

W. W. Hansen Experimental Physics Laboratory

STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 - 4085

Gravity Probe B Relativity Mission

### SQUID Kit / Readout Test Readiness Review

### GP-B P0257 Rev -

February 20, 1998

| Prepared by: Ken Hooper<br>Systems Engineer                 | Date |
|-------------------------------------------------------------|------|
| Systems Engineer                                            |      |
| Approved by: Bob Schultz                                    | Date |
| Chief Systems Engineer                                      |      |
| Approved by: Barry Muhlfelder<br>Manager, SQUID Development | Date |
| Approved by: George "Mac" Keiser<br>Chief Scientist         | Date |
| Approved by: Jim Lockhart<br>SRE IPT Leader                 | Date |
| Approved by: B. Taller<br>Quality Assurance                 | Date |

Approved by: J. Turneaure Hardware Manager

Date

### SQUID Kit / Readout Test Readiness Review

Date & Time: December 18, 1997, 2:00 to 4:00 PM

Location: GP-B conference room

#### Purpose:

To ensure that the test article hardware, test facility, ground support personnel, and test procedures are ready for testing, data acquisition, reduction, evaluation, and control.

#### Scope:

The SQUID Kit / Readout Test Readiness Review (TRR) will encompass all SQUID Kit / Readout (RO) flight hardware. The RO flight hardware includes the completed SQUID Kits assemblies and their components, including: the SQUID packages, their sensors, cables, connectors, brackets and mounting hardware.

#### Agenda:

- Requirements Traceability Status
- Procedure Status
- Test Personnel Status
- Test Resources Status
- Test Support Software Status

#### Review Team:

| John Turneaure      | Hardware Manager           |
|---------------------|----------------------------|
| Barry Muhlfelder    | Manager, SQUID Development |
| George "Mac" Keiser | Chief Scientist            |
| Jim Lockhart        | SRE IPT Leader             |
| Ben Taller          | Quality Assurance          |
| Bob Schultz         | Chief Systems Engineer     |
| Ken Hooper          | Review Leader              |
| Ed Ingraham         | ONR (ex officio)           |

#### **Objectives:**

- Confirm that in-place test plans and procedures meet verification requirements and specifications.
- Confirm that sufficient and detailed resources (of the right type) are allocated to the test effort.
- Examine detailed test procedures for completeness and safety during test operations. Note who is in charge of the test operations and test article and who is in charge of the facilities.
- Determine the critical test personnel who are authorized to perform test.
- Confirm that test support software is adequate, pertinent, and verified (validated for intended use).
- Confirm that all interfaces with the test article, test equipment, and facilities, especially power, data, instrumentation, etc., are adequate, safe, and in accordance with the test procedure. Ensure the customer, witnessing agents, test personnel, quality assurance, and support personnel understand the objective of the test and the parameters that are critical for successful operation.
- Confirm that the documentation has proper traceability.
- Confirm that test equipment has been appropriately calibrated.

#### Exit Criteria:

The following items identify the categories of items to be checked; the individual checks are enumerated in the attached checklists:

- Do the test procedures verify all applicable requirements?
- Have test personnel received training in test operations procedures?
- Are resources available to adequately support the planned tests as well as contingencies, including failed hardware replacement?
- Has the test support software been demonstrated to handle test configuration assignments, and data acquisition, reduction, evaluation, control, and archiving?

#### **Attachments:**

- A. Manufacturing Flow Diagrams
- B. Requirements Verification Matrix
- C. Document Status Checklist
- D. Test Personnel Status Checklist
- E. Test Resources Checklists and Test Support Software Checklist
- F. Completion Certificate

## A. SQUID Kit / Readout Manufacturing Flow

|                                                                                  |                                                               | SQUID Carrier Hardware Flow                                                      |
|----------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                                  |                                                               | P0152 SQUID Carrier Substrate Fabrication                                        |
|                                                                                  |                                                               | P0317 SQUID Carrier Substrate Cleaning                                           |
|                                                                                  |                                                               | P0164 SQUID Die Pre-screening Procedure<br>P0380 Fabrication Procedure for SQUID |
|                                                                                  |                                                               | Feedback Transformers                                                            |
| Bracket and Heater Hardware Flow                                                 |                                                               | P0156 Feedback Transformer Verification                                          |
| P0117 SQUID Bracket Assembly Procedure<br>P0120 Heater Assembling, Chip Resistor |                                                               | P0155 Output Transformer Fabrication<br>Verification                             |
| P0182 Heater Assembly, Chip Resistor                                             |                                                               | P0153 SQUID Carrier Assembly & Process<br>Endurance Testing                      |
| P0116 Temperature Sensor Assy<br>Procedure                                       |                                                               | P0157 Use of Epoxy Stycast 1266<br>Procedure                                     |
| P0102 SQUID Readout Cable Assembly                                               | SOLUD Deckage Handware Flow                                   |                                                                                  |
| P0110 Output Cable Sub Assembly                                                  | SQUID Package Hardware FlowP0161 SQUID Capacitor Kit Assembly | P0158 Lead Gasket Fabrication                                                    |
| P0169 Thermal Ground Kit                                                         | SC Cable Connection                                           | P0159 SQUID Package Assembly                                                     |
| P0080 Cryogenic Magnetic Screening Procedure                                     | 2                                                             |                                                                                  |
|                                                                                  | P0160 SQUID Package Testing and                               |                                                                                  |
| P0166 System Integration                                                         | I                                                             |                                                                                  |

P0170 Readout Shake Test

## **B. SQUID Kit / Readout Verification Matrix**

| Section | Title          | Text & Comments                                                       | Method | Verification Plan                   | RE         | ECD  | $\checkmark$  |
|---------|----------------|-----------------------------------------------------------------------|--------|-------------------------------------|------------|------|---------------|
| 3.2     | Accuracy       |                                                                       |        |                                     |            |      |               |
| 3.2.1   | Linearity      | The readout system meets the following linearity requirements in the  |        |                                     |            |      |               |
|         |                | presence of trapped flux levels as specified in requirement 1.5:      |        |                                     |            |      |               |
| 3.2.1.1 | High Frequency | In the frequency range 100-1000 Hz the harmonic distortion of each of | T(D)   | Preliminary test in P0160 SQUID     | В          | 4/98 | 11            |
|         |                | harmonics 2-6 of sinusoids with amplitude corresponding to the        |        | Package Testing and Verification    | Muhlfelder |      | 1             |
|         |                | trapped flux levels of section 1.5 shall be less than 1e-4.           |        | Will be verified during SRE testing |            | E    | $\parallel$   |
| 3.2.1.2 | Low Frequency  | For frequencies less than 1 Hz, the harmonic distortion of each       | T(A)   | Preliminary test in P0160 SQUID     | В          | 4/98 | 11            |
|         |                | harmonic 2-6 of sinusoids with amplitude up to 80 arcsec London       |        | Package Testing and Verification    | Muhlfelder | E    | $\parallel$   |
|         |                | moment equivalent shall be less than 1e-4.                            |        | Will be verified during SRE testing |            |      | $\mathcal{U}$ |

#### SQUID Kit / Readout Requirements from System Design and Performance Requirements Spec. [T003]

#### SQUID Kit / Readout Requirements from SIA Specification [PLSE-12 F277277 §3.7.1.7]

| Section                              | Title                                   | Text & Comments                                                                                                                                                                                                                                                                                                                                                                                                              |   | Verification Plan                                            | RE                  | ECD 🗸  |
|--------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------|---------------------|--------|
| 3.7.1.7                              | SQUID Kit                               |                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                                                              |                     |        |
| 3.7.1.7.1                            | Prime Item<br>Definition                | A SQUID kit consists of two SQUID Packages, each containing one<br>SQUID Sensor, the cables connecting the above components to the cold<br>end Probe connectors, and the SQUID bracket (providing the<br>components for thermal control) and other mounting hardware required<br>to hold the above components in place. There are two SQUID kits in<br>the SIA.                                                              |   |                                                              |                     |        |
| 3.7.1.7.1<br>.1<br>3.7.1.7.1<br>.1.2 | Prime Item<br>Diagrams<br>SQUID Package |                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                                                              |                     |        |
| 3.7.1.7.1<br>.2                      | Interface Definition                    |                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                                                              |                     |        |
| 3.7.1.7.1<br>.2.1                    | Functional Interfaces                   | The SQUID kit shall interface through the probe cables to the SQUID forward Electronics for power and operational control (Section 3.7.1.7.1.2.2), for thermal control (Section 3.7.1.7.1.2.4), and to deliver Science Signals (Section 3.7.1.7.1.2.2). It shall interface to each Science Gyroscope through its Superconductive Cable. It shall interface to the structure of the Probe through the SQUID Mounting Bracket. | Ι | Inspect to drawings 25132-101 (NEG X), and 25132-102 (POS X) | B<br>Muhlfelde<br>r | 4/98 ✓ |

| 3.7.1.7.1<br>.2.2 | Signal Interfaces        | Each SQUID kit shall have the following electrical inputs and outputs.                                                           | Ι | Inspect to drawings 25132-101 (NEG X), and 25132-102 (POS X) | B<br>Muhlfelde | 4/98  | ✓            |
|-------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------|----------------|-------|--------------|
|                   |                          | <ol> <li>Bracket instrumentation inputs and outputs         <ul> <li>a. Input drive currents to two GRTs.</li> </ul> </li> </ol> |   |                                                              | r              |       |              |
|                   |                          | b. Output signal voltages from two GRTs.                                                                                         |   |                                                              |                |       |              |
|                   |                          | c. Two SQUID bracket heater current inputs (one prime & one spare).                                                              |   |                                                              |                |       |              |
|                   |                          | 2. The following inputs and output to/from each of the two SQUID                                                                 |   |                                                              |                |       |              |
|                   |                          | packages contained in a SQUID kit for connection to the SQUID forward electronics.                                               |   |                                                              |                |       |              |
|                   |                          | a. Bias current input.                                                                                                           |   |                                                              |                |       |              |
|                   |                          | b. Modulation signal input.                                                                                                      |   |                                                              |                |       |              |
|                   |                          | c. Feedback signal input.                                                                                                        |   |                                                              |                |       |              |
|                   |                          | d. Voltage signal output.                                                                                                        |   |                                                              |                |       |              |
|                   |                          | 3. The following input to each of the two SQUID packages contained in                                                            |   |                                                              |                |       |              |
|                   |                          | a SQUID kit for connection to the gyroscope pickup loop.                                                                         |   |                                                              |                |       |              |
|                   |                          | a. Gyroscope pickup loop flux signal.                                                                                            |   |                                                              |                |       |              |
| 3.7.1.7.1         | Electrical Interfaces    | The SQUID hardware shall interface to the cold end connectors as                                                                 | Ι | Inspect to drawings 25132-101 (NEG                           | D Bardas       | 5/98  | $\checkmark$ |
| .2.3              |                          | shown in LMSC drawing 1C34103                                                                                                    |   | X), and 25132-102 (POS X)                                    |                |       |              |
| 3.7.1.7.1         | Thermal Interfaces       | The operating temperature of each SQUID Package shall be maintained                                                              | Ι | To be verified at payload testing                            | В              | 5/98  |              |
| .2.4              |                          | as specified in Sections 3.7.1.7.2.1.6.4 and 3.7.1.7.2.1.6.5 by an active                                                        |   |                                                              | Muhlfelde      |       |              |
|                   |                          | thermal control system that uses a GRT and a heater mounted on each                                                              |   |                                                              | r              |       |              |
|                   |                          | SQUID Bracket. The Probe maintains a temperature at the mounting as                                                              |   |                                                              |                |       | $\parallel$  |
|                   |                          | specified in Section 3.7.2.5. The total power delivered to the SQUID                                                             |   |                                                              |                |       |              |
| 27171             | Marken's 1               | Bracket shall not exceed that specified in 3.7.2.5.7                                                                             | т | Lease 44 - Lease 25122 101 (AFEC                             | D D l          | 5/00  | $\sim$       |
| 3.7.1.7.1<br>.2.5 | Mechanical<br>Interfaces | Each SQUID Bracket shall interface to the Probe Quartz Block Support                                                             | Ι | Inspect to drawings 25132-101 (NEG X), and 25132-102 (POS X) | D Bardas       | 5/98  | v            |
| 3.7.1.7.2         | Characteristics          | structure as shown in LMMS drawing 1C34103.                                                                                      |   | A), and 25152-102 (POS A)                                    |                |       |              |
| 3.7.1.7.2         | Performance              | In the specifications below, the conversion from flux signal in the                                                              |   |                                                              |                |       |              |
| .1                | renormance               | SQUID input loop to angle equivalent signal assumes a four turn                                                                  |   |                                                              |                |       |              |
| •1                |                          | pickup loop, a 130 Hz spin speed, and a 3 minute roll period.                                                                    |   |                                                              |                |       |              |
| 3.7.1.7.2         | Noise at 5.5             | The SQUID sensor noise shall have a magnitude less than 140                                                                      | Т | P0160 SQUID Package Testing and                              | В              | 4/98  | $\checkmark$ |
| .1.1              | milliHertz               | marcsec/Hz^0.5 equivalent at 5.5 mHz (single-sided).                                                                             |   | Verification                                                 | Muhlfelde      | ., >0 |              |
|                   |                          |                                                                                                                                  |   |                                                              | r              |       |              |
| 3.7.1.7.2         | Noise at 130 Hertz       | The SQUID sensor noise shall have a magnitude less than 60                                                                       | Т | P0160 SQUID Package Testing and                              | В              | 4/98  | ✓            |
| .1.2              |                          | marcsec/Hz^0.5 at 130 Hz, where the flux to angle scale factor assumes                                                           |   | Verification                                                 | Muhlfelde      |       |              |
|                   |                          | a rotating trapped dipole flux level equal to the London dipole moment                                                           |   |                                                              | r              |       |              |
|                   |                          | at 130 Hz (this trapped flux level is an assumption only, and does not occur in fact).                                           |   |                                                              |                |       |              |
| 3.7.1.7.2         | DC Linearity             | The V-flux characteristic of the SQUID sensor shall have a linearity                                                             | S | A qualification unti will be tested in                       | В              | 4/98  | $\checkmark$ |
| .1.3              | -                        | better than 1% over a +/- 100 arcsec range of uncompensated error.                                                               |   | P0160 SQUID Package Testing and                              | Muhlfelde      |       |              |
|                   |                          |                                                                                                                                  |   | Verification                                                 | r              |       |              |

| 3.7.1.7.2 | Harmonic Distortion | The harmonic distortion of the SQUID operating with flux-locked-loop      | Т | P0160 SQUID Package Testing and | B 4       | /98 🗸 |
|-----------|---------------------|---------------------------------------------------------------------------|---|---------------------------------|-----------|-------|
| .1.3.1    |                     | electronics having a disturbance rejection in the range of 100-200 for    |   | Verification                    | Muhlfelde |       |
|           |                     | signals as specified in 3.7.1.5.2.1.1 shall be less than 10 <sup>-4</sup> |   |                                 | r         |       |
| 3.7.1.7.2 | SQUID Thermal       |                                                                           |   |                                 |           |       |
| .1.4      | Characteristics     |                                                                           |   |                                 |           |       |

| 3.7.1.7.2           | Operating<br>Temperature Range                   | (a) The nominal operating temperature range is defined in 3.4 of T003, and it is the range over which all other performance requirements must                                    | a) N/A<br>(b) T | Test during acceptance testing of SQUID package.                                                                                                                  | B<br>Muhlfelde      | 4/98 | ~ |
|---------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|---|
| .1.4.1              | Temperature Kange                                | be met. (b) The functional operating temperature range is 2.5 K to 4.2 K, and it is the range over which the only requirement is that the SQUID shall be able to be flux locked. | (0) 1           | P0160 SQUID Package Testing and<br>Verification                                                                                                                   | r                   |      |   |
| 3.7.1.7.2<br>.1.4.2 | SQUID Bias<br>Temperature<br>Coefficient         | The SQUID shall have a bias temperature coefficient of less than 0.01 flux quanta/K over the temperature range 2.7 K - 3K                                                        | Т               | P0160 SQUID Package Testing and Verification                                                                                                                      | B<br>Muhlfelde<br>r | 4/98 | ~ |
| 3.7.1.7.2<br>.1.4.3 | SQUID Scale Factor<br>Temperature<br>Coefficient | The SQUID shall have an input current-to-SQUID flux transfer coefficient whose temperature coefficient is less than 3.0x10 <sup>-4</sup> in the range 2.7-3K                     | Т               | P0160 SQUID Package Testing and Verification                                                                                                                      | B<br>Muhlfelde<br>r | 4/98 | ~ |
| 3.7.1.7.2<br>1.4.4  | Temperature<br>Stability                         | Deleted.<br>Requirement intent moved to 3.7.1.7.2.1.16 SQUID Bracket Thermal<br>Characteristics.                                                                                 |                 |                                                                                                                                                                   |                     |      |   |
| 3.7.1.7.2<br>1.4.5  | Temperature Drift                                | Deleted.<br>Requirement intent moved to 3.7.1.7.2.1.16 SQUID Bracket Thermal<br>Characteristics.                                                                                 |                 |                                                                                                                                                                   |                     |      |   |
| 3.7.1.7.2<br>1.5    | Flux Jumps                                       | There shall be no more than 1 flux jump per day with an amplitude in<br>the range of 1 to 20 arcsec. There shall be no flux jumps with an<br>amplitude exceeding 20 arcsec.      | A               | Analysis: S0295 On-Orbit Proton<br>Induced Flux Jump Rate,<br>P0160 SQUID Package Testing and<br>Verification                                                     | B<br>Muhlfelde<br>r | 6/98 | ~ |
| 3.7.1.7.2<br>1.6    | Input Coil<br>Impedance                          | The SQUID sensor input coil shall have an inductance less than 2.0 microhenry and shall be stable to 5 parts per million per year.                                               | I,A             | Inspection of manufacturer data - in<br>hardware folder.<br>Analysis: S0296 Input Coil Feedback<br>Transformer and Input Circuit Stability                        | B<br>Muhlfelde<br>r | 6/98 | ~ |
| 3.7.1.7.2<br>1.7    | Damping of Cable to<br>Package Joint             | The decay time of the SQUID Package Input circuit and Cable to package joint shall be less than 1% in 10 min.                                                                    | Т               | P0160 SQUID Package Testing and<br>Verification<br>Re-verified at payload test                                                                                    | B<br>Muhlfelde<br>r | 8/98 |   |
| 3.7.1.7.2<br>1.8    | Feedback<br>Transformer<br>Coupling              | The SQUID Feedback Transformer shall have mutual inductance of 0.35 microhenry to 0.45 microhenry and shall be stable to 5 parts per million per year.                           | A,S             | Analysis: S0296 Input Coil Feedback<br>Transformer and Input Circuit Stability<br>Similarity: Qual. unit tested in P0156<br>Feedback Transformer Verification     | B<br>Muhlfelde<br>r | 5/98 |   |
| 3.7.1.7.2<br>1.9    | Electrical Isolation                             | The resistance between any two of the following shall be greater than 20 megaohms: bias, modulation, feedback, and signal.                                                       | Т               | P0160 SQUID Package Testing and<br>Verification<br>(Will be re-verified after integration<br>with probe.)                                                         | B<br>Muhlfelde<br>r | 4/98 | ~ |
| 3.7.1.7.2<br>1.10   | Pickup Loop to<br>SQUID Coupling                 | The Pickup Loop shall have a coupling to the SQUID better than 40 fA/marcsec. The coupling shall have as a goal a stability of one part in 100,000 per year.                     | A               | S0296 Input Coil Feedback Transformer<br>and Input Circuit Stability.<br>A functional test will be performed at<br>Payload level to verify input<br>configuration | B<br>Muhlfelde<br>r | 8/98 | ~ |

| 3.7.1.7.2<br>.1.11   | Input Circuit Mutual<br>Inductance Stability              | The mutual inductance of input coil to SQUID loop shall be stable to better than 5 parts in 1.0e6 per year.                                                                                                                                                                                      | A          | S0296 Input Coil Feedback Transformer<br>and Input Circuit Stability                                                                                                                  | B<br>Muhlfelde<br>r | 5/98 🗸                |
|----------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|
| 3.7.1.7.2<br>.1.12   | SQUID Bias Current                                        | The SQUID sensor shall have a bias current between 20 microampere and 60 microampere.                                                                                                                                                                                                            | Т          | P0160 SQUID Package Testing and Verification                                                                                                                                          | B<br>Muhlfelde<br>r | 8/98 ✓                |
| 3.7.1.7.2<br>.1.13   | Modulation Coil to<br>SQUID Mutual<br>Inductance          | The mutual inductance shall be between 1.3 nH and 1.5 nH.                                                                                                                                                                                                                                        | Ι          | Inspection of vendor acceptance data<br>package - in hardware folder                                                                                                                  | B<br>Muhlfelde<br>r | <ul> <li>✓</li> </ul> |
| 3.7.1.7.2<br>.1.14   | Input Filter<br>Capacitance                               | The capacitance from each contact block to ground shall be between 8 nF and 13 nF.                                                                                                                                                                                                               | Т          | P0161 SQUID Capacitor Kit Assembly                                                                                                                                                    | B<br>Muhlfelde<br>r | ~                     |
| 3.7.1.7.2<br>.1.15   | SQUID Package AC<br>Magnetic Shielding                    | The SQUID package shall provide ac shielding such that flux coupling from an applied external magnetic field shall be <= 1.0e-7 flux-<br>quanta/pT (flux is referred to flux in SQUID loop). The applied external field is the free magnetic field applied to the exterior of the SQUID package. | <u>S</u> Ŧ | P0160 SQUID Package Testing and Verification                                                                                                                                          | B<br>Muhlfelde<br>r | ✓                     |
| 3.7.1.7.2<br>.1.16   | SQUID Bracket<br>Thermal<br>Characteristics               | The thermal design of the SQUID bracket (including GRTs & heaters),<br>SQUID packages, and related electrical cables shall have the capability<br>to meet the requirement in 3.4 of T003.                                                                                                        | A          | Analysis of thermal design to verify<br>capability to meet requirements<br>(stability requires temperature control<br>electronics).<br>S0297 SQUID Bracket Thermal<br>Characteristics | B<br>Muhlfelde<br>r | 6/98 ✓                |
| 3.7.1.7.2<br>.1.16.1 | Germanium<br>Resistance<br>Thermometer<br>Characteristics | The GRTs shall have a nominal resistance of $1500 \Omega$ to $2500 \Omega$ at 4.2 K and be calibrated over the temperature range 2.5 K to 20 K with an accuracy of 5 mK over the temperature range from 2.5 K to 10 K.                                                                           | Ι          | Inspection of calibration data provided<br>by vendor - in hardware folder.                                                                                                            | B<br>Muhlfelde<br>r | 4/99 ✓                |
| 3.7.1.7.2<br>.1.16.2 | Heater Resistance                                         | The heaters shall have a resistance of 1320 ohm +/- 100 ohm at 4.2 K.                                                                                                                                                                                                                            | Т          | P0120 Heater Assembling, Chip<br>Resistor                                                                                                                                             | B<br>Muhlfelde<br>r | 4/98 🗸                |
| 3.7.1.7.2<br>.1.16.3 | Heater Dipole<br>Moment due to<br>Current                 | The heaters shall have a current induced magnetic dipole moment < 2.0e-9 A-m <sup>2</sup> /mA (2.0e-6 emu/mA).                                                                                                                                                                                   | S          | Similarity to qual unit test                                                                                                                                                          | B<br>Muhlfelde<br>r | 2/98 ✓                |
| 3.7.1.7.2<br>.1.16.4 | Thermal Delay Time                                        | The time delay from heat applied to the SQUID bracket to the response<br>at the GRT on the bracket shall be less than 1 s. Will be tested in<br>component-level tests for the Science Mission. Will be tested in GTU-2<br>integrated test.                                                       | A          | Using design & data from GTU-2                                                                                                                                                        | J Lockhart          |                       |
| 3.7.1.7.2<br>.1.17   | Flux Slipping                                             | It shall be possible to slip a flux quantum in the SQUID loop with a measurement error of less than 1 part in 10 <sup>5</sup> .                                                                                                                                                                  | Т          | P0160 SQUID Package Testing and Verification.                                                                                                                                         | B<br>Muhlfelde<br>r | 4/98 🗸                |

## C. SQUID Kit / Readout Requirements Verification Documents Checklist

#### **Readout Fabrication & Assembly**

| Document | Revision Date | Author       | Title                                                 | Written      | In           | Approval | Dwg          | Flow         | Verif |
|----------|---------------|--------------|-------------------------------------------------------|--------------|--------------|----------|--------------|--------------|-------|
|          |               |              |                                                       |              | Database     | Status   | Ref          | Ref          | Ref   |
| P0102    | 2/1/93        | M Luo        | SQUID Readout Cable Assembly                          | $\checkmark$ | $\checkmark$ | Approved |              | $\checkmark$ |       |
| P0110    | ECD 2/5/98    | M Luo        | Output Cable Sub Assembly                             |              |              |          | $\checkmark$ | $\checkmark$ |       |
| P0116    | ECD 4/30/98   | D Bardas     | Temperature Sensor Assy Procedure                     |              |              |          | $\checkmark$ | $\checkmark$ |       |
| P0117    | ECD 3/25/98   | B Muhlfelder | SQUID Bracket Assy Procedure                          |              |              |          | $\checkmark$ | $\checkmark$ |       |
| P0119    | ECD 3/11/98   | B Muhlfelder | Clip Kit                                              |              |              |          |              |              |       |
| P0120    | 1/16/98       | M Luo        | Heater Assembling, Chip Resistor                      | $\checkmark$ | $\checkmark$ | Approved | $\checkmark$ | $\checkmark$ |       |
| P0152 A  | 7/15/97       | R Shile      | SQUID Carrier Substrate Fabrication                   | $\checkmark$ | $\checkmark$ | Approved | $\checkmark$ | $\checkmark$ |       |
| P0153 A  | 7/15/97       | R Shile      | SQUID Carrier Assembly & Process Endurance Testing    | $\checkmark$ | $\checkmark$ | Approved | $\checkmark$ | $\checkmark$ |       |
| P0155    | 11/21/95      | M Luo        | Output Transformer Fabrication Verification           | $\checkmark$ | $\checkmark$ | Approved | $\checkmark$ | $\checkmark$ |       |
| P0157    | 11/27/95      | M Luo        | Use of Epoxy Stycast 1266 Procedure                   | $\checkmark$ | $\checkmark$ | Approved |              |              |       |
| P0158    | 12/13/95      | M Luo        | Lead Gasket Fabrication                               | $\checkmark$ | $\checkmark$ | Approved | $\checkmark$ |              |       |
| P0159    | 8/8/97        | M Luo        | SQUID Package Assembly                                | $\checkmark$ | $\checkmark$ | Approved | $\checkmark$ | $\checkmark$ |       |
| P0161    | ECD 3/4/98    | M Luo        | SQUID Capacitor Kit Assembly                          |              |              | Draft    |              | $\checkmark$ |       |
| P0166    | 12/13/95      | B Muhlfelder | System Integration                                    | $\checkmark$ | $\checkmark$ | Approved |              | $\checkmark$ |       |
| P0169    | ECD 3/11/98   | D Hipkins    | Thermal Ground Kit                                    |              |              | Draft    | $\checkmark$ |              |       |
| P0182    | ECD 4/15/98   | D Bardas     | Heater Assembly, Chip Resistor                        |              |              | Draft    | $\checkmark$ |              |       |
| P0380    | ECD 2/18/98   | R Shile      | Fabrication Procedure for SQUID Feedback Transformers |              |              |          |              | $\checkmark$ |       |

### **Readout Test**

| Document | Revision | Author       | Title                                  | Written      | In           | Approval | Dwg          | Flow         | Verif        |
|----------|----------|--------------|----------------------------------------|--------------|--------------|----------|--------------|--------------|--------------|
|          | Date     |              |                                        |              | Database     | Status   | Ref          | Ref          | Ref          |
| P0156    | 11/21/95 | R Shile      | Feedback Transformer Verification      | $\checkmark$ | ✓            | Approved | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| P0160 A  | 1/8/98   | B Muhlfelder | SQUID Package Testing and Verification | $\checkmark$ | $\checkmark$ | Approved |              |              | $\checkmark$ |
| P0164    | 12/13/95 | V Chiang/    | SQUID Die Pre-screening Procedure      | $\checkmark$ | $\checkmark$ | Approved |              | ~            |              |
|          |          | M Luo        |                                        |              |              |          |              |              |              |
| P0170    | 1/29/96  | B Muhlfelder | Readout Shake Test                     | $\checkmark$ | $\checkmark$ | Approved |              | ~            |              |
| P0387 A  |          | B Muhlfelder | Pickup Loop Resistance Measurement     | $\checkmark$ | $\checkmark$ | Approved |              | (SG)         |              |

### **Additional Documents**

| Document    | Date        | Author       | Title                                             | Written      | In           | Approval | Dwg          | Flow | Verif        |
|-------------|-------------|--------------|---------------------------------------------------|--------------|--------------|----------|--------------|------|--------------|
|             |             |              |                                                   |              | Database     | Status   | Ref          | Ref  | Ref          |
| P0057 A     | 9/29/94     | J Lockhart   | GP-B Magnetic Control Plan - Science Mission      | $\checkmark$ |              | Approved | $\checkmark$ |      |              |
| P0059 C     | 6/19/94     | M Keiser     | Probe C Contamination Control Plan                | $\checkmark$ | $\checkmark$ | Approved | $\checkmark$ |      |              |
| P0080       | 9/5/97      | J Lockhart   | Cryogenic Magnetic Screening Procedure            | $\checkmark$ | $\checkmark$ | Approved | $\checkmark$ |      |              |
| 23200-107 E | 10/20/94    | B Taller     | DRAWING TREE, SQUID KIT, NEG X, SM                | $\checkmark$ |              | Released | $\checkmark$ |      |              |
|             | ECO 1/30/98 |              |                                                   |              |              |          |              |      |              |
| 23200-117 C | 8/3/96      | B Taller     | DRAWING TREE, SQUID KIT, POS X, SM                | $\checkmark$ |              | Released | $\checkmark$ |      |              |
|             | ECO 1/30/98 |              |                                                   |              |              |          |              |      |              |
| 25132-101   |             |              | SQUID KIT, NEG X                                  |              |              |          | $\checkmark$ |      | $\checkmark$ |
| 25132-102   |             |              | SQUID KIT, POS X                                  |              |              |          | $\checkmark$ |      | $\checkmark$ |
| S0295       | ECD 4/30/98 | B Muhlfelder | On-Orbit Proton Induced Flux Jump Rate            |              |              |          |              |      | $\checkmark$ |
| S0296       | ECD 4/30/98 | B Muhlfelder | Input Coil Feedback Transformer and Input Circuit |              |              |          |              |      | $\checkmark$ |
|             |             |              | Stability                                         |              |              |          |              |      |              |
| S0297       | ECD 4/30/98 | B Muhlfelder | SQUID Bracket Thermal Characteristics             |              |              |          |              |      | $\checkmark$ |
| S0302       | ECD 3/20/98 | B Muhlfelder | Results of SQUID Qualification Tests              |              |              |          |              |      |              |

## D. SQUID Kit / Readout Test Personnel Status Checklist

#### Test Conductors / Inspectors for the SQUID Kit / Readout Test Facilities

| Name             | Received Training in Test Operations |  |  |  |
|------------------|--------------------------------------|--|--|--|
| Barry Muhlfelder |                                      |  |  |  |
| Dale Gill        |                                      |  |  |  |
| M Luo            |                                      |  |  |  |
| R Shile          |                                      |  |  |  |
| Marge Bogan      |                                      |  |  |  |

### **Qualified Test Directors for SQUID Kit / Readout**

Name

Barry Muhlfelder

### **Procedures Requiring Director Approval**

| #       | Title                                              |
|---------|----------------------------------------------------|
| P0153 A | SQUID Carrier Assembly & Process Endurance Testing |
| P0160   | SQUID Package Testing and Verification             |
| P0170   | Readout Shake Test                                 |

## E. SQUID Kit / Readout Test Resources Checklists

### Instruments requiring standard calibration

| Item Description                            | Seq.# | ID / Serial # | Next Cal. | Available    |
|---------------------------------------------|-------|---------------|-----------|--------------|
|                                             |       |               | Date      |              |
| HP 4277A LCZ meter with 16047A test fixture |       | 0000864623    | 2/9/99    | ✓            |
|                                             |       | 1             |           |              |
| Keithley 580 Micro-ohmmeter                 |       | 0000128909    | 10/98     | $\checkmark$ |
|                                             |       | 1             |           |              |
| HP 54601A Oscilloscope                      | 29    | 3227A06648    | 5/7/98    | $\checkmark$ |
| SR 345 Function Generator                   | 28    | 26434         | 2/4/99    | $\checkmark$ |
| BTI model CCS Current Source                | 31    | 262490-04     | 5/22/98   | $\checkmark$ |
| HP8620C Oscillator                          | 33    | 1604A00504    | 3/7/98    | $\checkmark$ |
| Fluke 77 Hand Meter                         |       | 66970626      | 7/98      | $\checkmark$ |
| Quantum Design 5000 electronics             | 55    | 0000122596    | 7/1/98    | $\checkmark$ |
|                                             |       | 9             |           |              |
| SR 560 preamplifier                         | 27    | 00204         | 5/22/98   | $\checkmark$ |
| Network Analyzer SR770                      | 30    | 24185         | 2/5/99    | $\checkmark$ |
| Keithley 196 Multimeter                     | 34    | 0575473       | 5/7/98    | ✓            |

### Instruments requiring non-standard calibration

| Item Description                        | Seq.# | ID / Serial # | Next Cal. | Available    |
|-----------------------------------------|-------|---------------|-----------|--------------|
|                                         |       |               | Date      |              |
| Rev B SQUID electronics                 | 54    | 0001          | 7/1/98    | $\checkmark$ |
| Strawberry Tree Data Acquisition System |       |               |           | $\checkmark$ |

#### Facilities

| SQUID Acceptance Probe        |
|-------------------------------|
| SQUID Acceptance Dewar        |
| Clean Room 130, 132           |
| Readout Clean Area            |
| Readout EMI Screen Room       |
| Readout General Assembly Area |

### **Test Support Software**

| Software Product          | Environment | Version | Controlled   |
|---------------------------|-------------|---------|--------------|
| Strawberry Tree WORKBENCH | PC DOS      | V2.1.0  | N/A          |
| log1.wbw                  | WORKBENCH   | -       | $\checkmark$ |
| log1.smpump.wbw           | WORKBENCH   | -       | $\checkmark$ |
| Matlab                    | Windows 3.1 | 4.2c.1  | N/A          |
| bkcrunch.m                | Matlab      | -       | $\checkmark$ |

# SQUID Kit / Readout TRR Action Items

| #  | Action                                                                                                       | Assignee                                         | ECD                  | Status as of 2/27/98 |
|----|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|----------------------|
| 1  | Have procedures P0317, P0157, P0160 and P0080 approved                                                       | B Muhlfelder & J Lockhart                        | 1/9/98               | done                 |
| 2  | Provide ECD dates for procedures & additional doc's not yet approved                                         | B Muhlfelder                                     | 1/9/98               | done                 |
| 4  | PCB for all proposed spec. changes & corresponding change to Science Gyro Assembly to include deflux heaters | K Hooper                                         | Jan. PCB             | done                 |
| 5  | Reword & modify verification of SIA rqmt.<br>3.7.1.7.2.1.3.1 & 3.7.1.7.2.1.4                                 | B Muhlfelder & J Lockhart                        | Jan. PCB             | done                 |
| 6  | Include pickup loop to SQUID coupling functional test                                                        | D Pickett                                        |                      | done                 |
| 7  | Review SQUID bias critical current rqmt.                                                                     | J Lockhart & B<br>Muhlfelder                     | Jan. PCB             | done                 |
| 8  | Review modulator coil to SQUID mutual inductance verification data generated by Quantum Design               | B Muhlfelder                                     | acceptance<br>review |                      |
| 9  | QA & SE to define how to capture verification data                                                           | QA (B Taller)<br>& SE (B<br>Schultz/K<br>Hooper) | acceptance<br>review |                      |
| 10 | Release SQUID Kit drawing tree                                                                               | B Muhlfelder                                     | acceptance<br>review |                      |