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Following the procedure of Mikheenko and Kuzovlev, we present analytical solutions of field and current patterns in thin film
disk-shaped type-II superconductors in perpendicular time-varying periodic external magnetic fields. We also calculate the mag-
netic moment and effective susceptibility. The analysis is carried out within the framework of the critical state model assuming a
constant critical current. Our results are compared to that of Mikheenko and Kuzovlev; and we discuss the discrepancies.

1. Introduction

There has been a lot of interest in the critical state
model [1,2] in disk-shaped type-II superconductors
with external magnetic fields applied perpendicular
to the disk [3-8]. Frankel [3] and Diumling and
Larbalestier [4] employed numerical methods to
obtain field and current patterns in disk-shaped su-
perconductor films assuming constant critical cur-
rents and also Anderson-Kim [9] type critical cur-
rents. Ddumling and Larbalestier [4] found that in
superconductor films, the characteristic screening
field is ~j.d, where j. is the critical current density,
and d is the thickness of the film; thus an external
field is considered a weak field if it is not much larger
than the characteristic field j.@. However, for super-
conductor films, even weak magnetic fields can pen-
etrate into the film if it is applied perpendicular to
the film plane, because of large demagnetization ef-
fects. Device application has been an area where weak
magnetic fields are often considered [10-12]; con-
stant critical currents are usually assumed in apply-
ing the critical state model. Assuming constant crit-
ical currents, Mikheenko and Kuzovlev [8] recently
have found analytical solutions for current and field
patterns in 2D superconducting disks in external
fields in the framework of the critical state model.
Considering a disk-shaped superconducting sample

in a time-varying periodic external field, Mikheenko
and Kuzovlev construct the current configuration in
2D disk-shaped superconductors by analogy to that
of a long cylinder [8]. They believe that, in a peri-
odic external field, two flux penetration regions can
form with critical currents flowing in opposite di-
rection, i.e. +1, in the region b<r<R, and —I, in
the region a<r<b, where R is the radius of the sam-
ple, where I.=j.d.

In this paper, we present solutions to the field and
current patterns in thin film 2D disk-shaped super-
conductors in a periodic external field; we also give
analytical solutions to the magnetic moment and the
effective magnetic susceptibility. We show that the
analogy of current patterns between a thin film disk
and a long cylindrical superconductor is not valid.
We also compare our results to that of Mikheenko
and Kuzovlev, and discuss the discrepancies.

We follow the procedures by Mikheenko and Ku-
zovlev [8], so we can compare our results with theirs.

2. Theory

We consider a disk-shaped superconductor film
with external magnetic field H applied along the z-
direction, which is perpendicular to the film plane,
after the sample is zero-field cooled (ZFC).
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We assume that the film thickness d is approxi-
mately less than 24, where A is the London penetra-
tion depth; the factor of 2 is included since shielding
currents flow on both sides of the film. Circulating
currents in the film plane are treated as having uni-
form density in the thickness direction of the super-
conductor. We also assume that the external mag-
netic field H is weak enough so that the critical
current in the film is independent of the local density
of trapped vortices, or

Je Xd=constant , (1)

where j; is the critical current density, and d is the
thickness of the film. However, the actual situation
may be more complicated. Under the above as-
sumptions, an elegant analytical solution can be
found for circulating currents I(r) and the magnetic
moment M in 2D disk-shaped superconductors.
Shielding currents only flow in the circumferential
direction because of the symmetry of the sample. The

magnetic moment M therefore is
R 2n

1
M=Z££r1(r)rdrd¢. (2)

The radial direction field H,(r, z) and the z direc-
tion field H,(r, z) are [13], respectively,

R
2
H(r,2)=2 [ G,(r,p, 2)1(0) dp. (3)
0
and
R
2
Hn2)=2 [ G.rp 210 ap, @
0

where the functions G, and G, are

G, (r,p, 2)

_ —(—;\/ﬁ[;K(k) %&;E(M],
and
G.(r,p, z)

- T K a5 e,

where k*=4pr /[ (p+r)?+z?], and K and E are

H(1,250)=— 2 Hysign(2)

complete elliptic integrals of the first and the second
kind.

2.1. The Meissner state

In this state, there is no flux penetration of any
kind, or
Hz(r,z=0)=0, r<R.

A thin film disk can be treated as an extremely flat
ellipsoid whose z direction axis shrinks to zero. Fol-
lowing the calculations presented by Landau [13],
one obtains,

r
BB
The surface current I(r) is

B 1y =H,(r, 220" )~ (1, 2=0)

5

or
¢ r
I(r)=~ EHOF(E), (6)
where the function F is defined as [8]
% lx 5 ifx<l,
F(x)= X
0, ifx>1.

-The M can now be calculated,

2
M(Ho)=— = HoR’;

a well-known result [13]. The magnetic field in the
film plane generated by the shielding current (6) is

Hz(ra z=0)=H0Q(r/R) »

where the function Q is defined as [8]

-1, ifx<l,

O(x)=
g<—arcsinl + ——i—) ifx>1.
n X x*—1
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2.2. The intermediate state

First, let us consider a case where the external field
is increased monotonically from zero to the maxi-
mum field H, after the sample becomes supercon-
ducting. For the sake of simplicity, only field and
current patterns of the maximum field H, are con-
sidered. We assume that magnetic vortices penetrate
into the sample symmetrically to a radius of a(H,)
in the external field. Thus the critical current j.d flows
in the ring a < r< R, while the magnetic field remains
free of trapped vortices in the inner ring r<a(H,).

Mikheenko and Kuzovlev [8] suggested that the
shielding current I(r) flowing in the sample can be
viewed as a linear combination of currents of eq. (6),

C

I=-4

Hojp(g)W(l, H,) dl, (7)
) .

where W(l, Hy) is the weight function. Substituting
eq. (7) into eq. (4), we have,

JW([_, Hy)di=1. (8)

Equation (7) can also be understood [8] in this way:
the current configuration (c¢/4m)F(r/l) with
a<I[<R, generates a constant uniform unit magnetic
field inside the ring r</; the total field generated in
the ring r<a by the circulating currents is thus
—H, [RW(I, Hy) dl, which cancels the applied mag-
netic field Hy in the inner ring r<a, or —Hy (R W(,
Hy) dl+ Hy=0. The total magnetic field generated
by shielding currents (7) and the external field in
the film plane is

H,(r, z=0)=H0J [Q(r/D)+11W(, Hy) d,

a<r<R. (9)

The weight function W can be obtained from the fact
that a constant critical current flows in the ring
a<r<R, that is

R
f F(r/hW(l, Hy) &I

= AU, a<r<R. (10)
The solution to the above equation has been found
by Mikheenko and Kuzovlev:

2nj.d 1
cHy r/1—(r/R)?’

Equation (8) can be solved for a(H,), yielding

Wi(r, Hy)= (11)

H,
=R h{— 12
a=R/cos ( Hc) , (12)
where H.=(2n/c)j.d is the characteristic critical
field. The magnetic moment M of the 2D disk-shaped
superconductor film is

__2 31 a_ a 3
M=— 31tH°R 2[arccos R + R 1—(a/R) ]

_ 2 sof Ho )

__3nH0RS( ) (13)

and the shielding current is

2 2_ 42 1/2
I(r)=—1c;arctan[£(1;2_fz) ]H(a—r)

—-1.0(r—a), (14)

where 6 is the step function; the function S is defined
to be same as in reference [8]:

sinh |x|]

cosh(x)  cosh?(x)

S(x)= 2—1/; [arccos

We now consider the case when the external field
is monotonically decreased to a field H (| H| <H,),
after having been increased monotonically from zero
to the maximum field H,. Analytical solutions to
current and field patterns can be found for this case.
If we notice that

H=Hy+H*  H*=H-H,,

the problem can be treated as a superposition of the
following two case.

(1) In the ZFC sample, the external field is in-
creased monotonically from zero to H,,.

The sample has a critical current of /..

(2) In the ZFC sample, the external field is de-
creased monotonically from zero to H—H, How-
ever, the critical current flowing in the sample is 2/..
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The magnetic moment and shielding currents of the
second case can be easily found by substituting —I,
with 21, (or—H, with 2H,), and H, with H* (or
H—H,) into solutions for the first case:

2 oo H*
M=~ 3nH R S(—ZHC)

ond case; the net shielding current of the sample is
+1. in the ring b<r<R after summing the currents
from both cases, satisfying the critical state model
and the critical current criterion |I(r)| </,.
Superposing solutions of the magnetic moment and
current patterns for case 1 and case 2 give the exact

rent + 21, is induced in the ring b<r<R in the sec-

2 H-H, analytical solutions of the magnetic moment and the
=— — (H-Hp)R? (15) shielding current
3n 2H, g ]
2 2\!/?2 2 s Ho
I(ry=2I, —arctan[ (b2 bz) 6(b—r) — 3, HoR .
' —H,
+21.6(r-bY, (16) _3—2n(H-H0)R3 Iig;f) (18)
and 5 r? 12
H* —H, Kry=-1, ;arctan[R<a2_r2) ]H(a—r)
b_R/cosh(_zHc) R/cosh( 2A, ) (17)
—1.0(r—a)

where b is the radius to which the vortices have pen- 5 R2_p2\/?

etrated into the disk sample in the second case. The +21.= arctan[i (bz—_2> ]H(b— r)

critical current 21 in the second case can be under- n R -r |

stood this way: a shielding current —I_ is induced in +21.6(r—b) . (19) ‘

the ring a <r <R in the first case, and a shielding cur- |
|
|
|
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|
solid line : results of this paper
o5k broken line : results of Mikheenko and Kuzovlev

|
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Fig. 1. Normalized current patterns in a 2D disk-shaped superconductor calculated using eq. (14) for Hy=2H_, and H=H_. Correspond-
ing field patterns are shown in fig. 2. Mikheenko and Kuzovlev's results are also shown for comparison.
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Fig. 2. Normalized field patterns in a 2D disk-shaped superconductor calculated using eqs. (9) and (14) for H,=2H,, and H= H,.
Corresponding current patterns are shown in fig. 1. Mikheenko and Kuzovlev’s results are also shown for comparison.
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Fig. 3. Normalized effective magnetic susceptibility xea(Ho/H.) /2.(0), calculated using eq. (21) for a 2D superconducting disk sample.
Mikheenko and Kuzovlev’s results are aiso shown for comparison.
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Also, following the definition of shielding currents in
eq. (7), we obtain the weight function,

2nl, ( 1
cH,

Wi Ho) = rJ1=(r/R)?

20(r—b) )
r/1—=(r/R)?)’
(20)
The z direction magnetic field in the film plane of
the sample can be calculated using egs. (4) and (20).
As the external field is further reduced to the min-
imum field — H,, the final state of the superconduc-
tor is the same as if the external field had been de-
creased monotonically to — Hy from zero directly for
the ZFC sample, which is expected.
If the external field is increased after the mini-
mum field —H, is reached, current and field pat-
terns can be calculated in a similar way as presented
above. We now have H=—H,+H* where
H*=H+ H,. The magnetic moment, shielding cur-
rents, and the weight function can be obtained by
substituting I, with —I, and H, with — H, (or sim-
ply using H*=H+ H,) into the corresponding rela-
tions for the external field. Once the external field
H, is reached, if the field is reduced we recover the

0.8
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solutions of eqs. (18) and (19). We have now com-
plete analytical solutions to the field and current pat-
terns for 2D disk-shaped superconductors in a pe-
riodic external field. When using a time-varying
periodic field in experiments, one usually measured

the effective magnetic susceptibility y.q, which is av-
eraged over a period [8]. In this case, we find

o]
Kefft = nXoo g)d‘l’, (21)

where ¥=wt and H=H, cos(wt). Equation (21)
shows that y.¢decreases as ~ 1/ Hj at large H,, which
is different from the ~1/H3/? dependence as con-
cluded to by Mikheenko and Kuzovlev.

cos ¥sin® —f S<% sin?

3. Discussion

A superconducting disk is an extreme case of a cyl-
inder whose length is much smaller than that of its
radius; therefore, the end effects are no longer neg-
ligible, but in fact constitute the dominant factor in
this problem. Since circulating currents only flow in

0.6F
04F ¢

0.2+

M(H)/Mo

S
(38
T

solid line: results of this paper N

broken line: results of Mikheenko and Kuz A

H/Hc

Fig. 4. Magnetic moment M(H) calculated using eq. (18) for a 2D superconducting disk-shaped superconductor in a time-varying
periodic weak external magnetic field; external fields are applied after the sample becomes superconducting. Here Mo= (2/31)H_.R>.
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circumferential direction, we have
Jo= i (3H,/8z— 0H,/ or) .

| 0H,/8z| is much larger than |dH,/0dr| for weak ex-
ternal fields except at the center of the disk; the cir-
culating current mainly comes from the term 9H,/0z,
rather than from 0H,/dr, in contrast to the case of a
long cylindrical sample. In 2D disk-shaped super-
conductors, as the external field is decreased from
the maximum field H,, the current flowing in the
outer region b<r<R is the critical current +/,; but
the current /(r) flowing in the inner region a<r<b
is neither +1_ nor —I; it'is a function of location
and must satisfy the critical current constraint
|I(r)| <I.. Considerable shielding currents also flow
in the vortex-free region r< a, which is very different
from the case of a long cylindrical sample.

Figure 1 shows an example of current patterns for
Hy=2H_ and H=H, calculated using eq. (20); fig.
2 shows the z direction field patterns in the film plane
for the same condition caiculated using egs. (9) and
(20). Current and field patterns calculated using the
weight function of Mikheenko and Kuzovlev are also
shown for comparison in figs. 1 and 2; their results
show an abrupt jump in the current which is un-
physical in a 2D disk-shaped superconductor. Figure
3 illustrates our theoretical result of the effective sus-
ceptibility given by eq. (21) and that of Mikheenko
and Kuzovlev; our results are generally larger than
theirs. Figure 4 shows the magnetic hysteresis loop
of a 2D disk-shaped superconductor in a time-vary-
ing periodic external field for Hy=3H, using eq.
(18); our hysteresis loop is thinner than that of
Mikheenko and Kuzovlev; the abrupt jump in their
shielding currents is the reason for the fattening of
their magnetic hysteresis loop, because the abrupt

jump in shielding currents artificially enhances the
shielding capability of the thin film 2D supercon-
ductor disk.
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