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ABSTRACT 

A scientific earth satellite which is guided in a drag-free 

orbit by a shielded, free-falling proof-mass has been proposed by a number 

of investigators. The outer satellite, which completely encloses the 

proof-mass, has a jet-activated translation-control system that causes it 

to pursue the proof-mass such that the two never touch. This thesis 

examines the feasibility and some of the applications of this scheme. 

The complete system equations of motion are derived, and the 

various special cases which apply for different missions and types of 

attitude control are delineated. In addition, a set of linear equations 

for both translation and libration of a satellite in orbit are derived. 

These represent a combined version of the linear form of Hill's Lunar 

Equations and Lagrange's Libration Equations. - 

The control and guidance system is analyzed with respect to 

system performance and gas usage requirements, and an exact solution of 

the fuel consumption integrals is presented in closed form for a linear 

pressure-scale-height model of the atmosphere. 

A linear-feedback control-synthesis method is developed for a 

class of even-ordered dynamical plants which possess a property that is 
I I fi defined as frequency symmetry. This method allows a simple linear- 

feedback law to be computed which is stable for all positive values of 

the control gain so that it is useful for the synthesis of contactor 

control systems. 

The principal trajectory errors which are due to vehicle gravity, 

stray electric and magnetic fields, and sensor forces are investigated. It 

is found that drag and solar radiation pressure forces may be effectively 

reduced by three to five orders of magnitude for 100 to 500 statute mile 

orbits, and that the deviation from a p~rel~-~ravitational orbit may be 

made as small as one meter per year. Such a satellite may be used to make 

precise measurements in geodesy and aeronomy. 



Finally, if a spherical proof-mass is spun as a gyrqsco-it&- ---..---- -- 
~ i f ~ x a . t e  would-be very small because all. the drift-pi-oducing 

t0rque.s which are associated with the support forces are eliminated. The 
'.Q,.-..--- 

.. - 
sources of gyroscope drift which are not associated with support forces 

are analyzed, and it is found that the random drift would probably be 

less than 0.1 second of arc per year. Such a gyroscope could be used to 

measure the effects which would ultimately limit the performance of the 

best terrestrial or satellite-borne gyroscopes, and it might also be good 

enough to perform the experiment proposed by G. E. Pugh and L. I. Schiff 

to test general relativity. 
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ĝas 

f f f  
& '  T}' S 

Definition 

specific force on the ball due to random molecu- 
lar collisions from gas in the cavity 

*DRAG at the reference altitude 

+ 
components of fp resolved in the Xc,Yc4c 
reference frame 

m~/93 

gravitational acceleration on the ball, 

%id93 

4 
cylindrical components of f 

-Ã 

components of f in E,q,C reference frame 

contactor control switching functions 

universal gravitational constant 

I 
^ ^ sate111 e radii of gyration, (Il/ms) , (1/mS) , 

(13/ms) 

acceleration of gravity 

acceleration of gravity at the earth's surface 

gyromagnetic ratio of a material 

magnetic field vector 

xix 



LIST OF SYMBOLS (OONT) 

Symbol 

H 

Definition 

pressure-scale-height = kT/gmav filter transfer 
function, or magnetic field magnitude 

3 X 1 column matrix with components of the magnetic 
field inside the gyro rotor resolved in the gyro 
rotor principal axes 

earth's magnetic field 

-Ã 

B /p ,constant external applied magnetic field 
0 0 

+ 
3 X 1 column matrix with components of Ho resolved 
in the gyro rotor principal axes 

-P 

that component of Ho which gives the largest 
component of torque in Eq. (5-62) 

+ 
components of H in the gyro rotor principal axes 

pressure-scale-height at reference altitude, 
h~ 

angular momentum 

altitude or effective length of cold gas valve in 
jet damping calculations 

angular momentum of the ball 

perigee altitude 

reference altitude at which the atmospheric 
pressure-scale-height is linearized 

length of cylindrically shaped satellite 

-* 3 
vector component of mg/2nBlRg with direction shown 
in Fig. 5-3 and magnitude given by Eq. (5-34) 

matrix of components of satellite moment of inertia 
tensor resolved in the principal axis reference 
frame 

satellite moment of inertia dyadic 

integrals defined by Eqs. (2-26) through (2-29) 



LIST OF SYMBOLS (CONT) 

Definition 

control gas specific impulse 

satellite principal moments of inertia 

spherical Bessel's functions with imaginary 
argument 

orbit inclination angle 

integrals defined by Eq. (2-30) 

feed-back gain for adaptive limit cycle size 
control 

value of K at the i + 1th sample instant 
a 

defined by Eq. (4-57) 

numerical factor which depends on vehicle geometry 
defined by Eq. (4-39) 

defined by Eqs. (4-41) and (4-42) 

constant position feed-back gain 

defined by Eq. (2-50) 

constant velocity feed-back gain 

gravitational constant of the earth, GmE; 
reciprocal slope of contactor switching line; or 
Boltzmann constant 

parameters of Eq. (3-72) 

Lagrangian 

radius of a spherical satellite 

moment or torque vector 
4 

3 X 1 column matrix with components of M resolved 
in the gyro rotor principal axes 

xxi SEL-64-067 



LIST OF SYMBOLS (CONT) 

Symbo 1 

"Bx-%yJ%z 

Def in i t ion  

p r i n c i p a l  a x i s  components of torque a c t i n g  on 
the  gyro r o t o r  

s a t e l l i t e  control-moment vector  

3 X 1 column matrix with components of zcs 
resolved i n  t h e  s a t e l l i t e  p r i n c i p a l  axes 

pr incipal -axis  components of %q resolved i n  
the  s a t e l l i t e  

s a t e l l i t e  disturbing-moment v e c t o r  

pr incipal -axis  components of iLS 
s a t e l l i t e  gravi ty-gradient  torque 

3 x 1 column matrix with components of 
resolved i n  t h e  s a t e l l i t e  p r i n c i p a l  axes Â¥'G 

s a t e l l i t e  gravi ty-gradient  moment on t h e  i t h  
mass element 

the  sum of a l l  moments ac t ing  on the  s a t e l l i t e  
except those due t o  gravity-gradient  and c o n t r o l  
torques  

3 X 1 column matrix wi th  components of ss 
resolved i n  t h e  s a t e l l i t e  p r i n c i p a l  axes 

components of 3 i n  t h e  k ,q ,  r e fe rence  frame 

component of 3 perpendicular  t o  5 
component of 3 p a r a l l e l  t o  tÃ§ 

mass o r  moment of i n e r t i a  r a t i o  (1, - 13)/11 

average molecular mass of  t h e  atmosphere i n  t h e  
s a t e l l i t e  

mass of the  b a l l ,  proof-mass, o r  gyro r o t o r  

mass of the  e a r t h  

xxi i 



LIST OF SYMBOLS (CONT) 

Symbol Definition 

mass of the control gas 

magnetic moment vector 

magnetic moment of the ball 

magnetic moment of the satellite 

ith mass element 

mass of the satellite and control gas 

initial mass of the satellite and control gas 

mass of spherical satellite shell structure 

photomultiplier tube noise equivalent power 

moment of inertia ratio, 13/11; or index of integrals 
defined by Eqs. (2-26) to (2-30) 

second Legendre polynomial 

atmospheric velocity-resistance coefficient 

complex torque ratio, Mx/Il + jMy/Il = Qx + jQy 
or Ql + jQn 

complex control torque ratio, , Q  + jQ c Y 

complex dusturbing torque ratio, Qn + jQny 

electric charge or complex angular velocity, 
"X + j"y 

electric charge on the ball 

-b 3 
vector component of mH/2itBLRg with direction shown 
in Fig. 5-3 and magnitude given by Eq. (5-33) 

Euler rate matrix defined by Eqs. (1-28) and (1-30) 

radius of the ball or gyro rotor 



LIST OF SYMBOLS (CONT) 

Symbol 

R 
e 

Def in i t ion  

rad ius  of t h e  e a r t h  

r ad ius  vec to r  

3 X 1 column matr ix  with components of resolved 
i n  a  r o t a t i n g  reference  frame 

r * 4 - 3 x 1 column matr ix  with components of r resolved 
i n  a  nonro ta t ing  reference  frame 

-Ã -+ 4 

small v a r i a t i o n  i n  r given by r - r 
ES ES N 

r ad ius  vec to r  from s a t e l l i t e  c e n t e r  of mass t o  
i t h  mass p a r t i c l e  

a l l  defined by Fig.  1-1, vec to r  begins a t  f i r s t  
subsc r ip t  po in t  and terminates  a t  the  second 
( f o r  s i n g l e - l e t t e r  s u b s c r i p t s  see footnote  on 
page 10) 

-? 

3 X 1 column matr ix  with components of rc resolved 
i n  t h e  x ,y  ,z r e fe rence  frame c c c 

3 X 1 column matr ix  with components of resolved 
i n  the  x i  * z* reference  frame 

c 
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INTRODUCTION 

A. STATEMENT OF THE PROBLEM 

The term "drag-free satellite" as used in this thesis will refer to 

a system consisting of a small, spherical proof-mass or ball inside of a 

completely enclosed cavity in a larger satellite. The outer satellite 

has a jet-activated translation-control system that causes it to pursue 

the proof-mass such that the two never touch. Since the cavity is closed, 

the ball is shielded from gas drag and solar-radiation pressure; and, in 

the ideal case when the effects of other disturbing forces are negligible, 

the orbit of the proof-mass will be determined only by the forces of 

gravity. The only disturbing forces which can act on the proof-mass will 

arise from the satellite itself or from any interactions which can pene- 

trate the shield. Forces due to the satellite can arise from vehicle 

gravity, stray electric and magnetic fields, gas in the satellite cavity, 

and the interaction of the position sensor. 

Several possible uses or missions for such a satellite have been 

proposed. 

1. GEODESY 

The departure of the figure of the earth from a perfect sphere intro- 

duces higher harmonics in the earth's gravitational potential. These 

harmonics perturb the orbit of an earth satellite, and it is possible to 

measure the harmonics of the earth's gravitational field by observing the 

changes in a satellite's orbit elements. However, the atmosphere also 

perturbs the satellite orbit, and this effect must be corrected for in 

accurate geodetic calculations based on measurements of satellite orbits. 

The rather elaborate techniques for makingthese corrections are explained 

in detail by Kaula (1). A drag-free satellite would remove the necessity 

of correcting for the uncertainties of atmospheric drag and solar-radiation 

pressure in satellite observations of the higher harmonics of the earth's 

gravitational field . In addition, sustained operation would be possible 

at lower altitudes where the effects of higher harmonics are stronger and 

where the orbits of conventional satellites are quickly dissipated. 



2 .  AERONOMY 

Conventionally, upper-atmosphere density determinations ( 2 )  

are made by observing the change in the satellite period over several 

orbits and essentially determining the average density over the entire 

time and altitude range. This type of data is not as useful in studies 

of the upper atmosphere as instantaneous density measurements. By 

contrast, the proof-mass in the zero-g satellite essentially constitutes 

a very sensitive accelerometer which could be used to measure the in- 

stantaneous atmospheric drag (plus radiation pressure) at any altitude. 

For a spherically-shaped satellite, the drag coefficient, 

C ,  is 2 in free molecular flow at high Mach numbers, regardless of 

the accommodation coefficient; and the calibration of the instrument 

would not depend on knowing the accommodation coefficient as does, for 

example, Sharp's density gauge (3). The actual drag forces may be 

inferred from the jet-plenum-chamber temperatures and pressures, or 

even more precisely from the relative motion between the proof-mass 

and the satellite, or from strain-gage measurement of the forces 

between the jets and the satellite. The latter technique is feasible 

because the jet forces are typically one to three orders-of-magnitude 

larger than the drag force, due to the fact that the jets are on for 

only a small fraction of the total time. 

3. PRECISION GYROSCOPES 

If the spherical proof-mass is spun at a very rapid rate, 

it becomes a gyroscope. Since there are no support forces, only ex- 

tremely small disturbing torques are present. These will arise from 

gravity-gradient effects, electromagnetic interactions, relativity 

effects, and read-out torques. It appears possible to construct in 

this way a gyroscope whose random drift rates would be as low as 0.1 

second of arc per year. Such an instrument would be very useful to 

study all the effects, not connected with the support forces, which 

would ultimately become important in the construction of extremely 

low-drift gyroscopes, and it would be possible to do this many years in 

advance of the time when it might be possible to construct such instru- 

ments on earth. 

SEL-64-06? 
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4 .  THE PUGH-SCHIFF GYROSCOPE EXPERIMENT 

L. I .  Sch i f f  (4) has shown t h a t ,  while Newtonian theory 

p r e d i c t s  no precess ion of the  sp in  a x i s  of a spherically-symmetric 

gyroscope i n  f r e e - f a l l  about the  e a r t h ,  General R e l a t i v i t y  p r e d i c t s  

a geodet ic  precess ion a r i s i n g  from motion through the  e a r t h ' s  gravi -  

t a t i o n a l  f i e l d ,  and a Lense-Thirring precession due t o  the  d i f f e r e n c e  

between t h e  g r a v i t a t i o n a l  f i e l d  of a r o t a t i n g  and nonrota t ing  e a r t h .  

The geodet ic  precess ion of a gyro i n  a s a t e l l i t e  i s  about 7 seconds 

of arc/year  and t h e  Lense-Thirring precession i s  about 0.1 second of 

arc/year .  The des ign and prel iminary development of t h i s  experiment 

i n  a s a t e l l i t e  has been under way a t  Stanford Universi ty f o r  about 

two y e a r s ,  and is  descr ibed by Cannon i n  (5). 

5. TIME DEPENDENCE OF GRAVITY 

R. H. Dicke ( 6 )  has suggested t h a t  such a s a t e l l i t e  could 

be used a s  a c lock whose r a t e  would depend on the  un ive r sa l  cons tant  

of  g r a v i t y ,  G. Such a clock could be compared t o  p r e c i s i o n  atomic 

c locks  on e a r t h .  Any change i n  the  r a t e  of t h e  g r a v i t a t i o n a l  clock 
I I 

could be i n t e r p r e t e d  a s  a change i n  the  cons tant"  G. The value  of 

G a s  a func t ion  of t i m e  has important consequences i n  the  t h e o r i e s  

of r e l a t i v i t y .  The t r ack ing  accuracies  necessary f o r  t h i s  experiment 

a r e  d i c t a t e d  by the  very small s i z e  of the  e f f e c t  (about one p a r t  i n  

10'' pe r  yea r ) ,  which y i e l d s  an accumulated l a g  i n  t h e  satellite's 

p o s i t i o n  of about 0.2 second of arc/year .  This i s  d iscussed i n  (7) 

i n  d e t a i l .  

6.  ORBIT SUSTAINING 

For c e r t a i n  miss ions ,  i t  i s  d e s i r a b l e  t o  opera te  a s a t e l l i t e  

a t  very low a l t i t u d e s .  Such a s a t e l l i t e  would quickly re-enter  i f  

i t s  drag were n o t c o u n t e r a c t e d  i n  some manner. Rider (81, Bruce (91, 

and Roberson (10) have d i s c u s s e d v a r i o u s  ways of doing t h i s .  The 

f r e e - f a l l i n g  b a l l  could be used t o  c o n t r o l  t h r u s t  such t h a t  the  s a t e l -  

l i t e  would remain i n  a pure ly-gravi ta t ional  o r b i t  u n t i l  t he  gas supply 



i s  exhausted.  This technique would a l s o  be e s p e c i a l l y  useful  t o  con- 

t r o l  p r e c i s e l y  the  e n t r y  po in t s  of s a t e l l i t e s  and of l a r g e ,  p o t e n t i a l l y -  

dangerous, spent  booster  s t ages .  It could a l s o  be used t o  e s t a b l i s h  a 

t r u e  equiper iod  o r b i t  (where the  o r b i t  d i p s  very low i n t o  the  atmosphere) 

f o r  rendezvous p r a c t i c e .  

7 .  ZERO-G LABORATORIES 

I t  has been proposed t h a t  t h e  c e n t r a l  p a r t s  of manned space 

s t a t i o n s  be used a s  zero-g l a b o r a t o r i e s .  For experiments of long 

d u r a t i o n ,  such a d rag  c a n c e l l a t i o n  scheme would be necessary t o  prevent 

the  appara tus  from con tac t ing  the  l abora to ry  wa l l s .  

The problem which t h i s  t h e s i s  w i l l  cons ider  i s  the  a n a l y s i s  and 

des ign of s u i t a b l e  c o n t r o l  systems f o r  the  var ious  drag-free s a t e l l i t e  

miss ions ,  and the  a n a l y s i s  of t h e  performance of  the  drag-free s a t e l l i t e  

i n  i t s  va r ious  a p p l i c a t i o n s .  

B. PREVIOUS RESULTS 

A system s i m i l a r  t o  the  drag-f ree  s a t e l l i t e  was f i r s t  used by 

resea rchers  who i n v e s t i g a t e d  the s t a t e  of weightlessness (11). A i r -  

p lanes  were flown i n  weight less  . t r a j e c t o r i e s  by keeping a small ob jec t  

cen te red  i n  f r e e  space i n  t h e  cabin.  The same system has a l s o  been 

suggested a s  a  guidance scheme t o  cause  b a l l i s t i c  missiles t o  re-enter  

along a path which i s  undisturbed by aerodynamic fo rces .  Ericke (12) 

a l s o  has suggested launching a ha l f -a i rp lane  h a l f - s a t e l l i t e  which would 

f l y  a t  a l t i t u d e s  between 90 km and 180 km and use some t h r u s t  t o  cancel  
t l  

d rag .  He c a l l s  such a veh ic le  a  s a t e l l o i d "  and po in t s  o u t  t h a t  i t  may 

a l s o  f l y  a t  sub-c i rcular  v e l o c i t i e s  us ing aerodynamic l i f t  t o  s u s t a i n  

i t .  

The f i r s t  sugges t ions  of t h i s  scheme, purely i n  connection wi th  a 

s a t e l l i t e ,  apparent ly  were made independently from 1959 t o  1961 by a 

number of  i n v e s t i g a t o r s .  Martin Schwarzschild ( 6 )  a t  Pr inceton,  R.A. 

F e r r e l l  ( i n  an unpublished r e p o r t ) ,  G. E. Pugh (131, and Gordon J. F. 

MacDonald (14) a t  U.C.L.A. have proposed var ious  forms of t h e  drag-free 
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s a t e l l i t e .  I t  was a l s o  suggested independently by C.  W .  Sherwin of 

Aerospace and by the  author  a t  the  Stanford Conference on Experimental 

Tes t s  of Theories of R e l a t i v i t y  i n  July 1961 (15). 

There has been no previous attempt t o  w r i t e  the  equations of 

motion of the  drag-free s a t e l l i t e  system, but  the  ana lys i s  of these  

equat ions  rests i n  p a r t  on t h e  recent  e f f o r t s  t o  apply the  l i n e a r i z e d  

v e r s i o n  of H i l l ' s  l u n a r  equat ions  t o  o r b i t  mechanics and on the  use of 

a  complex v a r i a b l e  formalism i n  the  theory of symmetric r i g i d  bodies. 

I n  1878, G. W. H i l l  wrote the  equations of motion of the  moon i n  

a  r ec tangu la r  coordinate  system centered  a t  the  e a r t h  and r o t a t i n g  a t  

t h e  sun's  mean o r b i t a l  r a t e .  H i l l ' s  equations included the  nonlinear  

g r a v i t a t i o n a l  a t t r a c t i o n  between the  e a r t h  and the  moon, and i t  was 

no t  u n t i l  1957 t h a t  Wheelon (16) (and independently Geyling (17) i n  

1959) r e a l i z e d  t h a t  the  l i n e a r  vers ion  without the  g r a v i t a t i o n a l  terms 

was a very use fu l  way t o  c a l c u l a t e  o r b i t  p a r t i a l s  and pe r tu rba t ions .  

This  approach has a l s o  been appl ied  by Eggleston (18) and Tempelman (19) 

t o  the  problems of rendezvous and guidance. These l i n e a r i z e d  equations 

a r e  used to  analyze t h e  e f f e c t  of acce le ra t ion  e r r o r s  i n  Chapter I V .  

One of t h e  most important  modes of opera t ion  of  t h e  drag-free 

s a t e l l i t e  i s  a s  a  symmetric sp in - s t ab i l i zed  veh ic le .  I t  has been known 

f o r  a  long time t h a t  E u l e r ' s  equations and t h e  small-angle a t t i t u d e  

equat ions  f o r  a  symmetric body were most conveniently represented i n  

complex form. This method has been appl ied  t o  spinning m i s s i l e s  i n t h e  

atmosphere by Nelson (20) and Kanno(21) and t o  space veh ic les  by 

Leon (22) and Freed (23). Freed has worked out  t h e  bas ic  a t t i t u d e -  

c o n t r o l  equat ions  f o r  strapped-down i n e r t i a l  guidance of  a  spinning 

space  v e h i c l e  inc lud ing  t h e  bas ic  requirement of f i l t e r s  tuned t o  t h e  

s p i n  speed, and t h i s  work has been extended by ~ e e v e s *  t o  a  space 

s t a t i o n  whose equat ions  of motion include c r o s s  product of i n e r t i a  

terms and which uses a  control-moment gyro t o  apply con t ro l  torques.  

* 
Reeves, E. I . ,  Space Technology Labora tor ies ,  Inc. ,  Redondo Beach, 

C a l i f .  S tanford  Univers i ty  F l i g h t  Control Seminar, 1963. 



MacDonald (14) has made a  few numerical c a l c u l a t i o n s  of the  f u e l  

l i f e t i m e  of a drag-free s a t e l l i t e .  These r e s u l t s  a r e  t i e d  t o  s p e c i f i c  

boos te r  and launch conf igura t ions .  Bruce (9) has computed the  f u e l  

l i f e t i m e  f o r  a  c i r c u l a r  o r b i t ,  and Roberson (10) has presented a tech- 

nique f o r  computing the  j e t  f i r i n g  o r  equ iva len t ly ,  the  c o n t r o l  switch- 

i n g  times f o r  a  d i f f e r e n t  kind of o r b i t - s u s t a i n i n g  technique.  

Since t h e  drag-free s a t e l l i t e  tyfliiislation-*<xwitrol system oper- 

a t e s  i n  a  l i m i t  c y c l e  a t  the  o r i g i n  most of the  t ime,  i t  i s  important 

t o  analyze t h i s  mode of behavior. Gaylord (24) and Dahl (25) have 
2  published c a l c u l a t i o n s  of l imi t -cycle  behavior f o r  1/s type p l a n t s .  

Gaylord p r e s e n t s  a  c o n t r o l  syn thes i s  based on the  use of minimum impulse- 

b i t ,  l og ica l ly -con t ro l l ed  pu l ses ,  and Dahl cons iders  t h e  e f f e c t s  of  veiy 

special ly-shaped switching s u r f a c e s  a t  t h e  o r i g i n  on f u e l  consumption 

i n  the  presence of e x t e r n a l  torques.  

P r e c i s i o n  spher ica l - ro to r  gyroscopes have been under development 

f o r  s e v e r a l  yea r s  i n  a  number of u n i v e r s i t y  and i n d u s t r i a l  l a b o r a t o r i e s ,  

most notably Minneapolis-Honeywell, Autonet ics ,  Univers i ty  of I l l i n o i s ,  

J e t  Propuls ion  Labora tor ies ,  General E l e c t r i c ,  and General Motors. 

These r e s e a r c h e r s  were i n t e r e s t e d  i n  gyroscopes wi th  random d r i f t  r a t e s  

of the  o r d e r  of  t o  degrees  per  hour; and consequently,  

they were concerned pr imar i ly  wi th  torques caused by r o t o r  imbalance, 

magnetic eddy-currents ,  e l e c t r i c  o r  magnetic support  f i e l d s  a c t i n g  on 

a nonspher ica l  r o t o r ,  and poor vacuum. The unsupported mode of opera- 

t i o n  of a  s p h e r i c a l  f r ee - ro to r  gyroscope i n  the  vacuum of o u t e r  space 

l e a p s  over  t h e  above d i f f i c u l t i e s  and b r ings  i n t o  importance a  hos t  of  

much smal le r  torque-producing e f f e c t s .  Of these  only t h e  e f f e c t s  of 

g rav i ty -g rad ien t  and magnetic eddy-current torques  on s p h e r i c a l  r o t o r s  

have been previous ly  discussed i n  the  l i t e r a t u r e .  Cannon (5) d e r i v e s  

t h e  magnitude of t h e  d r i f t  r a t e  caused by gravi ty-gradient  torque on 

an almost-spherical-rotor  gyroscope. Smythe (26) has given the  b a s i c  

equa t ions  f o r  magnetic eddy-currents i n  s p h e r i c a l  s h e l l s  and s o l i d  

spheres ,  and Houston ( 2 7 )  and A l e r s  (28) have computed 

d e t a i l  f o r  a  s o l i d  s p h e r i c a l  r o t o r .  However, they d id  

term which is  t h e  dominant cause of eddy-current d r i f t  

f r e e - r o t o r  gyroscope. 
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C .  OUTLINE OF NEW RESULTS 

In  Chapter I  the  author  de r ives  the  bas ic  9-degree-of-freedom 

dynamical equations of the  drag-free s a t e l l i t e  system and d e l i n e a t e s  

the  var ious  s p e c i a l  cases  of these  equations which apply t o  d i f f e r e n t  

k inds  of s a t e l l i t e  mission and a t t i t u d e  c o n t r o l .  The equat ions  of 

motion take  i n t o  account the  important f a c t  t h a t  the  c e n t e r  of mass, 

t h e  c e n t e r  of g r a v i t y ,  t h e  point  where the  proof-mass pos i t ion  sensor 

r eads  ze ro ,  and the  point  where the  g r a v i t a t i o n a l  a t t r a c t i o n  of  the  

v e h i c l e  i s  zero a r e  no t  co inc iden t .  In a d d i t i o n ,  the  l i n e a r i z e d  o r b i t -  

pe r tu rba t ion  equations of H i l l  (29) and Wheelon (16) and the  small- 

amplitude a t t i t u d e  equations of Lagrange (30) Roberson (31),  and 

DeBra(32) a r e  combined and extended t o  include the  complete 6-degree- 

of-freedom, small-amplitude l i n e a r i z e d  equat ions  of motion of a  l i b r a t -  

ing  r i g i d  body i n  o r b i t .  These equations e x h i b i t  the  coupling between 

o r b i t  and a t t i t u d e  motions i n  an e x p l i c i t  manner and allow a  q u a n t i t a t i v e  

eva lua t ion  of the  e f f e c t  of the  a t t i t u d e  motions on the  o r b i t .  I t  is 

necessary t o  analyze the  e f f e c t s  of the  a t t i t u d e  motions on t h e  o r b i t  

because the  c lose  proximity of the  s a t e l l i t e  and proof-mass might make 

even smal l  motions important .  I t  t u r n s  o u t ,  however, t h a t  these  e f f e c t s  

a r e  n e g l i g i b l e  even f o r  t h i s  app l i ca t ion  except f o r  c e r t a i n  very s p e c i a l  

resonance condi t ions .  

In  Chapter I1 t h e  author analyzes t h e  bas ic  problems assoc ia ted  

wi th  con tac to r  c o n t r o l  of a  drag-f r e e  s a t e l l i t e  wi th  p e r f e c t  a t t i t u d e  

c o n t r o l  t o  an i n e r t i a l  r e fe rence .  The drag  f o r c e  on the s a t e l l i t e  is  

computed from the  l inear-sca le-height  model proposed by Groves (331, 

Jacch ia  (34) ,  and Smelt (35). An a n a l y t i c  technique is presented which 

makes i t  poss ib le  t o  so lve  t h e  fue l - l i f e t ime  i n t e g r a l s  i n  c losed form, 

and the  f u e l  l i f e t i m e  is  c a l c u l a t e d  f o r  a  t y p i c a l  drag-free s a t e l l i t e .  

It is  shown t h a t  the  dynamics of the  p lan t  do not  a f f e c t  t h e  minimum f i x  

f u e l  consumption a s  long a s  t h e  con t ro l  fo rce  always opposes t h e  drag 

fo rce .  Typical l i m i t  cyc les  a r e  presented f o r  va r ious  o r b i t s ,  and a  

r a t h e r  i n t e r e s t i n g  c o n t r o l  is  discussed which employs adapt ive  l i m i t -  

cyc le-s ize .  



In  Chapter I11 t h e  author  a t t a c k s  the  problem of t h e  t r a n s l a t i o n  

c o n t r o l  of  a  drag-free s a t e l l i t e  i n  t h e  complete absence of a t t i t u d e  

c o n t r o l .  The i n t u i t i v e  concept of cons ider ing  t h e  p l a n t  i n  an i n e r t i a l l y -  

nonrota t ing  re fe rence  frame l eads  t o  a  simple syn thes i s  of a  l i n e a r ,  

time-varying c o n t r o l  law. This concept  can be genera l ized  t o  a r b i t r a r y  

2nth-order p l a n t s  which a r e  der ived from nth-order p l a n t s  by a 

t ransformat ion  which i s  analogous t o  the  transformation i n t o  an i n e r t i a l  

r e fe rence  frame. I n  the  s p e c i a l  c a s e  t h a t  t h e  new Znth-order p l a n t  

has cons tan t  c o e f f i c i e n t s ,  i t  is  p o s s i b l e  t o  p l o t  t h e  locus  of t h e  r o o t s  

of i t s  c h a r a c t e r i s t i c  equat ion  by s h i f t i n g  t h e  roo t  locus  of  the  cor-  

responding nth-order p l a n t  along t h e  p lus  and minus j a x i s  i n  the  

s plane .  This technique i s  then app l i ed  t o  the  a t t i t u d e  c o n t r o l  of a  

symmetric, sp inning,  r i g i d  body a s  an  example. The symmetric r i g i d  

body is  descr ibed by a fourth-order p l a n t  and the  corresponding second- 

o r d e r  p l a n t  i s  the  harmonic o s c i l l a t o r .  There appears t o  be no i n t u i t i v e  

i n t e r p r e t a t i o n  of the  t ransformat ion  between these  two p l a n t s  a s  was 

poss ib le  wi th  the  drag-free s a t e l l i t e  t r a n s l a t i o n  c o n t r o l .  

I n  Chapter I V  a r e  analyzed t h e  e f f e c t s  on the  t r a j e c t o r y  of  the  

drag-f ree  s a t e l l i t e  of the  p e r t u r b a t i o n s  which a c t  on t h e  proof-mass. 

The b a s i c  technique i s  t o  extend t h e  r e s u l t s  of Wheelon (16) and 

Tempelman (19) t o  inc lude  two i n t e r e s t i n g  types  of forced motion. The 

advantage of t h i s  approach i s  t h a t  i t  p resen t s  the  r e s u l t s  of l i n e a r  

pe r tu rba t ion  a n a l y s i s  i n  a  very s imple  and i n t u i t i v e  manner. Every 

f o r c e  which could pe r tu rb  t h e  motion of the  proof-mass i s  l i s t e d ,  and 

an express ion f o r  i t s  magnitude i s  de r ived .  The numerical values of 

these  p e r t u r b a t i o n s  a r e  presented f o r  a  t y p i c a l  drag-free s a t e l l i t e .  

I n  Chapter V the  author  cons ide r s  the  sources  of random d r i f t  f o r  

an unsupported gyroscope and concludes t h a t  d r i f t  r a t e s  l e s s  than 0.1 

second of  arc /year  a r e  poss ib le .  An exhaust ive  l i s t  of torques  is com- 

puted based on t h e  approximation t h a t  the  r o t o r  is  not  a  p e r f e c t  sphere ,  

but  r a t h e r  is s l i g h t l y  e l l i p s o i d a l  i n  shape. I n  a d d i t i o n ,  a l l  of the  

torques  which depend on atomic o r  c r y s t a l l i n e  anisotropy a r e  computed. 



CHAPTER I 

DERI VAT1 ON OF THE DYNAMI CAL EQUATIONS 

The ob jec t  of t h i s  chapter  i s  t o  de r ive  the  r e l evan t  equations 

of motion which w i l l  be used 

1 )  I n  the  a n a l y s i s  and syn thes i s  of the  c o n t r o l  system, 

and 

2) In the  computation of the  magnitude and e f f e c t s  of 

the  system e r r o r s .  

A p a r t i c l e  moving i n  empty space under the in f luence  of g rav i ty  

a lone  i s  dynamically i n  balance between g r a v i t a t i o n a l  and i n e r t i a l  

f o r c e s .  Thus a r e fe rence  frame whose o r i g i n  is a t  the  p a r t i c l e  is 
1' l o c a l l y  i n e r t i a l t '  a t  i t s  o r i g i n  i n  t h e  sense t h a t  an accelerometer 

located  exac t ly  a t  the  o r i g i n  would read zero .  I f ;  i n  add i t ion ,  the  

r e fe rence  frame i s  nonro ta t ing  wi th  r e spec t  t o  i n e r t i a l  space,  i t  i s  

reasonable t o  expect t h a t  i n  t h i s  frame the equations of motion of a 

p a r t i c l e  which i s  f c l o s e "  t o  the o r i g i n  would be very c l o s e  t o  the  

form t h a t  Newton's laws assume when they a r e  w r i t t e n  i n  an i n e r t i a l  

r e fe rence .  

The above concept provides the  i n t u i t i v e  framework i n t o  which the  

exac t  equations of motion of  the  drag-free s a t e l l i t e  w i l l  be c a s t .  
' 1 

Conceptual ly,  the  c e n t e r  of t h e  s p h e r i c a l  proof-mass o r  b a l l "  would 
I t  correspond t o  the  o r i g i n  of the  l o c a l l y  i n e r t i a l 1 '  frame i f  t h e r e  

were no nongrav i t a t iona l  f o r c e s  a c t i n g  on the  b a l l .  Since,  however, 

t h e r e  a r e  important nongrav i t a t iona l  f o r c e s  which a c t  on the  b a l l ,  

t h e  approach of t h i s  chap te r  w i l l  be t o  de r ive  the  r e l a t i v e  equations 

of motion between t h e  b a l l  and t h e  s a t e l l i t e .  The a t t i t u d e  motions 

of a p e r f e c t  s p h e r i c a l  proof-mass a r e  completely ignorable  (except i n  

t h e  case  of the  unsupported gyroscope, which is  t r e a t e d  i n  Chapter V). 

Thus, the  complete drag-free s a t e l l i t e  dynamical system has s i x  t rans-  

l a t i o n a l  and t h r e e  r o t a t i o n a l  degrees-of-freedom. By de r iv ing  the  

d i f f e r e n c e  o r  r e l a t i v e  equat ions  of motion, i t  is  poss ib le  t o  reduce 

t h e  e n t i r e  system t o  t h a t  of a point  mass i n  e i t h e r  a r o t a t i n g  o r  



n o n r a t o t i n g  r e f e r e n c e  frame w i t h  unacce l e ra t ed  o r i g i n .  I n  keeping  w i t h  

t h i s  v iewpoin t ,  c e r t a i n  sma l l  terms a r e  inc luded  on t h e  r ight-hand s i d e  

o f  t h e  e q u a t i o n s  a s  p e r t u r b i n g  f o r c e s ,  even though they a r e  n o t  inde-  

pendent  te rms .  

A .  GENERAL EQUATIONS OF MOTION 

F i g u r e  1-1 shows t h e  geometry f o r  a  d rag - f r ee  s a t e l l i t e  w i t h  a  

proof-mass i n  f r e e - f a l l  and w i t h  th ree -ax i s  p o s i t i o n  c o n t r o l .  The 

c e n t e r  of  mass and t h e  c e n t e r  of g r a v i t y  of t h e  s a t e l l i t e  do no t  co in -  

c i d e  i n  g e n e r a l ;  and, i n  a d d i t i o n ,  t h e  c e n t e r  of  g r a v i t y  is no t  even 

f i x e d  i n  t h e  body b u t  is a  f u n c t i o n  of  body o r i e n t a t i o n .  Furthermore,  

a l t h o u g h  t h e  d e s i g n  o b j e c t i v e  would b e  t o  o b t a i n  co inc idence  of t h e  

c o n t r o l  c e n t e r  ( t h e  p o i n t  a t  which t h e  p o s i t i o n  i n d i c a t o r  r e a d s  z e r o  

o r ,  e q u i v a l e n t l y ,  t h e  p o i n t  t o  which t h e  c o n t r o l  system t r i e s  t o  d r i v e  
Â¥)( t h e  b a l l ) ,  t h e  c e n t e r  of  mass, and t h e  p o i n t  of  ze ro  s e l f - g r a v i t y ,  

due  t o  v a r i o u s  u n c e r t a i n t i e s  i n  manufacture t h e s e  p o i n t s  w i l l  n o t  be 

t h e  same and t h e  v a r i a t i o n s  cannot  be neg lec t ed .  

The equa t ion  of motion of t h e  proof mass is** 

* 
A p o i n t  of z e r o  s e l f - g r a v i t y  o r  Z.S.G. p o i n t  is  a  p o i n t  where a l l  

of t h e  g r a v i t a t i o n a l  f o r c e s  due t o  t h e  s a t e l l i t e  a lone  sum t o  zero .  
See  Chapter  I V .  

Ã̂ 
Nota t ion:  
1) P o s i t i o n  Vectors:  F ig .  1-1 shows t h e  p o s i t i o n  v e c t o r s  used i n  

t h i s  a n a l y s i s .  The f i r s t  s u b s c r i p t  i n d i c a t e s  where t h e  vec to r  beg ins ,  
and t h e  second s u b s c r i p t  shows where t h e  v e c t o r  t e rmina te s .  The v a r i o u s  
p o i n t s  a r e  l abe l ed  i n  F ig .  1-1 and a r e  d e f i n e d  i n  t h e  l ist  of  sub- 
s c r i p t s .  The v e c t o r s  + V J  I S *  and r g ~  w i l l  be abbrevia ted  t o  
r r BJ S' 

and r r e s p e c  i v e l y  because t ey occur  s o  o f t e n .  c 
2 )  Forces :  The d e f i n i t i o n  of each  f o r c e  is  given i n  t h e  l i s t  of  

symbols. The f i rs t  s u b s c r i p t  i n d i c a t e s  t h e  sou rce  o r  cause of t h e  
f o r c e ,  and t h e  second i n d i c a t e s  t h e  o b j e c t  t h e  f o r c e  a c t s  upon o r  t h e  
p o s i t i o n  where it acts. For  example, F  is t h e  f o r c e  of g r a v i t y  a c t -  
i n g  on t h e  b a l l ,  and Fcs is t h e  cont ro lBf  o r c e  app l i ed  t o  t h e  s a t e l l i t e .  
The first  s u b s c r i p t  is  omi t ted  i f  t h e  sou rce  of t h e  f o r c e  is u n s p e c i f i e d .  

3) D i f f e r e n t i a t i o n :  The symbol = d f / d t  and = d/dt w i l l  
d e n o t e  t h e  t ime d e r i v a t i v e s  of a  v e c t o r  a s  seen  by an obse rve r  i n  t h e  
primed ( i . e . ,  i n e r t i a l l y  f i x e d  o r  n o n r o t a t i n g )  coo rd ina t e  system and t h e  
t ime  d e r i v a t i v e  o f  a  v e c t o r  a s  seen  by an obse rve r  i n  t h e  r o t a t i n g  ( i .  e. , 
body f i x e d )  c o o r d i n a t e  system. 



FIG.  1-1. DRAG-FREE SATELLITE GEOMETRY 



where the  s u b s c r i p t s  B.G,S,P, and C s tand f o r  b a l l ,  g r a v i t y ,  s a t e l -  

l i t e ,  p e r t u r b a t i o n ,  and c o n t r o l  r e s p e c t i v e l y ;  and the  equation of 

motion of the c e n t e r  of mass of  the  s a t e l l i t e  i s  

Ã‘ + 4 

Since rB = rs + r 
SB ' Eqs. (1-1) and (1-2) may be combined t o  y i e l d  

t h e  equat ion  of motion of the  b a l l  wi th  respect  t o  a  reference  frame 

f i x e d  i n  t h e  veh ic le :  

Notice t h a t  when the  equat ion  i s  w r i t t e n  i n  t h i s  form any fo rces  appl ied  

t o  the  s a t e l l i t e  appear t o  be app l i ed  t o  t h e  proof-mass through the  

s c a l e  f a c t o r  
f t  

(-/ms). It w i l l  o f t e n  be convenient t o  speak of apply- 
8 1  

i n g  a f o r c e  t o  the  proof-mass, and t h i s  terminology w i l l  mean - 2  

-~/ms)Fs  whenever the  f o r c e  i s  a c t u a l l y  appl ied  t o  the  s a t e l l i t e .  
-Ã 

While the  vec to r  rsB 
d e s c r i b e s  the  pos i t ion  of the  b a l l  wi th  

r e s p e c t  t o  the  s a t e l l i t e  mass c e n t e r ,  t h e  posi t ion-sensing apparatus 
-? 4 + Ã‘ 

i n  t h e  s a t e l l i t e  a c t u a l l y  measures t h e  vec to r  r where r C SB = r~~ + ^'c' 
i .e . ,  i t  measures t h e  p o s i t i o n  of t h e  b a l l  with r e spec t  t o  the  c o n t r o l  

+ 
c e n t e r .  The vec to r  rsc w i l l  be assumed t o  be f i x e d  i n  the  s a t e l l i t e ;  

o r ,  equ iva len t ly ,  i t  w i l l  be assumed t h a t  the  r e l a t i v e  motion between 

t h e  c e n t e r  of  mass, S ,  and t h e  c o n t r o l  c e n t e r ,  C ,  dur ing  the  expul- 

s i o n  of  gas ,  w i l l  be s o  slow and s o  smal l  t h a t  i t  may be neglected i n  

t h e  p resen t  s tudy of dynamic behavior .  

With t h i s  assumption, the  equat ions  of motion now become 



where 

-> 
Due t o  the  r o t a t i o n ,  us, of t h e  s a t e l l i t e ,  * 

and t h e  r e l a t i v e  t r a n s l a t i o n  equations wr i t t en  i n  terms of the  vec to r ,  
-+ 
r measured by t h e  p o s i t i o n  sensor a r e  c ' 

* 
For convenience a s i n g l e  symbol, 

F,,, defined t o  be equal  t o  the  sum 

of t h e  terms i n  t h e  braces  w i l l  be used when t h i s  equation i s  used 

l a t e r .  

Equations (1-1) and (1-6) a r e  t h e  basic equations of motion of 

t h e  drag-free s a t e l l i t e .  Equation (1-1) is t h e  only one t h a t  is  needed 

t o  compute the  s a t e l l i t e  t r a j e c t o r y  s i n c e  i t  w i l l  be assumed t h a t  t h e  

t r ans la t ion-con t ro l  system c o n s t r a i n s  the  s a t e l l i t e  t o  fol low the  b a l l .  

I t  w i l l  be discussed i n  Chapter IV .  Equation (1-6) is t h e  dynamical 

p l a n t  which t h e  t r ans la t ion-con t ro l  system must con t ro l .  I t  deter -  

mines t h e  control-system requirements and w i l l  be discussed i n  

Chapters I I and I I I . 

* 
0 -> See footnote  on page 10.  Note a l s o  t h a t  - + us X. 
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B . THE FORCING TERMS AND THEIR RELATIVE MAGNITUDES 

Since the  s a t e l l i t e  i s  cons t ra ined  by the  t r a n s l a t i o n  con t ro l  

system t o  fol low the proof-mass,  t h e  o r b i t  of the  s a t e l l i t e  will be 

determined s o l e l y  by Eq. (1-1). The proof-mass w i l l  be d is turbed 

from a pure ly -g rav i t a t iona l  o r b i t  only  by the  fo rces  ? and 3 .  SB 
These a r e  shown i n  Table 4-1, page 130, t o  correspond t o  a c c e l e r a t i o n s  

-11 * 
which a r e  l e s s  than 10  

'e 

The terms on t h e  right-hand s i d e  of Eq. (1-6) determine the  r e l a -  

t i v e  motion between the  s a t e l l i t e  and the  b a l l ,  and t h e i r  magnitudes 

a r e  important  only i n  determining the  requirements on the  t r a n s l a t i o n -  

c o n t r o l  system. 

I f  one cons ide r s  only the  g r a v i t a t i o n a l  a t t r a c t i o n  of a  s p h e r i c a l  

e a r t h  

* 
It i s  not  c o r r e c t  t o  conclude immediately from these  numbers 

t h a t  the  drag  i s  only cance l l ed  t o  1 0 - l ' ~ ~  s i n c e  the  e f f e c t  of 
Ã‘ 

FSB and qPB on the  b a l l ' s  o r b i t  a r e  not  t h e  same a s  the  drag. 
This  is t r u e  because the  drag  always a c t s  along the  v e l o c i t y  vector .  
See the  s e c t i o n  on System E r r o r s  (pp.126 t o  12&). 



* Likewise,  from Table 4-1, page 130, s i n c e  %/m << 1 and s i n c e  i t  s 
i s  assumed t h a t  t h e  c o n t r o l  system can main ta in  r < 0 . 1  dl ,  z 

F i n a l l y  , 

-+ 
Thus, f o r  low o r b i t s  t h e  aerodynamic d rag  f o r c e ,  

^DRAG J 

is t h e  

dominant t r a n s l a t i o n  d i s t u r b a n c e ;  and i n  o r d e r  t h a t  t he  c o n t r o l  keep 

t h e  b a l l  c e n t e r e d ,  t h e  average  c o n t r o l  f o r c e  must equal  t h e  average 

d rag  f o r c e ,  

-+ 
s o  t h a t  $DRAG may be measured by observ ing  ŝ 

C. TRANSLATION CONTROL EQUATIONS FOR VARIOUS TYPES OF ATTITUDE CONTROL 

1. THREE-AXIS ATTITUDE CONTROL TO AN INERTIAL REFERENCE 

I f  the d rag - f r ee  s a t e l l i t e  possessed p e r f e c t  a t t i t u d e  con- 
-+ -+ 

t r o l  t o  an  i n e r t i a l  r e f e r e n c e ,  k) and us would be i d e n t i c a l l y  s 
z e r o ;  and Eq. (1-6) would become 

* 
The expres s ions  i n  T a b l e 4 - 1  a r e  de r ived  i n  Chapter  IV. 



Equation (1-13) is equivalent to three scalar equations of the form 

I n  order for these equations to be valid, the attitude control mu:: act 
-+ 

such that the neglected terms in U) and U) are much smaller than r To s s c ' 
investigate the conditions under which this is true, assume, for simplicity, 

that the control acts such that the position and attitude responses are 

second-order critically damped, with time constants T and T respectively. 
r w 

Then it turns out that the above assumptions will be satisfied if 

T > T and if an equivalent impulsive disturbance in attitude, 6 
OJ - r max 
satisfies 

J. 
9 << - max T *  

r 

The control associated with the plant represented by Eq. (1-13) 

will be discussed in order to illustrate the basic problems; but, in 

general, it is more convenient (and for geodetic missions more desirable) 

not to control attitude at all. 

2. CONSTANT SPIN ABOUT A PREFERRED AXIS 

If the 

the satellite is 

and if the other 

constant and Eq. 

satellite is symmetric such that I = I # 13, and if 
1 

stably oriented with respect to the orbit plane (361, 
-Ã -Ã 

disturbing torques are negligible, then us = w is z 
(1-6) is 



In a reference frame with the z axis parallel to the spin axis, this 

becomes 

3 .  ATTITUDE UNCONTROLLED, ARBITRARY SPIN 

For 

equation (1-6) becomes 

It will be shown in Chapter 111 that it is possible to build 

a translation-control system in which the satellite attitude is un- 
11 1 t 

controlled and is allowed to run free. However, not all drag-free 

satellites will be flown with no attitude control. For the geodesy 

and aeronomy vehicles and for the satellites which carry low-precision 

unsupported gyroscopes, it is desirable to use a spin-stabilized 

attitude-control system; and for existing vehicles which already have 

an attitude control system or for carriers of high-precision unsupported 



gyroscopes. a  three-axis  a t t i tude -con t ro l  system i s  d e s i r a b l e .  There- 

f o r e ,  a  b r i e f  d iscuss ion of the  s a t e l l i t e  a t t i t u d e  equat ions  w i l l  be 

inc luded i n  t h i s  chapter .  

D. GENERAL ATTITUDE EQUATIONS (A SHORT REVIEW OF CLASSICAL RIGID-BODY 
DYNAMICS 1 

The o r i e n t a t i o n  of a  s e t  of a r b i t r a r i l y  r o t a t e d  axes (x ,y , z )  

wi th  r e s p e c t  t o  a  reference  frame (x ' , y ' , z ' i n  terms of t h e  non- 
* c l a s s i c a l  Euler  ang les ,  (Zi, 6 ,  and $ i s  depic ted  i n  Fig .  1-2. The 

4 
components of  the  vec to r  r w i l l  be denoted by the  3 X 1 column 

matr ix  

w i t h  a s i m i l a r  no ta t ion  f o r  r ' .  The components of r and r' a r e  - - 
r e l a t e d  by the  3 X 3 d i r e c t i o n  cos ine  matrix 

The components of A may be w r i t t e n  i n  terms of  0, 6 ,  and ilf by - 
mul t ip ly ing  together  t h e  ma t r i ces  which correspond t o  t h e  t h r e e  ordered 

r o t a t i o n s  about x * ,  T]', and C. 

* -* 
Reference frames (x * , y * , z ' ) , (x , y , z )  and a  genera l  vec to r  r 

w i l l  be u s e d i n  t h i s  s e c t i o n  t o  mainta in  g e n e r a l i t y .  ( x ' , y ' , z t )  cor-  
responds t o  a  nonrota t ing  re fe rence  frame a t  t h e s a t e l l i t e  c e n t e r  of 
mass and (x,  y  , z) corresponds t o  (xs ,ys., zs) . 



ROTATE d) ABOUT x '  

7 '  
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SIGNAL-FLOW-GRAPH REPRESENTATION 
Due t o  Emory C u r t i s  ( 3 7 )  

FIG. 1-2. AIRCRAFT OR NONCLASSICAL EULER SET 



By differentiating the inverse of Eq. (1-21), 

and premultiplying by A, one obtains 

Direct comparison of Eq. (1-24) with the Coriolis law 

shows that 

in which 

is an antisymmetric matrix of body angular rates which yields the 
-b -P 

components of w X r resolved in the (x,y,z) reference frame when s 
postmultiplied by r. Equation (1-26) is one form of the differential - 
equations of the satellite orientation. 

+ 

f f 
By resolving the 3 vectors 0, 9, and Â¥^ in the (x,y,z) frame, 

it may be shown that 



where 

and 

Thus, another  form of t h e  o r i e n t a t i o n  d i f f e r e n t i a l  equation i s  

I n  t h i s  same no ta t ion  E u l e r t s  equat ions  become 

where I i s  a matr ix  of the  body components of t h e  moment of i n e r t i a  

t ensor .  Equation (1-32) combined wi th  Eq. (1-31) o r  (1-26) a r e  the  

genera l  s a t e l l i t e - a t t i t u d e  equations of motion. The a t t i t u d e  equations 
-P 

a r e  coupled t o  the  t r a j e c t o r y  equations through t h e  terms 
-P -P -P -* 

^G3 'PS* 
Fcs, Mps, MGs,  and Mcs; but wi th  the  exception of the  c o n t r o l  jets, 

t h i s  coupling i s  r a t h e r  weak. 

I t  i s  not  necessary t o  cons ider  the  most genera l  form of t h e  

a t t i t u d e  equat ions  f o r  most v e h i c l e s , s i n c e  the  equations may be 

w r i t t e n  i n  s impler  form f o r  var ious  s a t e l l i t e  types .  



E. ATTITUDE CONTROL EQUATIONS 

1. THREE-AXIS ATTITUDE CONTROL TO AN INERTIAL REFERENCE 

In this case, the well known small-amplitude linear form of 

Eqs. (1-31) and (1-32) is adequate 

Equation (1-33) has been extensively studied in the controls literature 

(38) and will not be considered in this thesis except in Chapter I1 

where the translation control equations for the case of no rotation 

have the same form. 

2. SYMMETRIC RIGID BODY SPINNING ABOUT ITS SYMMETRY AXIS 

Leon (22) and Freed (23) show how to reduce the equations 

of motion of a spinning, symmetric rigid body to a more convenient 

complex form. This procedure is briefly reviewed here. 

If Il = I # I_, Euler's equations become 

A 
If q g w x +  j w  m=(1~-1&, n g  13/IlJ w bf3, and 

Y z 

Q M/I1 + j M / I ,  Eqs . (1-34) and (1-35) reduce to 



Since eJ' = c+ + j & +, the first two lines of Eq. (1-28) 

may also be written in the complex form 

q = ($ c0 + j6)e-fi . 

When 6 << 1, Eq. (1-37) becomes 

$ + j6=qeJ'=qe J P ~  

if ilf is chosen to be zero when t = 0. 

Now define the complex attitude angle, a, 

Figure 1-3 shows the interpretation of 0;. The angles 0 and 9 

give the orientation of the symmetry axis in the inertial reference 

frame (x ' , y ' ,zg).. By differentiating Eq. (1-39) and substituting in 

Eq. (1-381, 

Equations (1-36) and (1-40) are one form of the attitude equations of 

a symmetric rigid body. They may be combined to form a single equa- 

tion in a. 

Figures 1-4 and 1-5 show block diagrams of these equations in both 

real and complex form. The control of these equations is discussed 

in Chapter 111. 



- Y  <t> A X I S  
Y 

SYMMETR I C 
S P I N N I N G  BODY 

WHEN 6 AND <t> ARE SMALL, 
j6 A X I S  / a MAY BE INTERPRETED AS THE 

X PROJECTION Of THE T I P  OF THE 
z A X I S  I N  THE x , y  PLANE. 
THE EQUATIONS OF MOTION, HOWEVER. 
ARE V A L I D  FOR ARB1 TRARI LY LARGE <<>, 

FIG. 1-3. INTERPRETATION OF THE COMPLEX ATTITUDE ANGLE, a ̂  ?> + j9 

3. ISOINERTIAL SATELLITE WITH SPIN DIRECTION CONTROL 

It is desirable to point the spin vector normal to the orbit 

plane to minimize various trajectory disturbances (cf. Chapter IV), and 

the satellite with the least amount of internal vehicle gravity will also 

be isoinertial. If I - 12= 1- 
I-, the attitude-controlequations are simply 

- + M 1 ES - EpPS + "Gs <s (1-42) 

and will not be discussed. 
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4 .  ATTITUDE UNCONTROLLED, EXPECTED SPIN RATE FROM TRANSLATION JET 
MISALIGNMENT 

For 

t h a t :  

1 )  

the purpose of an order  of magnitude es t ima te  assume 

the  drag-free s a t e l l i t e  c o n s i s t s  of a  hollow s p h e r i c a l  

s h e l l  of r a d i u s ,  Â£ and mass, m ss ' with  a  s i n g l e  
? I  

gas j e t  of e f f e c t i v e "  l e n g t h ,  h ,  and assume t h a t  the  

c e n t e r  of mass of  the  s a t e l l i t e  does not  s h i f t  a s  gas 

is  expe l l ed ,  

the  t h r u s t  l i n e  of t h i s  jet makes an ang le ,  QML, wi th  

a  l i n e  drawn from the  j e t  t o  the  c e n t e r  of mass of t h e  

s a t e l l i t e ,  

t he  j e t  runs  continuously a t  a  t h r u s t  l e v e l  equal  t o  

the  average d r a g  fo rce  a c t i n g  on t h e  s a t e l l i t e  s o  t h a t  

ms = mss + m + & t ,  
go g  

the  v e l o c i t y  f i e l d  of the  c o n t r o l  gas is zero  with 

r e spec t  t o  the  s a t e l l i t e  everywhere except  where it 

passes through t h e  j e t  and t h a t  i t  i s  p a r a l l e l  t o  t h e  

j e t  a x i s  of symmetry and equal  t o  v  everywhere i n s i d e  
e 

t h e  j e t ,  

e f f e c t s  d u e . t o  c e n t r i f u g a l  a c c e l e r a t i o n  and us may 

be neglected i n  comparison with t h e  C o r i o l i s  accelera-  

t ion ,  

the  only e x t e r n a l  moment a c t i n g  on t h e  s a t e l l i t e  a r i s e s  

from eddy-current damping i n  the  e a r t h ' s  magnetic f i e l d  
2 4 Ã‘ -Ã 

(26) given by - [2/3 Be .l? u cos  (us, Be>] us. 

Under these  cond i t ions ,  the  gas stream e x e r t s  a  l a t e r a l  f o r c e ,  2usmsh, 

on the  jet wall  due t o  t h e  C o r i o l i s  a c c e l e r a t i o n  of t h e  moving f l u i d  i n  

t h e  r o t a t i n g  s a t e l l i t e .  



Under these conditions, the attitude equation of the satellite 

may be approximated by 

where 

The solution of E q .  (145) is 

Since the total mass of control gas would be typically only 
2 

about one tenth of the total vehicle mass, ~&gtl<<}mps + - m 1 and 
5 go 

for a drag-free satellite in a 400 km circular orbit (cf. pages43 and 

4 4 )  with a misalignment angle of one degree. In one year, ws can 

typically build up to about 20 rad/sec = 200 RPM. Thus, for some 



missions, the uncontrolled rates will not be excessive; but for long 

lifetimes or low altitudes, a rate-limiting control system may be 

necessary even in those cases where attitude control is unnecessary or 

where spin is desirable. 

F. SMALL-AMPLITUDE LINEAR MOTION OF A SATELLITE INCLUDING GRAVITY- 
GRADIENT EFFECTS 

The librations of a satellite will in general couple into the 

center-of-mass motion, and the center-of-mass motions will couple into 

the attitude motions. The latter effect is well known and has been 

studied extensively (32), and the former is, in general, quite small. 

For the drag-free satellite, however, any motions of the center of mass 

in which the proof-mass does not share are important. In order to deter- 

mine their exact size, these motions will be investigated by analyzing 

the six coupled center-of-mass and attitude equations after they have 

been linearized about a nominal circular orbit. These equations may be 

derived in two ways: 1) from Lagrange's equations, or 2) directly from 

Newton's Laws. Furthermore, the resulting equations must reduce to the 

linearized form of Hill's equations for a point mass (29) and to 

Lagrange's attitude equations (30) for a circular orbit. (See page 36 

and see the discussion beginning on page 110.) 

1. DERIVATION OF THE COMBINED SIX-DEGREE-OF-FREEDOM TRANSLATION AND 
ATTITUDE EQUATIONS 

For the coordinates as shown in Fig. 1-6, the Lagrangian of the 

satellite is given by 

1 
k Trace I - - + - 

2 3 r ES 
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where k ^ % i s  the e a r t h ' s  g r a v i t a t i o n a l  cons tant  and I i s  the  

s a t e l l i t e  moment-of-inertia dyadic.  (Dyadics w i l l  be denoted by a  

double underscore.)  C lea r ly ,  when the  l i n e a r i z a t i o n  i s  about a  nominal 
Â¥ 2  c i r c u l a r  o r b i t ,  1/2 m r Es + kms/rEs must y i e l d  t h e  l i n e a r i z e d  form 

of H i l l ' s  equat ions(s ince  these  terms deal  only wi th  the  center -of-  
+ 

mass motions a s  do H i l l ' s  equations);  and 1/2 us I u must y i e l d  = s 
t he  i n e r t i a l  terms i n  the  Lagrange a t t i t u d e  equations (s ince  they dea l  

only wi th  the  a t t i t u d e  motions).  Hence, the terms of i n t e r a c t i o n  i n  

the equat ions  of motion may be obtained by d i f f e r e n t i a t i n g  only 

3 k +  + ve = - - 1 k Trace I r - 1 - r  - - - - 2  5 ES = ES 2  ." 3 
. (1-49) 

I f  t h e  veh ic le  a t t i t u d e  angles  0 , 9 ,  and 9 a r e  c a l l e d  

el , O2 
and â‚¬I then (when they a r e  small enough t h a t  t h e i r  products 

may be neglec ted)  the  d i r e c t i o n  cos ine  matrix (Eq. (1-22)) becomes 

I n  a d d i t i o n ,  i f  

where 

then Eq. (1-49) may be expanded t o  second order  i n  the  independent 

v a r i a b l e s  6,7,S,91,92, and g3. 



r 
N 2 2 

2 3 l2  + 13[c + rNa2]2 ) (1-53) - - + a )+ e l ,  - a2c] + I2  [l, - rNa3, 

The interact ion terms are  then given by: 



To o b t a i n  t h e s e  r e s u l t s  d i r e c t l y  from Newton's Laws, i t  i s  necessary  

t o  sum a l l  t h e  f o r c e s  and to rques  a c t i n g  on the  i t h  mass element 

and then  t o  i n t e g r a t e  t h e s e  ove r  t h e  e n t i r e  body. 

-k m. r 
1 i Ã‘Ã + f = 
3 where ri = rN + 6; + 6;; 

GS i 

and 

Expanding l/r3 t o  t h e  t h i r d  o r d e r ,  and n e g l e c t i n g  terms 
1 

i n  (6r12 and ( 6 r p  and h i g h e r ,  and no t ing  t h a t  

Trace I , S m i ( ~ ~ ; ) 2  i = 2 - 

and 

Trace - I S mi 8;; 6;; = - 1 + - 
9 - 2 i - = 

(where t h e  symbol has  t h e  meaning of  sum o r  i n t e g r a l  a s  t h e  c a s e  
i 

may r e q u i r e  and 1' - i s  t h e  u n i t  d y a d i c ) ,  t h e  fo l lowing  expres s ion ,  f o r  

t h e  f o r c e  and torque  terms a r e  o b t a i n e d  by i n t e g r a t i n g  3GÃ£ and 
+ 
'Gsi 

over  t h e  body. 



3 6; * -b 

3  Trace I - ^ =  2 [ m s - 3 m s (  /")+; 2 - (1-5 
u r r 2 
0 N N N 

-Ã 

3  Trace I 15 - - - N - 
r 
2 2 

r 
4 

N N 

and 

When coordinatized as  i n  Fig. 1-6, the interaction terms i n  Eqs. (1-64) 

and (1-65) reduce t o  Eqs. (1-54) through (1-59). The complete coupled 

set i s  shown below. 





Equations (1-661, (1-671, and (1-68) reduce t o  H i l l ' s  equa- 

t ions  (without the nonlinear grav i ta t iona l  terms) when the s a t e l l i t e  

becomes a point  mass; and Eqs. (1-691, (1-701, and (1-71) become the 

Lagrange a t t i t u d e  equations when E , T ]  and c a r e  zero. 

H i l l ' s  equations 
descr ibing the 
l inear ized  motions 
of a point  mass 
with respect  t o  a 
nominal c i r c u l a r  
o r b i t  

Lagrange ' s 
a t t i t u d e  
equations 
descr ibing 
the l i n -  
ear ized 
l i b ra to ry  
motions of 
a s a t e l l i t e  
i n  a c i r c u l  
o r b i t  

* 
It i s  important t o  note t h a t  the correspondence 

6 - f L  

'I - rfi 
leads  t o  a set of equations l i k e  (1-721, (1-731, and (1-74) i n  cy l indr i -  
c a l  coordinates 

Equations (1-751, (1-761, and (1-77) may be 

= f (1-77) 
-4 

derived d i r e c t l y  from the 
o r b i t  equations wri t ten i n  cy l indr ica l  .form. When t h i s  is  done 0 may be 
a r b i t r a r i l y  la rge  ( in  Eq. (1-72)'. and (1-731, t and xmust  be small) ,  
but 0 and 0 must be small ( i n  Eq. (1-72) and (1-73), 6 and f l  may be 
a r b i t r a r i l y  la rge) .  The cy l indr ica l  coordinate (or with planar motion, 
the  polar  coordinate) i n t e rp re t a t i on  i s  much more accurate when the solu- 
t i on  of H i l l ' s  equations contain la rge  terms i n  T), See Ref. (19). 



I n  o r d e r  t o  ana lyze  completely t h e  e f f e c t s  of t h e  d i s t u r b i n g  

f o r c e s  on t h e  b a l l ,  t h e  form of Eqs. (1-721, (1-731, and (1-74) w i th  

t h e  second-order n o n l i n e a r i t i e s  i nc luded  w i l l  be needed i n  Chapter  I V .  

These w i l l  be de r ived  n e x t ,  

2. DERIVATION OF THE HIGHER-ORDER NONLINEARITIES I N  HILL'S ORBIT 
EQUATIONS 

H i l l ' s  e q u a t i o n s  may a l s o  be  d e r i v e d  by s u b s t i t u t i n g  

d i r e c t l y  i n t o  t h e  o r b i t  e q u a t i o n  

-+ 
The equa t ion  i n  r i s  assumed t o  s a t i s f y  x 

and 

is  expanded a s  a  power series i n  6r / rN.  I f  Eq. (1-84) i s  c a r r i e d  t o  

t h i r d  o r d e r ,  H i l l ' s  o r b i t  equa t ions  become 



Equation (1-85) may be w r i t t e n  i n  s c a l a r  form 

Equat ion (1-88) w i l l  be needed t o  compute t h e  e f f e c t  of t h e  

d i s t u r b i n g  f o r c e s  when t h e  s a t e l l i t e  s p i n  v e c t o r  i s  normal t o  t h e  

o r b i t  p l ane .  



CHAPTER I1 

TRANSLATION CONTROL WITH PERFECT THREE-AXIS ATTITUDE CONTROL 

The o b j e c t  of t h i s  chapter  i s  t o  d i scuss  the  bas ic  t r a n s l a t i o n -  

c o n t r o l  problem ( inc luding f u e l  consumption) a s soc ia ted  wi th  the  opera- 

t i o n  of a nonrota t ing  drag-free s a t e l l i t e .  The case  where the  s a t e l l i t e  

does not  r o t a t e  with r e s p e c t  t o  an i n e r t i a l  reference  i s  of i n t e r e s t  

f o r  precision-gyroscope experiments where the  gyroscope sp in  a x i s  must 

be compared with a f i x e d  d i r e c t i o n  i n  i n e r t i a l  space. I n  a d d i t i o n ,  

omi t t ing  the  s a t e l l i t e  r o t a t i o n  makes i t  e a s i e r  t o  present  the  bas ic  

p r o p e r t i e s  of the  t r a n s l a t i o n  con t ro l  without the  added complexity due 

t o  t h e  r o t a t i o n .  

The c o n t r o l  must accomplish two th ings :  

-^ 
1 )  keep the  vec to r  rc wi th in  some spec i f i ed  bound i n  

the  presence of the  d i s t u r b i n g  f o r c e s ,  and 

2 )  do t h i s  wi th  a minimum expenditure of f u e l .  

4 

The bound on rc w i l l  be d i c t a t e d  by the  type of mission. For example, 

i n  the  c a s e  of an aeronomy mission,  i t  i s  merely necessary t h a t  t h e  

proof-mass not con tac t  the  c a v i t y  wa l l s  very much; and f o r  geodesy 

experiments,  i t  i s  d e s i r a b l e  t h a t  the  proof-mass be con t ro l l ed  i n  

such a manner t h a t  t h e  f o r c e  i n t e r a c t i o n s  between i t  and the  s a t e l l i t e  

a r e  a s  smal l  a s  poss ib le .  For precision-gyroscope experiments, how- 

e v e r ,  i t  i s  necessary t h a t  the  r o t o r  never contac t  the  c a v i t y  wa l l s ;  

and f o r  some readout schemes, i t  i s  necessary t h a t  t h e  r o t o r  be very 

s t a t i o n a r y  wi th  r e spec t  t o  the  s a t e l l i t e  during the  readout period.  

A .  TRANSLATION-CONTROL SYSTEM DESIGN FOR MI NIMUM-FUEL CONSUMPTION 

In  o rde r  t o  cons ider  t h e  f u e l  consumption, i t  i s  necessary t o  

examine the  na tu re  of t h e  c o n t r o l  system dis turbances  given i n  Eq. 

(1-6) and a l s o  on page 1 5 .  They a r e  



1) A?.,/% (the difference between the acceleration of 

gravity acting on the ball and that acting on the 
-10 

satellite) z 10 to 

2) (1 + %/mS)TsB/% (the acceleration due to the force 

interactions between the ball and the satellite) 
-1 1 

ss 10 
e 

. (See Table 4-1, page 130.) 

3) (?pB - %/mn 3ps~-B (the acceleration due to outside 

perturbations). 
-^> 
F )/nip arises from P̂B - V m s  ps 

a) Meteorite collisions with the satellite, 

b) Motion of a charged satellite through the earth's 

magnetic field, 

c) Undesired expulsion of matter due to outgassing or 

control gas leaks, 

d) Solar radiation pressure, and 

e) Atmospheric drag. 

(1) and (2) are negligibly small but (3)  must be considered in detail. 

Each of these disturbances will be discussed below. 

1. EXTERNAL PERTURBING ACCELERATIONS 

a. Meteorite Collisions with the Satellite 

From elementary momentum considerations, it can be 

shown that a meteorite collision with a typical relative velocity of 

40,000 ft/sec between a 45 kilogram satellite and a 0.2 milligram 
* -2 

meteorite would impart a velocity change of 10 cm/sec to the 

satellite. (This velocity change is typical of the limit-cycle-size 

for the control system. See Fig. 2-7,.page 62 .) Data on the fre- 

quency of met,eorite collisions is still rather poor; but the indications 

are that collisions with meteorites of this mass or larger are extremely 

rare, occurring approximately every one to 1000 years (40). 

* 
This mass was chosen as a worst-case example. A collision with 

a much larger meteorite would probably do serious damage to the satellite. 



b. Motion of a  Charged S a t e l l i t e  Through t h e  Ear th ' s  Magnetic F i e l d  

A charge w i l l  accumulate on a s a t e l l i t e  moving through 

t h e  ionized upper atmosphere because of t h e  d i f f e r e n t  m o b i l i t i e s  of 

t h e  e l e c t r o n s  and i o n s ,  and it can be shown t h e o r e t i c a l l y  t h a t  t h e  

p o t e n t i a l  of t h i s  charge w i l l  not  exceed a few v o l t s  (41). (However, 

t h e r e  is a t  l e a s t  one ins tance  of a p o t e n t i a l  of s e v e r a l  hundred v o l t s  

be ing measured on a s a t e l l i t e . )  I f  one t a k e s  100 v o l t s  a s  a  reasonable 

upper bound, the  d i s t u r b i n g  a c c e l e r a t i o n  caused by moving t h i s  charge 

through t h e  e a r t h ' s  magnetic f i e l d  w i l l  be of the  o rde r  of 4 X 1 0 - g .  

c .  Undesired Expulsion of Matter  Due t o  Outgassing o r  Control  Gas Leaks 

Cold gas c o n t r o l  va lves  have t y p i c a l  leakage r a t e s  which 

vary between and s tandard  cc/sec.  By c a r e f u l  des ign and 

q u a l i t y  c o n t r o l ,  i t  i s  reasonable  t o  expect  t o t a l  gas leakages of the  

o r d e r  of about 10 s tandard  l i t e r s  pe r  year .  Such leakage va lues  cor-  

respond t o  flow r a t e s  which would cause n e g l i g i b l e  control-system d i s -  

turbance.  

Gas l e a k s  which r e s u l t  from system malfunctions o r  out-  

gass ing  could r e s u l t  i n  s i z a b l e  d i s t u r b i n g  fo rces .  There i s  no way t o  

analyze these  i n  advance, bu t  t h e  d i s tu rbances  w i l l  be r e l a t i v e l y  

cons tan t .  They w i l l  make t h e  drag-free s a t e l l i t e  uncon t ro l l ab le  i f  

t h e i r  magnitudes exceed t h e  c o n t r o l  f o r c e ,  o r  they w i l l  only waste gas 

while s t i l l  allowing the  c o n t r o l  system t o  func t ion  i f  t h e i r  magnitudes 

a r e  l e s s  than the  c o n t r o l  fo rce .  

d .  Solar-Radiation Pressure  

2 
Solar- radia t ion  p ressure  i s  about 1 dyne/meter . This 

-8 
causes  a  d i s t u r b i n g  a c c e l e r a t i o n  of about 10  g on a 45 kilogram 

2 
s a t e l l i t e  wi th  an a r e a  of 0.5 meters . This d is turbance  is  constant  

except  f o r  two times during t h e  o r b i t  when the  s a t e l l i t e  e n t e r s  o r  

l e a v e s  t h e  e a r t h ' s  shadow. 



e. Atmospheric Drag 

Consider again Eq. (1-14) (with some of the subscripts 

dropped) 

For most orbits the dominant contribution to f is the atmospheric 

drag, and it is instructive to compute the drag as a function of time 

and orbit. The linear-scale-height model of the atmosphere, as pro- 

posed by Groves (331, Jacchia (341, and Smelt (351, provides a more 

accurate representation than the conventional constant-scale-height 

exponential model, and will be the one which is used in this calculation. 

The drag force on a body moving at orbit speed v 
0' 

through a rarified atmosphere of density, p, is given by 

where As 
= satellite reference area, and 

C = drag coefficient. 

The atmospheric density, p, used in these calculations will be ob- 

tained by integrating the equation of hydrostatic equilibrium using a 

pressure-scale-height, H, which varies linearly with altitude. 

I 8  
where R stands for referencew and a is the slope of the scale 
height line versus h. The result is 



where 

h is  t h e  reference  a l t i t u d e  about which the  s c a l e  he ight  i s  l i n e a r i z e d ,  

and r 
ES 

and r a r e  the  rad. i i  from t h e  c e n t e r  of mass of the  e a r t h  
R 

t o  t h e  s a t e l l i t e  and t o  the  r e fe rence  a l t i t u d e  respec t ive ly .  Equation 

(2-4) i s  der ived by Smelt (35). 

Later  i n  t h i s  chap te r  i n  the  eva lua t ion  of the  fue l -  
2 l i f e t i m e  i n t e g r a l s ,  i t  w i l l  be 'most convenient t o  have r and vo 

ES 
expressed i n  terms of the  e c c e n t r i c  anomaly, E.* 

I f  w e  d e f i n e  t h e  normalized drag  f o r c e ,  Dn, a s  

t h e  drag  a t  the  reference  a l t i t u d e  (except 

then s u b s t i t u t i n g  Eqs. (2-3) through (2-6) 

t h e  drag  d iv ided by 
2 3 f o r  the  f a c t o r  Rea/rR), 

i n t o  Eq. (2-2) y i e l d s  

Equation (2-7) i s  p l o t t e d  i n  Fig.  2-1 using c o n s t a n t s  i n t e r p o l a t e d  from 

t h e  1962 ARDC Model Atmosphere (42).  The fol lowing values  f o r  t h e  con- 

s t a n t s  w e r e  assumed: 

* 
See Ref. (29) f o r  a d e f i n i t i o n  and d i scuss ion  of e c c e n t r i c  anomaly. 
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2 As  an example, consider a s a t e l l i t e  with CD = 2 and As = 0.5 m = 
2 5.38 f t  , then 

' -4 -5 r A p g (2)2 = 2.08 X 10 ntns  = 4.68 X 10 lbs ;  (2-9) 
R S R e  rR 

and if mSg = 445 ntns = 100 l b s ,  then the nominal drag, r R ~ s P R ~ ~ e / r R ) 2 ,  

expressed i n  's i s  
'e 

Thus (R /rRl2 times Eq. (2-10) gives the drag accelerat ion,  fDMG/ge, e 
i n  a nominal c i r c u l a r  o r b i t  a t  the reference a l t i t u d e  of 400 km, and 

Eq. (2-9) o r  (2-10) may be used i n  conjunction with Fig. 2-1 t o  deter-  

mine the drag forces  for  o ther  o r b i t s .  

From the preceding discussion,  i t  can be seen t h a t  the 

d i s tu rb ing  accelerat ions  f a l l  i n t o  f i v e  general c lasses:  

1) Negligibly small, 

2) Causing s m a l l  s t ep  changes i n  veloci ty  about once per 

year (meteorite c o l l i s i o n s ) ,  

3) Causing small s t e p  changes i n  a constant dis turbing 

accelerat ion about twice per o r b i t  (solar-radiation 

pressure),  

4 )  Relatively constant ,  but possibly not negl igible  (leaks 

o r  outgassing),  and 

5) Periodic with period 2ff/tii0 (atmospheric drag). 



NORMALIZED DRAG FORCE (On) 








































































































































































































































































