Document Revision Record

Rev	Date	ECO#	Pages Affected	Description
-	12/13/97	-	all	new procedure

Equipment:

Rev B SQUID Flux Lock Electronics SQUID Acceptance Probe SQUID Acceptance Dewar HP 54601A Oscilloscope Fluke 77 Ohmmeter Keithley 580 Mirco-ohmmeter

SQUID Carrier #	
SQUID Package #	
Date:	

Note: SQUID is ESD/EOS sensitive. Use appropriate precautions.

Authorized Personnel:

B. Muhlfelder

M. Luo

Procedure:

1. Measure room temperature resistances of SQUID carrier. Record in Table 1.

Table 1

		- ****	
	Resistance (before shake)	Resistance (after shake)	Acceptable Range
Bias			300-600 ohms
Mod			4-10 kohms
Signal			1-3 ohms
Feedback			2-5 kohms

Oscilloscope S/N: Database Ref # Cal. Date
Micro Ohmmeter S/N: Database Ref # Cal. Date
Fluke Ohmmeter S/N: Database Ref #

Rev B SQUID Electronics S/N:

Database Ref #

Cal. Date

Cal. Date

- 2. Install carrier into SQUID package and cool SQUID to 4.2 K
- 3. Connect SQUID electronics. Verify flux locking capability using feedback to the input circuit_____
- 4. Warm SQUID to room temperature and remove from probe.

5. Shake SQUID at qual levels per Interdepartmental Communication GPB-100362. Verify adequacy of shaker and calibration of accelerometers. The acceleration levels are provided in Table 2 for reference:

Table 2

Frequency (hz)	g²/hz
10	0.01
20	0.01
50	0.1
300	0.1
2000	0.002
Composite (grms)	7.14

- 6. Measure resistances of SQUID carrier. Record values in Table 1.
- 7. Install carrier into SQUID package and cool SQUID to 4.2 K
- 8. Connect SQUID electronics. Verify flux locking capability using feedback to the input circuit______.

Note: Successful flux locking in this step is the success criteria for this procedure.

- 9. Warm SQUID to room temperature and remove from probe.
- 10. Procedure complete.

QA Rep	
MIP signoff	
RE signoff	
date	

•