroscope commissioning

and the test directors associated with them.

#	Title	Test directors
P0085	Gyroscope Hardware Assembly	Paul Bayer, Chris Gray
P0278	Procedure for Post Commission Handling	Bruce Clark, Chris Gray, Dave Hipkins
	and Storage of SM Gyroscopes	
P0296	Pre-Commissioning Test Inspections of	Paul Bayer, Chris Gray
	SM Gyroscopes	
P0299	Procedure for Gyroscope Levitation With	Rob Brumley, Sasha Buchman, Bruce Clark,
	the DDC Suspension System	Chris Gray, Dave Hipkins, Yueming Xiao
P0314	Procedure for the Fast Spin Test in the	Rob Brumley, Sasha Buchman, Dave Hipkins,
	Gyroscope Commissioning Probe	Yueming Xiao

E. Science Gyroscope Test Resources Checklists

Test Instruments

(Instruments that are used for verifying of requirement, calibration required)

Item Description	Run Number in	Calibration	Available
	the database	Date	
Vacuum gauges (for GCP)	46	7/17/98	Yes
DVM (aka Keithley DVM and dc Voltmeter)	?	CG	
Keithley 6512 or 617 Programmable Electrometer	48	8/13/98	Yes
JeLite UV source w/ power supply	replaced by		
	STU, Bruce		
Resonance Ltd. Cs-Te photodiode	Bruce		
Baritron gauge	35-38	7/25/98 x 4	Yes
Talyrond 73	49, 50	10/7/98 x 2	
Mass Flow Power Supply 246/B?	39, 40	7/25/98 x 2	
Mass Flow Controller?	41, 42, 44	7/25/98 x 3	
Mass Flow Sensor	45	6/21/98	
Class 10 Clean Room areas	47	1/31/97	
Power Supply/Display 246?	43	7/25/98	

Instruments that do not require standard calibration

Item description	Reason why calibration is not required		
BTI dc Current Source, Model CCS	Only relative measure used to verify requirements		
High Voltage power supply	Not verifying requirement		
Vacuum gauges (for RT #3)	Not verifying requirement		
Vacuum gauges (for RT #4)	Not verifying requirement		
DDC Suspension Systems	Not a standard equipment. Stanford Calibration procedure: P0381		
Germanium Thermometer Readout	GRTs comes with calibration table. This values are constant.		
Capacitance meter	Not verifying requirement		
Capacitance bridge	Not verifying requirement		
Quantum Design dc SQUID Controller (aka	Only relative measure used to verify requirements		
"SQUID control electronics" and "dc SQUID			
readout")			
Keithly 485 Autoranging Picoammeter	Not verifying requirement		
HP E3620A 2-25 V Dual Channel DC Power	DVM is used.		
Supply			
Alcatel Leak Detector	Not verifying requirement		
Chart recorder	Not verifying requirement		
Betascope TC2000 with Rotor Manipulator	Betascope is re-standardized every few days on a		
	regular basis.		
	Calibration is done by D. Gill by comparison to		
	calibrated coating standards. Dale has a note		
	discribing how standards were created.		

1	These spheres are the master for measuring Spheres diameter. Only relative measure used to
	verify requirements.

Facilities

Item Description

Large Scale Magnetics Facility

Low temperature commissioning probe clean room (includes Gyroscope Commissioning Probe (GCP) and trapped flux magnetic readout system (3 axis Helmholtz coils))

R.T. #3 & #4 room temperature test facilities (aka "high vacuum chamber", "vacuum can" and "High vacuum test facility conforming to Stanford / NASA guidelines")

Data acquisition system (combination of PC & Lab View software)

Exhaust pumping station

fiber optic switch

Overhead crane with load cell and associated digital readout

55-pin cable extension for instrumentation readout

Gyroscope storage container (aka "Stainless steel pot")

Strawberry Tree ADC breakout box

SpinUp, Exhaust nozzles assembled on titanium support plate

Lexan support Tee

Supplies

Item Description
Non-magnetic screwdriver
Twelve point 5/16 wrench
Traveler notebook for each Gyro
Lab books
Floppy disks
#8-32 nylon nuts
Lexan spacers
8" copper gaskets
Bellville washers
2 1/2 inches titanium bolts with #8-32 thread
Anti-static "Poly" bags
Cubic 10 (class 10) Clean room garments
TyVek (class 100) Clean room garments
Latex gloves, rinsed using DI water (aka "Cleanroom approved gloves")
freon
DI water
liquid helium
helium gas

Gyro Commissioning Test Support Software

Test Description	Environment	Application	Filenames
UV Charge Transfer	DOS	Strawberry Tree WORKBENCH PC V2.1.0	AUTOUV
	DOS	Strawberry Tree WORKBENCH PC V2.1.0	TESTCC
	DOS	Strawberry Tree WORKBENCH PC V2.1.0	UVCOMM
	DOS	Strawberry Tree WORKBENCH PC V2.1.0	UVSTRIP
Trapped Flux Measurement	DOS	(executable)	MAIN3
Spin Speed Readout	DOS	(executable)	FFT
and Analysis	DOS	(executable)	FFT32
-	UNIX	(batch)	GETDATA

	Windows 3.1	Matlab Version 4.2c.1	GYRODATA
	Windows 3.1	Matlab Version 4.2c.1	SPINANAL
	DOS	(executable)	AFILE
NLFF System Readout	Windows 3.1	Labview for Windows Version 3.1.1	NLFF3
DDC Suspension System software	Windows 3.1 or 95	version 107	DDC

Gravity Probe B Relativity Mission

Science Gyroscope Assembly

Test Readiness Review

Completion Certificate

Prepared by: Ken Hooper Systems Engineer	Date
Approved by: Jeremy Kasdin Chief Systems Engineer	Date
Approved by: Yueming Xiao Manager, Gyroscope Commissioning	Date
Approved by: George "Mac" Keiser Lapping and Polishing Manager	Date
Approved by: Barry Muhlfelder Manager, SQUID Development	Date
Approved by: Sasha Buchman Manager, Gyroscope Development	Date
Approved by: B. Taller Quality Assurance	Date
Approved by: J. Turneaure Hardware Manager	Date

Science Gyroscope Test Readiness Review - Actions Items

#	Action	Assignee	ECD	Status
1	Complete procedure and sign off of P0296, and P0085		11/26/97	done
2			11/26/97	done
3			11/26/97	done 11/17/97
11			11/26/97	deleted
	optional.			
15	15 Approve P0001 to P0014 (cover sheet & signatures)		11/26/97*	done
16	6 Review entire procedure list for status & get approval on all procedures used for gyro		11/26/97*	done
	manufacture & test			
18	8 Provide list of qualified test directors & procedures requiring director approval		11/26/97	done 11/26/97
19	Fill out instrument serial numbers & calibration dates for listed items	S Buchman	11/26/97	done
20	Put test support software under configuration control (get copy to Mae)		11/26/97*	done
7	PCB to remove "shalls" from 3.7.1.5.1 and other descriptive paragraphs that do not contain	K Hooper	12/3/97	done 12/3/97
	performance requirements. Also PCB other marks ups.			
9	PCB 3.7.1.5.2.1.2.1 and 3.7.1.5.2.1.2.2 to remove temperature from requirement & incorporate into	S Buchman,	12/3/97	done 12/3/97
	Spin Speed requirement as a constraint.	K Hooper		
10	PCB to delete 3.7.1.5.2.1.3	K Hooper,	12/3/97	done 12/3/97
		J Turneaure		
14	PCB 3.7.1.5.2.2.2.6 to make it correct	S Buchman	12/3/97	done 12/3/97
4	Complete ECOs for procedures as needed	B Taller	1/28/98	done
5	Review drawings for P0057A and issue change notice to remove where not appropriate. Also review	B Taller,	1/28/98	done
	P0057A and modify so screening is done as appropriate. (Add trapped flux meas. adequate in lieu of	S Buchman,		
	testing whole assemblies.)	J Lockhart		
6	Modify cleanliness procedure to verify drawings & procedures	M Keiser	1/28/98	done
8	Verify T003 for Spin Speed can be verified by analysis		1/28/98	done
12	Review $3.7.1.5.2.2.1.2.6$ to make sure 10^{-6} is correct		1/28/98	done
13	To verify 3.7.1.5.2.2, Rob to document paper with cover letter stating its relation to flight rotors	R Brumley†	1/28/98	done
17	Review build paper and make sure all procedures called out are listed & approved	S Buchman	1/28/98	done

Those is **bold** need to be completed before the TRR can be certified as completed - the others must be completed before the acceptance review.

* For Action Items 15, 16 and 20, only the procedures, instruments, and software used for Gyro Commissioning need be completed before the TRR can be certified as completed.

† S Buchman will coordinate the actions assigned to D Hipkins and R Brumley.