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Magnetic flux trapped on the surface of superconducting rotors of the Gravity Probe B (GP-B)
experiment produces some signal in the superconducting quantum interference device readout. For
the needs of GP-B error analysis and simulation of data reduction, this signal is calculated and
analyzed in this article. We first solve a magnetostatic problem for a point source on the surface of
a sphere, finding the closed form elementary expression for the corresponding Green’s function.
Second, we calculate the flux through the pick-up loop as a function of the source position. Next,
the time dependence of a source position, caused by rotor motion according to a symmetric top
model, and thus the time signature of its flux are determined, and the spectrum of the trapped flux
signal is analyzed. Finally, a multipurpose program of trapped flux signal generation based on the
above results is described, various examples of the signal obtained by means of this program are
given, and their features are discussed. Signals of up to 100 fluxons, i.e., 100 pairs of positive and

A

negative point sources, are examined. © 1999 American Institute of Physics.

[S0021-8979(99)08113-X]

1. INTRODUCTION

The Gravity Probe B (GP-B) satellite is scheduled to fly
in the year 2000. It contains a set of gyroscopes intended to
test the predictions of general relativity that a gyroscope in a
low (altitude ~650 km) circular polar orbit will precess, rela-
tive to a distant star, about 6.6 arcsec/year in the orbital plane
(DeSitter, or geodetic, precession) and about 42 marcsec/
year perpendicular to the orbital plane (Lense—Thirring, or
frame-dragging, precession). To provide the desired mea-
surement accuracy (1 part in 10° for the geodetic effect), a
magnetic London moment readout using a superconducting
quantum interference device (SQUID) has been chosen, so
that the experiment will be carried out at low temperature
(~2.5 K), and the gyrorotors will be superconducting (see
Refs. 1, 2, and 3 for the design and status of the experiment;
the history of GP-B development is found in Ref. 4, and a
survey of space relativity tests is in Ref. 5). The direction of
the magnetic London moment developed in a rotating super-
conductor coincides with the direction of the rotation (spin)
axis® (for basic superconductor physics see Ref. 7; the de-
scription of gyromagnetic effects can be found in Ref. 8).
The corresponding magnetic flux through the pick-up loop of
the SQUID is proportional to the sine of the angle between
the London moment vector and the pick-up loop plane, so
the change of this angle, and thus the drift of the gyroscope
axis, can be detected from the SQUID signal at the roll fre-
quency of the spacecraft which will be deliberately rotated.

However, along with the London moment dipole, there
will also be quantum-size sources of magnetic field pinned to
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the surface of the superconducting rotor (see Refs. 7 and 9).
They appear in pairs of the opposite polarity called fluxons;
the sources constituting the pair are connected by a magnetic
vortex line going through the whole body of the supercon-
ductor (see Fig. 1). The fluxons produce additional magnetic
flux through the pick-up loop called trapped flux; its time
signature will be present in the SQUID output. The low fre-
quency part of this signal, although comparatively small un-
der the GP-B conditions, might corrupt the accuracy of the
London moment readout. On the other hand, its high fre-
quency part can provide additional information that is sig-
nificant for the experimental results. To make sure the
trapped flux does not affect the measurement precision, as
well as to extract useful information from it, one has to ana-
lyze the trapped flux signal and develop the code generating
it for the use in simulations of the GP-B error analysis and
data reduction. This is the primary goal of the present article;
we also hope that our analysis may be of use for other ap-
plications as well. Note that the first work on the analysis of
the trapped flux from a GP-B rotor was done by Wat in his
thesis. !

In Sec. II we give a closed form solution to a magneto-
static problem of a point field source (‘‘magnetic charge,”’
“‘half-fluxon””) on the surface of the gyroscope. In Sec. III
the solution is used to find the trapped flux signal in the
pick-up loop as a function of the half-fluxon’s position. The
closed form expression for the trapped flux appears to be not
very useful for further applications, so various exact and ap-
proximate formulas are also obtained. In Sec. IV we inves-
tigate the motion of fluxons with respect to the pick-up loop,
thus finding the time signature of the trapped flux signal; we
then go on to analyze its frequency spectrum. Section V
contains a brief description of the program used to simulate
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FIG. 1. Rotor with a fluxon.

trapped flux for the GP-B data processing routines. Pictures
of the high frequency signal, its low frequency envelope, and
various Fourier spectra are presented and discussed.

il. THE GREEN'S FUNCTION OF THE
MAGNETOSTATIC PROBLEM

The GP-B experiment will be conducted at low tempera-
tures, so the fluxons can be treated as static (welded to the
rotor’s surface) and noninteracting ones. In such a case the
total fluxon field is a superposition of the fields of individual
fluxons, each consisting of contributions from its positive
and negative magnetic charges. In addition, the rate of
change of this field due to the rotor’s motion is negligible,
hence the magnetostatic approach should be used. Thus we
consider a single (positive) source of the field whose charac-
teristic size is on the order of 10~ c¢cm;? due to a macro-
scopic size of the gyroscope (1.91 cm radius), this can be
treated as a point source of magnetic field with the coordi-
nate angles 3., ¢, on the surface r=rg of the rotor. The
spherical coordinates r, 9, ¢ here correspond to a Cartesian
frame {x,y,z} fastened to the pick-up loop so that the origin
coincides with the loop center and the z axis is perpendicular
to the loop plane; the real relative motion of the fluxon and
the loop, i.e., the dependence of the position angles 9, , ¢,
on time, will be incorporated and examined in Sec. IV.

In these settings, the boundary value problem for the
magnetic potential ¥ (r) of the fluxon outside the rotor is
formulated as

A¥(r)=0, r>r,, 0s6,<m7, 0<¢,<2m, (1)
id 20 s-v0e-00, @
. =—"— Y- @
ar r=r, risin 9, * *

where ®y=h/2¢ is the magnetic flux quantum, and the mag-
netic field is

B=—-VV¥. 3)

Evidently, up to a factor ®4, ¥ is the Green’s function of

the external Neumann boundary value problem for a sphere.
A standard separation of variables leads to the following

series representation of the solution to Egs. (1) and (2):
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Dy <
VO=V(.,9)=5-= 5, 3 (Mincosme
g I=0 m=

ro\I+1
+N,,, sinmq;)(Tg) Pl (cos 3),
@)
with the coefficients given by

20+1 (I—m)!
Min= (1+ 8,0)(I+1) (I+m)!

r(cos & )cosme, ,
(5)
2{+1 (I—-m)!

—_——— m 4
N""~(l+1) _(l+m)! P (cos ¥,)sinmo, .

As it turns out, this series may be summed to give the
closed form solution for ¥. To determine it, we first intro-
duce Eq. (5) into Eq. (4) to obtain

20+1
2

41rrg1 0 [+1

!
+2 20 Pj'(cos B)P*(cos ¥ )cosm(p— @) |.

¥(r)=

+1
( ) [P,(cos 3P (cos F,)

Then, by applying the addition theorem for Legendre func-
tions [see Ref. 11 (10.11), (47)], we convert the latter into

wipe 20 < 2+1(r, ’“P
<'>—4mg 2T 7| Pieosy)
*© I+1
2 ] P(cos )
47rr =o\r !

Te

® 1 I+1
& 1—4_—1(7) Py(cosy) |, ©)

where y is the angle between the directions to the fluxon and
to the observer

cos y=cos ¥ cos ¥ +sin ¥sin 3 cos(p— @, ). ™

The first of the series in the above expression for ¥ is
obviously the generating function for Legendre polynomials
[see Ref. 11 (10.10), (39)], the second one is just an integral
of it, namely,

1
7 PO = f dvE 7P({)

uMg

7 T
_fo JI=2¢r+7
77 £+\/1~2§17+712
1-¢

Using these results in Eq. (6), we can now write the magnetic
potential in its final form as a finite combination of elemen-
tary functions,
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¥(r)=®, G(r,r,)

@] 1 1 rz—r-r++rg|r—r+|

)

Y Ir—-lq.l_ilu rrg=r-ry

where G(r,r;) is the Green function mentioned and r,
={ry,¥., ¢} is the position vector of the source. The first
term here, as one would expect, is a half of the potential of a
point charge, and the addition to it describes the contribution
of the curved boundary.

Since, surprisingly enough, we were not able to find this
explicit formula in the literature, it seems reasonable to give
here a closed form expression for the Green function of the
corresponding Dirichlet problem (Gy), in which boundary
condition (2) is replaced by

‘I,Ir=rx= Ti&fﬁ(ﬁ—ﬂu«%w—m)- )
The result then is
Y(r)=®y Gy(r,r,)= o ﬂ ~ (10)
41r|r r |3

Note that the Green’s functions for the corresponding inter-
nal problems can be obtained from Egs. (8) and (10) by
means of inversion.

lll. TRAPPED FLUX AS A FUNCTION OF A MAGNETIC
CHARGE POSITION

Magnetic flux measured by the pick-up loop of a GP-B
SQUID is the flux through the circle of the radius R in the
plane z=0, or, equivalently, the flux through the (upper)
hemisphere. The dependence of the trapped flux on the half-
fluxon position turns out to be rather complicated, especially
for the GP-B design, when the gap between the rotor and the
loop is very small as compared to the pick-up loop radius R.
For that reason we give here a number of different represen-
tations of the trapped flux as a function of the fluxon posi-
tion; each of them has its own merits and drawbacks and is
thus used for different purposes pertinent to our investiga-
tion.

A. Trapped flux in terms of a series of Legendre
polynomials

The simplest way to calculate the trapped flux is to in-
tegrate over the hemisphere the series expression for the ra-
dial component of the magnetic field obtained from Eqgs.
(3)-05):

D, = B, .rdA

hemisphere (r=R) g

v

fhemisphcre (r=R) ar

dA

—%2 (H‘l)( )Mlof ,(s)ds,

all spherical harmonics with m# 0 here have averaged out
over the azimuthal angle ¢. The last integral is calculated
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with the help of the known relations of the theory of Leg-
endre polynomials [see Ref. 11 (10.10), (14), (2), @]

Pl(s)—P[_y(s)
i(s)= Iy
(—DFC(k+1/2)
Py(0)= 7a o

P(1)=1;

P2r+1(0)=0;

Lk=0,1,...;

I'({) is the Euler gamma function. Then, after inserting the
values Mo from Eq. (5), we arrive at the following expres-
sions:

Dy
D, (cosI,)= TFa(cos 9.

-]

Fa(s)=k§=:0 (1= X IP 1 () P2i(0) — Py 2(0)]

§=‘,0 (k+1)'r(k+1/2)

X(1=8)** 1Py 4 1(5). (11

Here & denotes the dimensionless gap between the pick-up
loop and the rotor, 0= 6=(R—r,)/R<1.

From the point of view of signal processing, F «s) is a
transfer function which converts the “‘input’’ half-fluxon po-
sition signal S;,(#)=cos ¥..(¢) (the position is changing with
time as the rotor moves relative to the pick-up loop; see Sec.
IV), into an “‘output” trapped flux signal S, (¢)
=0.50yF 4 S;,(#)] which is present in the GP-B readout.
Since the total contribution to the flux of any number of
fluxons scattered in any way over the rotor’s surface is given
by the sum of the values of the same function F taken at
proper different values of its argument, it was called ‘‘uni-
versal curve’” in Ref. 10. Clearly, F «(s) is an odd function
of s; in particular, F 5(0)=0 means that a source sitting ex-
actly in the pick-up loop plane does not, of course, register
any flux.

By setting §=0 in Eq. (11) (the loop on the surface of
the rotor), we immediately find

—= 2, (=1t
\/—E
1 if 0<s=<1;

-1 if —1=s<0

Fo(s)= F(k+ 1/2) Pojs1(s)

(k+1)'

(the last equality here is proved by expanding its right-hand
side in the orthogonal series of Legendre polynomials).
This result obtained by Wai'® has a clear physical mean-
ing: when the pick-up loop lies on the rotor’s surface, the
same as the point source of field always does, the flux
through the loop remains unchanged (+®,/2, half of the
total) while the half-fluxon stays in either of the hemispheres
separated by the plane of the loop, and changes its sign by a
jump when the half-fluxon crosses this plane. However, Eq.
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FIG. 2. Universal curve F(s).

(12) also demonstrates the difficulties in using expression
(11) for GP-B, where §=0.025 is very small: for any 6>0
the series of Eq. (11) has an absolutely converging majorant,
so its sum F «(s) is an analytical function of s, but it has a
jump discontinuity at s=0 when §=0. Therefore the series
of Eq. (11) converges worse and worse with the separation &
becoming smaller and smaller, which makes Eq. (11) practi-
cally unacceptable for accurate numerical calculations at the
required value of separation. It also turns finding a uniform
in s asymptotic expansion of F «s) for §—0 into a rather
difficult mathematical problem. The effect is that for small
positive values of & the transfer function has the shape of a
very steep ‘‘kink’’ [recall that F«s) is odd]: it is almost
constant outside a small vicinity (— A, As) of the origin,
with A ;= 0(&8) as shown below, and is equal to zero at s
=0 with a huge gradient ~O(1/6) there (see Fig. 2). That is
why we are deriving three more representations for F s(s) in
the text that follows.

B. Integral representation of the trapped flux

An integral expression for F «(s) is obtained by replac-
ing the Legendre polynomials in Eq. (11) by their integral
representation [see Ref. 11 (10.10), (43)]

P (cos 8,)= 1J~9+ expli(2k+1+1/2)1dy
2+ 1COS )T -9, 2(cos¢—cos ) )

Changing then the order of summation and integration, we
arrive at a sum of two hypergeometric series which are
readily summed up to result in

<1>0\/5fﬂ+ direxp(ipl2)
7T Jo ycosy—cosd, .

A \/l+)\7+ 1
S N es TR TN

A=(1—d)exp(iy).

Fscos0y)=

) (13)
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Representation (13) is very convenient for precise nu-
merical calculation (and, in fact, is used for this purpose in
our code; see Sec. V), because the integrand in Eqgs. (13) is
an algebraic one, and the weak singularity at the upper limit
can be taken care of rather easily. The plot of the transfer
function computed from Eqgs. (13) is given in Fig. 2, along
with graphs of its various approximations that are described
in Sec. III C. The relative error of the numerical computation
has been kept within 1072,

C. Elementary approximations of the trapped flux

From the described behavior of F «(s) for small § it is
clear that to effectively approximate it one needs the value of
its gradient at s=0 and the *‘saturation’’ value F (1) in the
first place. Fortunately, it is possible to compute these quan-
tities exactly, and they are

1 26— 8°
perin=iti|i-
=1-(V2-1)6+0(&; (14)
IF s) 2[1+(1-6)?
K,;E—E;— :=0=;[_1——(—_1:_5-)—2—E(1—6)_K(1_6)]

1
3+2+0(510g5—1)}, 5—0;
(15)

here K(k), E(k) are complete elliptic integrals of the first
and second kind, respectively (see Ref. 14 for their defini-
tions and asymptotic behavior at k—1-—0). The formulas
are derived from Eq. (11) by direct summation of the corre-
sponding series of Legendre polynomials carried out in the
Appendix.

The simplest approximation of the transfer function for
8— +0 is evidently a piecewise-linear one,

1, if Ag<s<l;

Fys)~{ *o5 if |s|<Ag (16)
~1, if —l<ss<—A,

with A ; defined in a natural way as

Kshs=Fs A5=£—i=g6+0(52). a7

It turns out that this approximation gives the right qualitative
picture of the signal and is even not too bad quantitatively,
providing, for all values |s|=<1, the error within 1/3 for both
§=0.3 and §=0.025. This accuracy, however, is not enough
for the GP-B simulations; moreover, the largest error, asso-
ciated with the jump of the derivative of function (16) at
s=>Ag, occurs in a very sensitive transition region where
the fast growth of F(s) is replaced by its almost constant
behavior.

A much more attractive approximation is given by the
function
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The parameters here are arranged in such a way that the
slope at s=0 is exactly «; and, in the spirit of asymptotic
methods, the true saturation value is achieved when KsS
=00 [note that another ‘‘simple and natural’’ approximating
function, the hyperbolic tangent, is not acceptable, because
the rate of approach of f5 by F(s) is a power rather than
exponential one]. The performance of the approximation
(18) exceeds all expectations, giving, over the whole range
of 5, a maximum error of 20% for §=0.3, and only 1.8% for
6=0.025. The accuracy is mostly lost outside the transition
‘zone (— Ay, Ay) due to the fact that f; is achieved only at
infinity. This can be dealt with by redefining the parameters
to have both the exact slope at s=0 and the right value at
s=1, which produces

K5

A(S’

Ks

F o(5)=~A sarctan Asarctan-==f;, &—+0. (19)
5

This “‘adjusted”’ arctan gives the maximum error within
0.3% for 6=0.025; even for as large a separation as &
=0.3 the error is still about 0.6%. Like in Egs. (16) and (18),
the dependence, Eq. (19), is shown in Fig. 2. Coefficient A 4
is plotted versus & in Fig. 3; note the relative flatness of the
function.

D. Closed form expression of the trapped flux

The explicit formula for the trapped flux can also be
obtained, although not that easily, from Eq. (11); however, a
direct way to get it is to integrate the closed form expression
for the magnetic field through the pick-up loop plane z=0.
For this plane 9=7/2, r=p (the polar radius); in addition,
we can redefine ¢ by setting ¢, =0. Then Egs. (8) and (3)

provide the needed component of the magnetic field in the
form
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1
X(p, o)

Dorocos 9,
27

Bz|z=0="

p—r.sint, cos g
2r2pX(p,9) Y () Y _(¢)

+ sin ¥, cos ¢
2gp Y (@) Y_(9) 2ripY_(9)

where

X(p,0)= \/r§—2rgp sin 9, cos ¢+ p?,

Y.(p)=1=%sin ¥, cos ¢. @2n

Now we need to integrate Eq. (20) over the area of the
pick-up loop. First we calculate the simple, although rather
cumbersome, algebraic integral of the field, Eq. (20), times
pdp over the polar radius from 0 to R (if instead, one first
integrates over ¢, elliptic integrals of a complicated argu-
ment appear in the result that make the closed form radial
integration very difficult). As we are then to integrate over
the period of cos ¢, the terms odd in cos ¢ can be omitted,
and we obtain

Dyr, cos i,
2ar

@
<I)+(c0519+)=7F5(c051?+)=—
2w Rz—r:,
Xf do| — 2
0 2r; X(R,@) Y (@) Y _(9) 2r,Y_(¢)

In view of Egs. (21), this integration is also rather straight-
forward and leads to the desired result,

. 2y

®, (cosPy)
_ @ cos 1‘}+[ 1 26-6°
2 1-6 |Jeos 0] 7 \2(1=0) (I +sind,)+ &7
1 k (v_,k
NS ORI )
I+sind, 1-sind,
where
9 __25in19+
)= e,
(24)

4(1—é)sin 9,
k(8,,8)= - >
2(1=8)(1+sind,)+ &

and II(v,k) is the complete elliptical integral of the third
kind (see Ref. 14). As a consistency check, one may calcu-
late the saturation value and the derivative at zero of the
transfer function, Eq. (23), to see that they are indeed equal
to the previously obtained values, Eqs. (14) and (15).

The first term in Eq. (23) evidently has a jump disconti-
nuity at s =cos 9, =0. Therefore, for all finite 8, the second
term must contain the discontinuity of the opposite sign to
make the sum of two analytical in s. Hence for small positive
& in the transition zone we are dealing with a small differ-
ence of two large quantities, which is always a problem.
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FIG. 4. Mutual orientation of roll and loop coordinates.

Also, the first term in Eq. (23) coincides exactly with expres-
sion (12) for =0, hence the second one should disappear in
this limit, which it necessarily does in a very nonuniform
way. BEvidently, such an expression cannot be effectively
used for both numerical and analytical purposes when & is
small enough, which is our case.

IV. FLUXON KINEMATICS AND SPECTRAL
DECOMPOSITION OF THE TRAPPED FLUX SIGNAL

Now we need to determine the time signature 4,.(¢) of a
half-fluxon polar angle in the pick-up loop frame to complete
investigation of the trapped flux signal.

In doing that we use four Cartesian coordinate systems.
The first one {x, y, z} has been introduced in Sec. L it is
fastened to the pick-up loop, and z is the unit vector normal
to the loop plane (Fig. 1). The second coordinate system
{x,,¥,,2,} is associated with the roll axis of the spacecraft,
®,=1z, (Fig. 4). The roll axis is almost in the pick-up loop
plane, that is, the roll axis—pick-up loop plane misalignment
a<10"3 is very small. The third set of coordinates
{xr,yL,z.} is related to the angular momentum vector L in
a way that z; =L/|L{. Both the r and L coordinates are fixed
in inertial space, since the roll axis is pointed to the Guide
Star, and we can so far neglect the pointing errors, as well as
the relativistic drift of L. We choose axes y, and y;, in the
plane containing both z, and z; , so then the perpendicular to
this plane axes x, and x; coincides (Fig. 5), and the follow-
ing relations are true:

22, =Y y,=C0S By, Z.*¥,= — YL Z,=sin By,
xr'zr=xr'zL=Xr'Yr:xr'YL=0~ (25)

Here B, is the roll axis—angular momentum misalignment
which is required to be <5X 1073 rad in the GP-B experi-
ment.

A symmetric top with the moment of inertia I+ A[ rela-
tive to the body symmetry axis and slightly different value [
for the moments of inertia about the other two axes is a very
good model for the GP-B rotors (note that |Af|/[<107 for
them). Therefore, we choose the fourth Cartesian coordinate
system {xg,yp,zz} fixed in the rotor’s body with z di-
rected along the rotor’s symmetry axis.
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FIG. 5. Mutual orientation of roll and angular momentum coordinates.

X=X

The dynamics of a symmetric rotor are well known and
relatively simple (see Refs. 12 and 13). Its motion in the L
coordinates is a precession about z; with the spin frequency

L
w==

T 26)

and rotation about the rotor symmetry axis zz with the fre-
quency

L Al
W= T ATC0S VB w:( i—- —1—-) COS Vg ; 27

0= yp<<r is the angle between z; and zg.

For the signal of the trapped field we need, however, the
time dependence of the position of a source in the inertial
coordinates, hence = we need  expressions  of
x5(t), yp(t), zg(¢) in terms of x; , ¥, , z; . The latter is found
with the help of the Euler angles (see, for instance, Ref. 12)
in the form

zg(t) =2y cos yg+ X, sin yp cos O, +y; sin 'yB_‘sin g,
yg(t)=—1zpsin ygcos 0,
+x, (cos yg cos 8, cos 8, sin 6§ sin 6,)
+y;(cos g sin §; cos 8,+cos b, sin 6,) ,
xp(t)=—1z sin ygsin 4,
+x;(cos g cos O, sin 8, +sin §; cos 6,)
+y,(cos yg sin 6, sin 6,~cos §,cos 6,).  (28)
Here the spin and polhode phases are
0, ()=w,t+6), 6,()=w,t+d), 6 =const,

(29)
and w,, is a polhode frequency,
L |Al [All

W=7 —1—cos Y= Ws—COS Vg (30)

(in the body-fixed frame the instant angular velocity vector
rotates around the rotor’s symmetry axis with the polhode
frequency). Using this, we obtain the following expression
for the unit vector e in the direction of a half-fiuxon (i.e., in
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the direction of an arbitrary fixed point of the rotor surface at
some polar, 0<<£=< 1, and azimuthal, 0=<< <2, angles in
the body-fixed spherical coordinates):
e, =zp(t) cos £+ (xg(t) cos n+yp(t) sin )siné
=e | (Dx T ey(y +es(t)zy,
e (t)=sin £[cos g cos 6,(t) sin( 6,(t) + n)

+sin 6(1) cos(8,(1)+ 7)]

+cos Esin yg cos O,(t),
(31)
e(t)=sin §[cos yp sin 6,(¢) sin(8,(¢) + 7)

+cos 6,(t) cos(8,(t)+ )]

+cos £ sin yp sin 6,(¢)
e3(t)=—sin & sin yg sin(6,(t) + 77) +cos £ cos yg.
According to the results of Sec. III, we only need the
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cosine of the angle ¥, () between e, (¢) and the normal z(¢)
to the pick-up loop plane to study the trapped field signal;
together with the loop, z() rotates about @, with frequency
w, (see Fig. 4):
z(t) =cos(w/2— a)@,+sin(7/2— a)(cos 6, x,+sin 6, y,)
=sin @ z,+cos & (cos §,x,+sin §,y,),
8,= 8,(t)= w,t=roll phase. (32)

By means of this, Egs. (31), and formulas (25) relating the r
and L coordinates to the first order in the misalignments B,
and a we obtain (quadratic and higher order terms are sev-
eral orders below the required GP-B accuracy):

cos 34(t)=a;_,sin@;_,+a(Bysin 8,+ a),

0, (N=(w,~ )+ q,,; OL)=wt. 33)
For a perfectly spherical rotor AI=0 and the amplitudes and
initial phase here are true constants whose values depend
only on the position of a fluxon relative to the symmetry
axis, a;_,=sin§, q,_, =7, a=cos & If, on the other hand,
AI#0, they start to vary slowly with time at the polhode
frequency according to

a;_(wpt)= V[cos £sin ¥p+sin £ cos(w,t+ 02+ 7)1+ sin? & cos? ¥ sin( wyt+ 02+ 7,

sin £ cos yg sin(wpt + Hg+ 7)

tang,_(w,t)= - s
AN cos £ sin yp+sin § cos(w,t+ 02+ )

a(wpt)=cos & cos yp—sin £ sin yg sin(w,t+ 02+ 7).

Note that under the conditions of the GP-B experiment
the spin frequency is always much larger than the roll and
polhode ones, w,~5%10"%w,, w,~10" w,. Since gener-
ally the second term in the first equation of Egs. (33) is about
five orders of magnitude smaller than the first one, the input
signal for the trapped flux output P ()
=(Py/2)F fcos I,.(1)] is a single carrier harmonics of the
(high) spin minus roll frequency (®,_,), slowly modulated
in the phase and amplitude at polhode frequency, added to by
a small dc offset (aa) and a small low frequency harmonics
(6,), both modulated at w, . Therefore it is natural and con-
venient to represent ¥, (¢) as a Fourier series of spin minus
roll harmonics with the amplitudes modulated by low fre-
quencies, namely,

Dy
P (r)= '—2—F6(C03 3,(8))

P, .
=5 |- epd) 2 Al@,t)

Xsin(2k+ 1), (£) +a(w,t) (Bosinw,t+a)

XEO By(wpt) cos2k®,_,(1) |; (35)

(34

2 w
Ak((x)pt)z ’lT(T‘*‘l)-fo cos(2k+1)cos ¢

X Fi(as- {w,t)sin ) diy+O(B3);

2 T
Bi(w,t)= mfo cos 2k

X Fi(a,- (wyt)sin ) dy+O(B3);

here the prime denotes the derivative of F s(s) in s.

As readily seen, the amplitudes of odd harmonics of
O,_, (Ap) are generally of the order of unity and decrease as
O(k™?) for a large enough number k. In contrast with that,
the amplitudes of even harmonics, which are linear in the
misalignments, are at least four orders of magnitude smaller
but decrease only as O(k™!), k—o. In addition, the even
harmonics are modulated also by the roll frequency w,, so
that, along with the harmonics 2k®,_.(¢), k=0,1,..., with
amplitudes a a,(w,t) B(wpt), harmonics 2k, (t)*w,t
are present, whose amplitudes differ only by the misalign-
ment involved, 0.58, instead of «.

With all this in mind, one can easily understand that the
full spectrum of the trapped flux signal consists of the fol-
lowing series of frequencies: (2k+1)w,—w,)*mw
2k(ws—w)*w,Zmw, and 2k(w,—w,)*tme

P

m,k

p p’
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FIG. 6. Simulated readout signals.
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=0,1,.... The highest peaks are at (2k+1)(w;,— w,), and
those at 2k(w;— w,)* v, and 2k(w,— w,) are four to five
orders of magnitude smaller. All of them are surrounded by
an appropriately scaled forest of side bands separated by
tmo,.

The only remaining thing is to discuss briefly the total
flux & produced by all fluxons. There are always some N
fluxons present on the rotor’s surface after cooling the rotor
down below the transition temperature. Experiments have
indicated that the expected number of the pairs is around N
~ 100, at most. We denote any values related to either posi-
tive or negative half-luxons by indexes + and —, respec-
tively, numbering them with the index i=1,2,...N; for in-
stance, their body coordinates will be &, , 7%, and £, 7",
the input signals S°, (£) =cos 9.(1), S (t)=cos ¥_(s), etc.

The general expression for the total trapped field flux is
given by

N
‘D(‘)i}::) [P (1) + D (1)]

Dy . .
=—2—-__0 [Fs(cos 9 (2))—Fs{cos 3 _(2))]; (36)

obviously, the full spectral representation of ®(r) is just a
scaled up version of ® ,(¢) given in Egs. (35).

Since for small & the transfer function F 4(s) is close to
*F{1)~*1 everywhere except within a small vicinity of
the origin (see Sec. III), expressions (36) and (35) demon-
strate that the maximum value of ®(¢) is distributed accord-
ing to the usual counting statistics, provided that the distri-
bution of fluxons over the surface of the rotor is a uniform
random one. Therefore N fluxons in this case should produce
a total flux on the order of N®, for ““large’” N.

V. CODE AND SIGNAL ANALYSIS

For the GP-B error analysis and data reduction one
needs to simulate the trapped flux signal as expected in the
SQUID output. To do that, the results obtained earlier were
utilized for writing a program that is able to be fast enough
to generate, store, and analyze the high-frequency signal.
The code, written in the MATLAB V.5.0 to ensure compat-
ibility with other GP-B software, is available from the au-
thors.

The program is very versatile, allowing many options
and many different tasks. For instance, there may be a dif-
ferent number of fluxons, and their positions may be read
either from a prewritten file or generated at random accord-
ing to different probability distributions. Transfer function
may be calculated by means of several different expressions
introduced in Sec. III. Generation of the high frequency sig-
nal and/or its slow varying Fourier amplitudes, Eqs. (35) and
(36), is possible. In addition, all gyroscope and pick-up loop
parameters (radii, rotor asphericity, misalignments, etc.), as
well as the discretization frequency, time intervals, and all
angular velocities may be specified in an arbitrary way.

A lot of attention in the program’s realization has been
paid to the fact that tracing positions of as much as 100
fluxons for long enough periods of time with high discreti-
zation frequency easily becomes too memory consuming.
The program has thus been optimized in several directions,
S0 as to not cause excessive memory swaps to the hard drive
and not lead to the memory fragmentation, and to access the
hard drive for data storage as infrequently as possible. The
following data may be useful to estimate the code’s speed:
on a Sun UltraSparc 5 with 128 megabytes of random access
memory (RAM) running System V, Rel. 4.0 and having a
network mounted storage drive it takes, depending on the
network load, from 1.5 up to 2 h to generate 1 h of signal of
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FIG. 7. Envelope of the simulated trapped flux signal, T,~43.6 min.

100 fluxons at a sampling frequency of 2200 Hz (the actual
sampling rate of GP-B electronics).

We will not elaborate more here on the code details but
will continue with the results of our simulations. All of them
have been performed with the parameters set at the values
expected for the GP-B experiment (see cf. Refs. 1-3). In
particular, the spin frequency f,;,= 100 Hz, the roll period
T,=3 min, the polhode period T,~43.6 min; recall that &
=0.025.

In Fig. 6 the signals are seen as generated by different
number of fluxons distributed in various ways over the sur-
face of the gyroscope. In all of the graphs the *‘adjusted
arctan’’ approximation (19) to the universal curve is used.
Figure 6(a) shows signals of a positive half-fluxon (without
its negative counterpart) positioned at different points on the
gyro. The majority of magnetic charge positions provide sig-
nals like the one drawn as a solid line. The dashed and dash-
dotted lines correspond to rare charges oscillating in a small
(—A ) vicinity of the pick-up loop plane, which is why their
amplitude is smaller. On average, one cannot expect too
many charges like that, however, each of the four GP-B ro-
tors will carry just one particular realization of the fluxon
position distribution, so these ‘‘weak’’ half-fluxons are pos-
sible.
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Figure 6(b) shows various signals from one fluxon.
Again, the solid line corresponds to ‘‘the most probable’’
signal: the positive and negative half-fluxons are far from
each other (although not opposite on the sphere) and have
large oscillation amplitudes.

Figure 6(c) shows typical signals of 5, 15, and 100 flux-
ons distributed randomly with the uniform probability over
the gyro’s surface. The VN growth of the signal is visible;
the complexity of the signal profile also clearly increases
with N.

Figure 6(d) shows short fragments of the 12 h of signal
generated for the test of the GP-B data reduction algorithms.
There are 100 fluxons distributed unevenly: 60 of them are
uniformly spread at random over the surface [just like in Fig.
6(c)], while the remaining 40 are used to create a total net
flux of ~40®, along some random axis. This should ac-
count for the small residual magnetization of the rotor at the
time when it was made superconducting (see Ref. 17). This
magnetization not only significantly increases the amplitude
of the signal, it also smoothes it out. Different curves in Fig.
6 correspond to the signals taken at different stages of the
polhoidal motion (namely, 0, 15, and 24 min from some
reference point) for a duration of three spin periods.

In Fig. 7 a low-frequency envelope is plotted of the sig-
nal from Fig. 6(d) used in the GP-B simulations. The graph
was constructed by splitting the magnetic flux signal into 2 s
blocks (4400 data points in each) and plotting the maximum
value of the flux for each block. The periodicity of the large
scale structures of the envelope with an approximate polhode
period of about 43 min is clear. On the other hand, a com-
parison of the signal in any two corresponding regions dem-
onstrates that the short scale features, presumably introduced
by the roll frequency and other less intensive harmonics, are
not repeated precisely every polhode period T,, which is
expected because T, and the roll period T, are incommensu-
rable.

Figure 8 shows the slow polhoidal variation of Fourier
amplitudes of the spin minus roll harmonics calculated ac-
cording to Egs. (35) and summed over the fluxons. The first
10 odd and even harmonics are shown in plots (a) and (b),
respectively, in Fig. 8. Recall that in expressions (35) for the
flux all even harmonics are multiplied by the misalignments,
so that the actual vertical scale in Fig. 8(b) is about 10° that
in Fig. 8(a). The pictures clearly show that the odd harmon-

b. Even Harmonics

FIG. 8. Slowly varying amplitudes of the Fourier har-
monics of the trapped flux signal, T,~43.6 min.
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ics drop much faster with the number than the even ones, as
predicted. It is interesting to note that the lowest even (n
=0) harmonics, which gives the amplitude of the dc and the
roll frequency components, has a shape rather distinctive
from the profile of the other modes.
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APPENDIX: SUMMATION OF CERTAIN SERIES OF
LEGENDRE POLYNOMIALS

Here we give a derivation of formulas (14) and (15) for
fs=F (1) and for the slope &5 of the transfer function at s
=0. We use the Pochgammer symbol (@)q=1, (a);= a(a
+1)...(a+k—1)=T(a+k)/T(a), as well as the standard
notation,

b
F(a,b,c; )= ,;_: (a()z()k") i!,

for the Gauss hypergeometric function of argument { and
parameters a, b, and c. From Eq. (11) we have

Fs(s)=F{P(s) - FP(s);

) '
FP(s)=29 2_‘,0 )(-2—) Porsr(s), (A1)
- k

(—712)"

where we introduced 7=1-— 4 for brevity.

F(Z)( )__

A. Calculation of f;

Since P,(1)=1, we have

2\k 1 2
s Y
- k

(- ﬂz)k(z)k( i
20 k+1)! (2

— )= (J1+72=1),
and for the elementary expression of the hypergeometric
function we have used formula (11) from Ref. 15 (2.11) with
a=1/2 and b=1. Combining these results with Eqs. (Al),
we obtain

fs=Fo(s)=FP(s)—FPAs)

27 N1+ -1 1 | 1-7*

JI+ 72 n 7 Ji+79%)’
which, in view of #=1~ 5, is exactly the same as expres-
sion (14).

FO(1) =2 gF(I/Z,l,Z;
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B. Calculation of ;
As [see Ref. 15 (10.10), (12)]

Plyy (0)=(2k+1) Pyy(0) = (;)—(2)
k

from Egs. (Al) we find

IFY - 2)
= 2 (—) Piis(0)

s=0

(7% (DD
,?_30 K (D,

(A2)
=279 F(1/2,3/2,1; %)

= 17"1?F( 112, =112, 1; %)

47 E
) (n),

where E( ) is the complete elliptical integral of the second
kind, and we have exploited the classical relation [see Ref.
15 (2.1.4), (23)]

F(a,b,c; 0)=(1-{)° """t F(c—a,c—b,c; ),

and the expression for the elliptical integral in terms of the
hypergeometric function [see Ref. 16 (13.8)] is

2
F(1/2,—1/2,1; 772)2 ';E( 7). (A3)
Similarly,
FS ﬂi (—m (1)
ds ;=0_§.k=o (k+1)! 7 kP2k+1(0)

=§F( 12,312, 2: 7%)

—Z(—4) d F(—1/2,1/2,1; )
Y O

—477 2
) (ﬂ)———[E(ﬂ) K(m],

(Ad)

™

and here we used the formula for the derivative of the hy-
pergeometric function [see Ref. 15 (2.8), (20)], formula (A3)
again, and a formula for the derivative of E(7) [see Ref. 16
(13.7), (12)]; K(#) is the complete elliptic integral of the
first kind.

Equations (A2) and (A4) now provide





