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ABSTRACT

A scientific earth satellite which is guided in a drag-free
orbit by a shielded, free~falling proof-mass has been proposed by a number
of investigators. The outer satellite, which completely encloses the
proof-mass, has a jet-activated translation-control system that causes it
to pursue the proof-mass such that the two never touch. This thesis

examines the feasibility and some of the applications of this scheme.

The complete system equations of motion are derived, and the
various special cases which apply for different missions and types of
attitude control are delineated. 1In addition, a set of linear equations
for both translation and libration of a satellite in orbit are derived.

These represent a combinec version of the linear form of Hill's Lunar

Equations and Lagrange's Libration Equations.
D oERee e s

The control and guidance system is analyzed with respect to
system performance and gas usage requirements, and an exact solution of
the fuel consumption integrals is presented in closed form for a linear

pressure-scale-height model of the atmosphere.

A linear-feedback control-synthesis method is developed for a
class of even-ordered dynamical plants which possess a property that is
defined as "frequency symmetry." This method allows a simple linear-
feedback law to be computed which is stable for all positive values of
the contrecl gain so that it is useful for the synthesis of contactor

control systems.

The principal trajectory errors which are due to vehicle gravity,
stray electric and magnetic fields, and sensor forces are investigated. It
is found that drag and solar radiation pressure forces may be effectively
reduced by three to five orders of magnitude for 100 to 500 statute mile
orbits, and that the deviation from a purély-gravitational orbit may be
made as small as one meter per year. Such a satellite may be used to make

precise measurements in geodesy and aeronomy.
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Finally, if a spherical proof-mass is spun as a gyroscope, its

T — -

random drift rate would be very small because all.the drift-producing

Egﬁggggwwglpp_are associated with the support forces are eliminated. The
sources of gyroscope drift which are not associated with support forces
are analyzed, and it is found that the random drift would probably be
less than 0.1 second of arc per year. Such a gyroscope could be used to
measure the effects which would ultimately limit the performance of the
best terrestrial or satellite-borne gyroscopes, and it might also be good
enough to perform the experiment proposed by G. E. Pugh and L. I. Schiff

to test general relativity.
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INTRODUJCTION

A. STATEMENT OF THE PROBLEM

The term "drag-free satellite” as used in this thesis will refer to
a system consisting of a small, spherical proof-mass or ball inside of a
completely enclosed cavity in a larger satellite. The outer satellite
has a jet-activated translation-control system that causes it to pursue
the proof-mass such that the two never tcuch. Since the cavity is closed,
the ball is shielded from gas drag and solar-radiation pressure; and, in
the ideal case when the effects of other disturbing forces are negligible,
the orbit of the proof-mass will be determined only by the forces of
gravity. The only disturbing forces which can act on the proof-mass will
arise from the satellite itself or from any interactions which can pene-
trate the shield. Forces due to the satellite can arise from vehicle
gravity, stray electric and magnetic fields, gas in the satellite cavity,
and the interaction of the position sensor.

Several possible uses or missions for such aisatellite have been

proposed.

1. GEODESY

The departure of the figure of the earth from a perfect sphere intro-
duces higher harmonics in the earth's gravitational pqtential. These
harmonics perturb the orbit of an garth satellite, and it is possible to
measure the harmonics of the earth's gravitational field by observing the
changes in a satellite's orbit elements. However, the atmosphere alsc
perturbs the satellite orbit, and this effect must be corrected for in
accurate geodetic calculaticns based on measurements of satellite orbits.
The rather elaborate techniques for making these corrections are explained
in detail by Kaula (1). A drag-free satellite would remove the necessity
of correcting for the uncertainties of atmospheric drag and soiar-radiation
pressure in satellite observations of the higher harmecnics of the earth's
gravitational field. 1In addition, sustained operation wculd be possible
at lower altitudes where the effecfs of higher harmonics are stronger and

where the orbits of conventional satellites are quickly dissipated.
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2. AERONOMY

Conventionally, upper-atmosphere density determinations (2)
are made by observing the change in the satellite period over several
orbits and essentially determining the average density over the entire
time and altitude range. This type of data is not as useful in studies
of the upper atmosphere as instantaneous density measurements. By
contrast, the proof-mass in the zero-g satellite essentially constitutes
a very sensitive accelerometer which could be used to measure the in-
stantaneous atmospheric drag (plus radiation pressure) at any altitude.

For a spherically-shaped satellite, the drag coefficient,

CD’ is 2 in free molecular flow at high Mach numbers, regardless of
the accommodation ccoefficient; andvthe calibration of the instrument
would not depend on knowing the accommodation coefficient as does, for
example, Sharp's density gauge (3). The actual drag forces may be
inferred from the jet-plenum-chamber temperatures and pressures, or
even more precisely from the relative motion between the proof-mass
and the satellite, or from strain-gage measurement of the forces
between the jets and the satellite. The latter technique is feasible
because the jet forces are typically one to three orders—-of-magnitude
larger than the drag force, due to the fact that the jets are on for

only a small fraction of the total time.

3. PRECISION GYROSCOPES

If the spherical proof-mass is spun at a very rapid rate,
it becomes a gyroscope. Since there are no support forces, only ex-
tremely small disturbing torques are present. These will arise from
gravity-gradient effects, electromagnetic interactions, relativity
effects, and read-out torques. It appears possible to construct in
this way a gyroscope whose random drift rates would be as low as 0.1
second oanrc per year. Such an instrument would be very useful to
study all the effects, not connected with the support forces, which
would ultimately become important in the construction of extremely
low-drift gyroscopes, and it would be possible to do this many years in
advance of the time when it might be possible to construct such instru-
ments on earth.
SEL-64-067



4. THE PUGH-SCHIFF GYROSCOPE EXPERIMENT

L. I. Schiff (4) has shown that, while Newtonian theory
predicts no precession of the spin axis of a spherically-symmetric
gyroscope in free-fall about the earth, General Relativity predicts
a geodetic precession arising from motion through the earth's gravi-
tational field, and a Lense~Thirring precession due to the difference
between the gravitational field of a rotating and nonrotating earth.
The geodetic precession of a gyro in a satellite is about 7 seconds
of arc/year and the Lense-Thirring precession is about 0.1 second of
arc/year. The design and preliminary development of this experiment
in a satellite has been under way at Stanford University for about

two years, and is described by Cannon in (5).

5. TIME DEPENDENCE OF GRAVITY

R, H, Dicke (6) has suggested that such a satellite could
be used as a clock whose rate would depend on the universal constant
of gravity, G. Such a clock could be compared to precision atomic
clocks on earth. Any change in the rate of the gravitational clock
could be interpreted as a change in the "constant" G. The value of
G as a function of time has important consequences in the theories
of relativity. The tracking accuracies necessary for this experiment
are dictated by the very small size of the effect (about one part in
1010 per year), which yields an accumulated lag in the satellité's
position of about 0.2 second of arc/year. This is discussed in (7)

in detail.

6. ORBIT SUSTAINING

For certain missions, it is desirable to operate a satellite
at very low altitudes. Such a satellite would quickly re-enter if
its drag were not counteracted in some manner. Rider (8), Bruce (9),
and Roberson (10) have discussed various ways of doing this. The
free~falling ball could be used to control thrust such that the satel-

lite would remain in a purely=-gravitational orbit until the gas supply
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is exhausted. This technique would also be especially useful to con-
trol precisely the entry points of satellites and of large, potentially-
dangerous, spent booster stages. It could also be used to establish a
true equiperidd orbit (where the orbit dips very low into the atmosphere)

for rendezvous practice,

7. ZERO-G LABORATORIES

It has been proposed that the central parts of manned space
stations be used as zero-g laboratories. For experiments of long
duration, such a drag cancellation scheme would be necessary tolprevent
the apparatus from contacting the laboratory walls.

The problem which this thesis will consider is the analysis and
design of suitable control systems for the various drag-free satellite
missions, and the analysis of the performance of the drag-free satellite

in its various applications.

B. PREVIOUS RESULTS

A system similar to the drag-free satellite was first used by
researchers who investigated the state of weightlessness (11). Air-
planes were flown in weightless trajectories by keeping a small object
centered in free space in the cabin. The same system has also been
suggested as a guidance scheme to cause ballistic missiles to re-enter
along a path which is undisturbed by aerodynamic forces. Ericke (12)
also has suggested launching a half-airplane half-satellite which would
fly at altitudes between 90 km and 180 km and use some thrust to cancel
drag. He calls such a vehicle a "satelloid" and points out that it may
also fly at sub=circular velocities using aerodynamic 1ift to sustain

it,

The first suggestions of this scheme, purely in connection with a
satellite; apparently were made independently from 1959 to 1961 by a
number of investigators. Martin Schwarzschild (6) at Princeton, R.A,
Ferrell (in an unpublished report), G. E. Pugh (13), and Gordon J. F,
MacDonald (14) at U.C.L.A., have proposed various formé of the drag-free
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satellite. It was also suggested independently by C. W, Sherwin of
Aerospace and by the author at the Stanford Conference on Experimental
Tests of Theories of Relativity in July 1961 (15).

There has been no previous attempt to write the equations of
motion of the drag-free satellite system, but the analysis of these
equations rests in part on the recent efforts to apply the linearized
version of Hill's lunar equations to orbit mechanics and on the use of
a complex variable formalism in the theory of symmetric rigid bodies.

In 1878, G. W, Hill wrote the equations of motion of the moon in
a rectangular coordinate system centered at the earth and rotating at
the sun's mean orbital rate. Hill's equations included the nonlinear
gravitational attraction between the earth and the moon, and it was
not until 1957 that Wheelon (16) (and independently Geyling (17) in
1959) realized that the linear version without the gravitational terms
was a very useful way to calculate 6rbit'partials and perturbations.
This approach has also been applied by Eggleston (18) and Tempelman (19)
to the problems of rendezvous and guidance. These linearized equations
are used to analyze the effect of acceleration errors in Chapter 1V,

One of the most important modes of operation of the drag-free
satellite is as a symmetric spin=-stabilized vehicle. It has been known
for a long time that Euler's equations and the small-angle attitude
equations for a symmetric body were most conveniently represented in
complex form. This method has been applied to spinning missiles in .the
atmosphere by Nelson (20) and Kanno(2l) and to space vehicles by
Leon (22) and Freed (23). Freed has worked out the basic attitude~-
control equations for strapped-down inertial guidance of a spinning
space vehicle including the basic requirement of filters tuned to the
spin speed, and this work has been extended by Reeves® to a space
station whose equations of motion include cross product of inertia

terms and which uses a control-moment gyro to apply control torques.

%
Reeves, E. 1., Space Technology Laboratories, Inc., Redondo Beach,
Calif. Stanford University Flight Control Seminar, 1963,
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MacDonald (14) has made a few numerical calculations of the fuel
lifetime of a drag-free satellite. These results are tied to specific
booster and launch configurations. Bruce (9) has computed the fuel
lifetime for a circular orbit, and Roberson (10) has presented a tech-
nique for computing the jet firing or equivalently, the control switch-
ing times for a different kind of orbit-sustaining technique.

Since the drag-free satellite tarwnslation+centrol sysiem oper=-
ates in a limit cycle at the origin most of the time, it is important
to analyze this mode of behavior. Gaylord (24) and Dahl (25) have
published calculations of limit-cycle behavior for l/s2 type plants.
Gaylord presents a control synthesis based on the use of minimum impulse-
bit, logically-controlled pulses, and Dahl considers the effects of very
specially~-shaped switching surfaces at the origin on fuel consumption
in the presence of external torques.

Precision spherical-rotor gyroscopes have been under development
for several years in a number of university and industrial laboratories,
most notably Minneapolis-Honeywell, Autonetics, University of Illinois,
Jet Propulsion Laboratories, General Electric, and General Motors.
These researchers were interested in gyroscopes with random drift rates
of the order of 10-2 to 10-4 degrees per hour; and consequently,
they were concerned primarily with torques caused by rotor imbalance,
magnetic eddy-currents, electric or magnetic support fields acting on
a nonspherical rotor, and poor vacuum. The unsupported mode of opera-
tion of a spherical free-rotor gyroscope in the vacuum of outer space
leaps over the above difficulties and brings into importance a host of
much smaller torque-producing effects., Of these only the effects of
gravity-gradient and magnetic eddy-current torques on spherical rotors
have been previously discussed in the literature. Cannon (5) derives
the magnitude of the drift rate caused by gravity-gradient torque on
an almost-spherical-rotor gyroscope. Smythe (26) has given the basic
equations for magnetic eddy-currents in sphericﬁl shells and solid
spheres, and Houston (27) and Alers (28) have computed this torque in
detail for a solid spherical rotor. However, they did not include the
term which is the dominant cause of eddy-current drift for a silicon
free-rotor gyroscope.

SEL-64-067
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C. OUTLINE OF NEW RESULTS

In Chapter 1 the author derives the basic 9-degree—of~freedom
dynamical equations of the drag-free satellite system and delineates
the various special cases of these equations which apply to different
kinds of satellite mission and attitude control. The equations of
motion take into account the important fact that the center of mass,
the center of gravity, the point where the proof-mass position sensor
reads zero, and the point where the gravitational attraction of the
vehicle is zero are not coincident. In addition, the linearized orbit-
perturbation equations of Hill (29) and Wheelon (16) and the small~-
amplitude attitude equations of Lagrange (30) Roberson (31), and
DeBra(32) are combined and extended to include the complete 6-degree-
of-freedom, small-amplitude linearized equations of motion of a librat-
ing rigid body in orbit. These equations exhibit the coupling between
orbit and attitude motions in an explicit manner and allow a quantitative
evaluation of the effect of the attitude motions on the orbit. It is
necessary to analyze the effects of the attitude motions on the orbit
because the close proximity of the satellite and proof—-mass might make
even small motions important. It turns out, however, that these effects
are negligible even for this application except for certain very special
resonance conditions,

In Chapter I1I the author analyzes the basic problems associated
with contactor control of a drag-free satellite with perfect attitude
control to an inertial reference. The drag force on the satellite is
computed from the linear-scale-height model proposed by Groves (33),
Jacchia (34), and Smelt (35). An analytic technique is presented which
makes it possible to solve the fuel-lifetime integrals in closed form,
and the fuel lifetime is calculated for a typical drag-free satellite.
It is shown that the dynamics of the plant do not affect the minimum fix
fuel consumption as long as the control force always opposes the drag
force. Typical 1limit cycles are presented for various orbits, and a
rather interesting control is discussed which employs adaptive limit-

cycle-size.
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In Chapter 1I1 the author attacks the problem of the translation
control of a drag-free satellite in the complete absence of attitude
control. The intuitive concept of considering the plant in an inertially-
nonrotating reference frame leads to a simple synthesis of a linear,
time-varying control law. This concept can be generalized to arbitrary
2nth-order plants which are derived from ntﬁ:brder plants by a
transformation which is analogous to the transformation into an inertial
reference frame. In the special case that the new 2nth-order plant
has constant coefficients, it is possible to plot the locus of the roots
of its characteristic equation by shifting the root locus of the cor-
responding n}p:order prlant along the plus and minus j axis in the
s plane. This technique is then applied to the attitude control of a
symmetric, spinning, rigid body as an example. The symmetric rigid
body is described by a fourth-order plant and the corresponding second-
order plant is the harmonic oscillator. There appears to be no intuitive
interpretation of the transformation between these two plants as was
possible with the drag-free satellite translation control.

In Chapter IV are analyzed the effects on the trajectory of the
drag-free satellite of the perturbations which act on the proof-mass.
The basic technique is to extend the results of Wheelon (16) and
Tempelman (19) to include two interesting types of forced motion. The
advantage of this approach is that it presents the results of linear
perturbation analysis in a very simple and intuitive manner. Every
force which could perturb the motion of the proof-mass is listed, and
an expression for its magnitude is derived. The numerical values of
these perturbations are presented for a typical drag-free satellite.

In Chapter V the author considers the sources of random drift for
an unsupported gyroscope and concludes that drift rates less than 0.1
second of arc/year are possible. An exhaustive list of torques is com-
puted based on the approximation that the rotor is not a perfect sphere,
but rather is slightly ellipsoidal in shape. In addition, all of the

torques which depend on atomic or crystalline anisotropy are computed.
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CHAPTER 1
DERIVATION OF THE DYNAMICAL EQUATIONS

The object of this chapter is to derive the relevant equations
of motion which will be used
1) In the analysis and synthesis of the control system,
and
2) In the computation of the magnitude and effects of
the system errors.

A particle moving in empty space under the influence of gravity
alone is dynamically in balance between gravitational and inertial
forces. Thus a reference frame whose origin is at the particle is
"locally inertial” at its origin in the sense that an accelerometer
located exactly at the origin would read zero. If, in addition, the
reference frame is nonrotating with respect to inertial space, it is
reasonable to expect that in this frame the equations of motion of a
particle which is "close"” to the origin would be very close to the
form that Newton's laws assume when they are written in an inertial
reference.

The above concept provides the intuitive framework into which the
exact equations of motion of the drag-free satellite will be cast.
Conceptually, the center of the spherical proof=-mass or ''ball’ would
correspond to the origin of the "locally inertial" frame if there
were no nongravitational forces acting on the ball. Since, however,
there are important nongravitational forces which act on the ball,
the approach‘of this chapter will be to derive the relative equations
of motion between the ball and the satellite. The attitude motions
of a perfect spherical proof-mass are completely ignorable (except in
the case of the unsupported gyroscope, which is treated in Chapter V).
Thus, the complete drag-free satellite dynamical system has six trans-
lational and three rotational degrees-of-freedom. By deriving the
differénce or relative equations of motion, it is possible to reduce

the entire system to that of a point mass in either a rotating or
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nonratoting reference frame with unaccelerated origin., 1In keeping with
this viewpoint, certain small terms are included on the right-hand side
of the equations as perturbing forces, even though they are not inde-

pendent terms.

A. GENERAL EQUATIONS OF MOTION

Figure 1~-1 shows the geometry for a drag~free satellite with a
proof-mass in free-fall and with three-axis position control. The
center of mass and the center of gravity of the satellite do not coin-
cide in general; and, in addition, the center of gravity is not even
fixed in the body but is a function of body orientation. Furthermore,
although the design objective would be to obtain coincidence of the
control center (the point at which the position indicator reads zero
or, equivalently, the point to which the control system tries to drive
the ball), the center of mass, and the point of zero self—gravity,*
due to various uncertainties in manufacture these points will not be
the same and the variations cannot be neglected.

The equation of motion of the proof mass is™*

(1-1)

=]
M
|
+
+
5]

B B~ FeB* FsB * Faswg

*

A point of zero self-gravity or Z.S.,G. point is a point where all
of the gravitational forces due to the satellite alone sum to zero.
See Chapter 1V,

%

Notation:

1) Position Vectors: Fig. 1-1 shows the position vectors used in
this analysis., The first subscript indicates where the vector begins,
and the second subscript shows where the vector terminates. The various
points are labeled in Fig. 1-1 and are defined in the list of sub-
scripts. The vectors r__, r.., and r will be abbreviated to
T ; and ; respec%gvelysbecause tggy occur so often.

B’ °s! C

2) Forces: The definition of each force is given in the list of
symbols. The first subscript indicates the source or cause of the
force, and the second indicates the objﬁct the force acts upon or the
position where it acts, For example, F B is the force of gravity act-
ing on the ball, and F is the control force applied to the satellite.
The first subscript is omitted if the source of the force is unspecified.

3) Differentiation: The symbol * =d'/dt and © = d/dt will
denote the time derivatives of a vector as seen by an observer in the
primed (i.e., inertially fixed or nonrotating) coordinate system and the
time derivative of a vector as seen by an observer in the rotating (i.e.,
body fixed) coordinate system.

SEL-64-067 - 10 -
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where the subscripts B,G,S,P, and C stand for ball, gravity, satel-
lite, perturbation, and control respectively; and the equation of

motion of the center of mass of the satellite is

gs ¥ Fps * Fos " Fsp - (1-2)

A - -
Since rB =r

the equation of motion of the ball with respect to a reference frame

st ;sB’ Egs. (1-1) and (1-2) may be combined to yield

fixed in the vehicle:

my Fop =<_F’GB - ;E—Fbcs>+(l ¥ ?\)_F’SB

S S

* <-§PB B ;E-F'ps\) - I?;'?cs :

(1-3)

Notice that when.the equation is written in this form any forces applied
to the satellite appear to be applied to the proof-mass through the
scale factor (-mB/mS). It will often be convenient to speak of "apply-
ing a force to the proof-mass," and this terminology will mean ‘>
-GmB/ms)fg whenever the force is actually applied to the satellite.
While the vector T

SB
respect to the satellite mass center, the position-sensing apparatus

describes the position of the ball with

- - e -
. . - +
in the satellite actually measures the vector T where Tsp Tgeo Tor

i.e., it measures the position of the ball with respect to the control
center. The vector ?SC will be assumed to be fixed in the satellite;
or, equivalently, it will be assumed that the relative motion between
the center of mass, S, and the control center, C, during the expul-
sion of gas, will be so slow and so small that it may be neglected in
the present study of dynamic behavior.
With this assumption, the equations of motion now become
> Eg'i = <?- g, O - )

.
- ¥ - B3 2
mg(Fgot To) = &g + (1 + mg /) 'se Y \'m T m  'ps) T g

¥ (1-4)
S cs
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where

AFG"C?GB- E;ch>'

of the satellite,*

s!
::' ' O—i -] .
- - - - - - - - - - .
Tgo + Yo = T * 2ws X rg + Wg x.(rc + rSC) + W X [wS X (rc+ rSC)], (1-5)
and the relative translation equations written in terms of the vector,
;é, measured by the position sensor are
?; [ - . .
- - - - - ->
mpl To + 20X Tt wgX T + Bgx (WX T)) = {mB[— Iﬁsx 'r’sc- ZSSx(T»’Sx ?SC)]
- i) - - g .,
+ — - — - —— -
+ AF . + <1 ~ sg ¥ (Fpg = FPS)} — Fog - (1-6)
] ] S .
For convenience a single symbol, ?D’ defined to be equal to the sum

of the terms in the braces will be used when this equation is used
later.

Equations (1-1) and (1-6) are the basic equations of motion of
the drag-free satellite. Equation (1-1) is the only one that is needed
to compute the satellite trajectory since it will be assumed that the
translation-control system constrains the satellite to follow the béll.
It will be discussed in Chapter 1IV. Equation (1-6) is the dynamical
plant which the translation-control system must control, It deter-
mines the control-system requirements and will be discussed in
Chapters II and 111,

*
See footnote on page 10. Note also that ' = ° + w_. X.
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B. THE FORCING TERMS AND THEIR RELATIVE MAGNITUDES

Since the satellite is constrained by the translation control
system to follow the proof-mass, the orbit of the satellite will be
determined solely by Eq. (1-1). The proof-mass will be disturbed
from a purely-gravitational orbit only by the forces ?SB and ?PB'

These are shown in Table 4-1, page 136, to correspond to accelerations

~11
which are less than 10 1 ge.*

The terms on the right-hand side of Eq. (1~6) determine the rela-~
tive motion between the satellite and the ball, and their magnitudes
are important only in determining the requirements on the translation-
control system,

If one considers only the gravitational attraction of a spherical

earth
A oy BK Tes*TEB ~ TBK
A?G = ?GB - Eg Fog = Gupmy 3 - 3 — (1-7)
TEB EB
Gm r
o, - EmBsBK (1-8)
TEB
'3

It is not correct to conclude immediately from these numbers
that the drag is only cancelled to 10-11g ~ since the effect of
FSB and ?PB on the ball's orbit are notethe same as the drag.
This is true because the drag always acts along the velocity vector.
See the section on System Errors (pp. 126 to 1Z8&).
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>
&
[#]
H
w
x
1

10 -1
10 to 10 1 . (1-9)

|
|

g"‘l

Ze
ge ge

o

Likewise, from Table 4—1,* page 13Q, since mB/'mS << 1 and since it

is assumed that the control system can maintain Iy < 0.1 dl’
1 "B -11
—— + — F -
n_ 1 ng > SB « 10 g, - (1-10)
Finally,
-F
1 | = "8 = DRAG -4 -8
_ F - — F x ——— =2 10 to 10 g . (1-11)
me PB mg PS mg e
Thus, for low orbits the aerodynamic drag force, FDRAG’ is the

dominant translation disturbance; and in order that the control keep

the ball centered, the average control force must equal the average

F ' F (
cs = DRAG ' 1-12)
av av

=

may be measured by observing cha

drag force,

so that ?DRAG

C. TRANSLATION CONTROL EQUATIONS FOR VARIOUS TYPES OF ATTITUDE CONTROL

1. THREE-AXIS ATTITUDE CONTROL TO AN INERTIAL REFERENCE

If the drag~free satellite possessed perfect attitude con-

trol to an inertial reference, Z% and :% would be identically

zero; and Egq. (1-6) would become

*
The expressions in Table '4-1 are derived in Chapter IV,
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PB mg PS mg (o]

o9 - mB - -
mTo = OF, + (1 — ) Fop + (F . B3 ) S BF . (1-1®)
Equation (1-13) is equivalent to three scalar equations of the form

F
e 1 Iy Ug CSx
Xc = mg [%FGx +( 1+ ) FSBx + (FPBx - = FPij} - = fDx+ fcx.(1-14)

fg S S

In order for these equations to be valid, the attitude control must act

L d

such that the neglected terms in w_ and B are much smaller than ; . To

] ]

investigate the conditions under which this is true, assume, for sSmplicity,
that the control acts such that the position and attitude responses are
second-order critically damped, with time constants Tr and Tw respectively.
Then it turns out that the above assumptions will be satisfied if
Tw > Tr and if an equivalent impulsive disturbance in attitude, é

max
satisfies

nax T (1-15)

The control associated with the plant represented by Eq. (1-13)
will be discussed in order to illustrate the basic problems; but, in
general, it is more convenient (and for geodetic missions more desirable)

not to control attitude at all. -

2., OONSTANT SPIN ABOUT A PREFERRED AXIS

If the satellite is symmetric such that I, = I2 # 13, and if

1
the satellite is stably oriented with respect to the orbit plane (36),

and if the other disturbing torques are negligible, then Bé = E; is
constant and Eq. (1-6) is

N 3 - -+ -

- - - -> -

r, + 2w, Xr, B +w, X (w,xr) = £ + £ . (1-16)
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In a reference frame with the z axis parallel to the spin axis, this

becomes

.e 2 .
Xo T Wg Xg T 2wg Vo = £+ £

. . 2
+ 2weX, + Yo " Wg Yo = fp, *+ £ (1-17)

3. ATTITUDE UNCONTROLLED, ARBITRARY SPIN

For

-
We = | W , (1-18)

equation (1-6) becomes

. 2 2 . . . .
- + -2 + - + + + =
Xq (wy w, )xC WY (wxwy wz)yC 2u>yzC (wxwz wy)zC £ +fo
20 x +(w W +& )x + ; -{w 2+w 2) y - 20 z +(ww -0 )z, = f_ +f
zC xy z'°C C z X c xC yz x'°C Dy "cy (1-19)
20 % +(w © =0 )%, + 2074w w o)y, + 25 = (w20 Dz = £ +f
y C zx y C x C zy x°C c X y C bz "Cz

It will be shown in Chapter III that it is possible to build
a translation-control system in which the satellite attitude is un-
controlled and is allowed to ''run free.' However, not all drag-free
satellites will be flown with no attitude control. For the geodesy
and aeronomy vehicles and for the satellites which carry low-precision
unsupported gyroscopes, it is desirable to ﬁse a spin-stabilized
attitude-control system; and for existing vehicles which already have

an attitude control system or for carriers of high-precision unsupported
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gyroscopes, a three-axis attitude-control system is desirable. There-
fore, a brief discussion of the satellite attitude equations will be

included in this chapter.

D. GENERAL ATTITUDE EQUATIONS (A SHORT REVIEW OF CLASSICAL RIGID-BODY
DYNAMICS)

The orientation of a set of arbitrarily rotated axes (x,y,z)
with respect to a reference frame (x',y',z') in terms of the non-
classical Euler angles, ¢, 6, and V¢ is depicted in Fig. 1-2.% The

components of the vector T will be denoted by the 3 X 1 column

matrix
x
A
r={y (1-20)
z
with a similar notation for _5'. The components of r and r' are

related by the 3 X 3 direction cosine matrix

r=Ar'. (1-21)

The components of A may be written in terms of @, ©, and V¥ by
multiplying together the matrices which correspond to the three ordered

rotations about x', n', and ¢.

.cych AVce + c(dbds 4V48 - c\ldbcg
A= | ~gjcd cycy = S\dddp clas + ,.4V4Bcg (1-22)
AB - c84g cBcg .

*Reference frames (x',y',z'), (x,y,z) and a general vector T
will be used'in this section to maintain generality. (x',y',z') cor-
responds to a nonrotating reference frame at the satellite center of
mass and (x,y,z) corresponds to (xs,ys,zs).
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By differentiating the inverse of Eq. (1-21),

' T

i~
[
1>

r,

and premultiplying by A, one obtains

A

Direct comparison of Eq.

shows that

in which

1o

is an antisymmetric matrix of body angular rates which yields the

N

T

d .
L m——
=A—7 Az +r.

{1-24) with the Coriolis law

5
r

Hjo

0 o w
z Y

é’ (] (0] -W
zZ X

-wy Wy 0

(1-23)

(1-24)

(1-25)

(1-26)

(1-27)

- -
components of ww, X r resolved in the (x,y,z) reference frame when

S

postmultiplied by r. Equation (1-26) is one form of the differential

equations of the satellite orientation.

-

> .
By resolving the 3 vectors g, 6, and ¥ in the (x,y,z) frame,

it may be shown that

SE1-64-067
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where

8
A
¢ = (1-29)
13
and
— —_—
cycb aV 0
A
R = |-_ych cy o |- (1-30)
- 4° 0 1 .
Thus, another form of the orientation differential equation is
— —
cy =4\ 0
o =RL = = 6 9 0 (1-31)
=2 Y =g | #Ve cye Wy - 1-31
~c b PAV LS ch
| _
In this same notation Euler's equations become
e = IV QI W, + 173 + M.+ M) (1-32)
=S - —==5 - MPS -GS =CS

where 1 is a matrix of the body components of the moment of inertia
tensor. Equation (1-32) combined with Eq. (1-31) or (1-26) are the

general satellite-attitude equations of motion. The attitude equations
-

are coupled to the trajectory equations through the terms A?G, FPS’
- -> - . :

Fes» Mps: cs’
this coupling is rather weak.

ﬁés, and but with the exception of the control jets,

It is not necessary to consider the most general form of the

attitude equations for most vehicles, since the equations may be

written in simpler form for various satellite types.
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E. ATTITUDE CONTROL EQUATIONS

1. THREE-AXIS ATTITUDE CONTROL TO AN INERTIAL REFERENCE

In this case, the well known small-amplitude linear form of

Eqs. (1-31) and (1-32) is adequate

- -
18 =M,  +H  +¥, . (1-33)

Equation (1-33) has been extensively studied in the controls literature
(38) and will not be considered in this thesis except in Chapter Il
where the translation control equations for the case of no rotation

have the same form,

2. SYMMETRIC RIGID BODY SPINNING ABOUT ITS SYMMETRY AXIS

Leon (22) and Freed (23) show how to reduce the equations
of motion of a spinning, symmetric rigid body to a more convenient

complex form. This procedure is briefly reviewed here.

If I1 = 12 # 13, Euler's equations become
I. -1 M
O - -1—1-—3 w W = ™ (1-34)
x 1 Y 1
I. -1 M
W+ 1—1—2 ww o= TX (1-35)
y 1 z X 1
M
o = ==
z 13
1f q§w+'w me(l -13)’1 n‘-é- 1.1 wéﬁ and
x Y y’ 1 1’ 3717 Tz !
Q & Mx/Il + j My/Il, Eqs. (1-34) and (1-35) reduce to
é + jm B q= Q. (1-36)
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Since eV = cy + j 4y, the first two lines of Eq. (1-28)

may also be written in the complex form

q= (5 co + jd)e IV . (1-37)
When 8 << 1, Eq. (1-37) becomes
g+ 38 =qe’ =qe (1-38)

if ¢ 1is chosen to be zero when t = 0,

Now define the complex attitude angle, ¢,

g+ jo . (1-39)

Figure 1-3 shows the interpretation of Q. The angles ¢ and 6
give the orientation of the symmetry axis in the inertial reference
frame (x',y',z").. By differentiating Eq. (1-39) and substituting in
Eq. (1-38),

a=q e‘jBt . (1-40)

Equations (1-36) and (1-40) are one form of the attitude equations of
a symmetric rigid body. They may be combined to form a single equa-

tion in Q.

&-jnﬁézQeJBt. (1-41)

Figures 1=-4 and 1-5 show block diagrams of these equations in both
real and complex form. The control of these equations is discussed

in Chapter III.
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SYMMETRIC
SPINNING BODY

WHEN @ AND ¢ ARE SMALL,

i@ AXIS a MAY BE INTERPRETED AS THE
PROJECTION OF THE TIP OF THE

z AXIS IN THE x,y PLANE,

THE EQUATIONS OF MOTION, HOWEVER,
ARE VALID FOR ARBITRARILY LARGE ¢.

FIG, 1-3. INTERPRETATION OF THE COMPLEX ATTITUDE ANGLE, ¢ é‘ng + j9
3. ISOINERTIAL SATELLITE WITH SPIN DIRECTION CONTROL

It is desirable to point the spin vector normal to the orbit
plane to minimize various trajectory disturbances (cf. Chapter IV), and
the satellite with the least amount of internal vehicle gravity will also

be isoinertial. If Il= I = 13, the attitude-control-equations are simply

2
1ug = Mpg + Ugg * Yes (1-42)

and will not be discussed.
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4, ATTITUDE UNCONTROLLED, EXPECTED SPIN RATE FROM TRANSLATION JET
MISALIGNMENT

For the purpose of an order of magnitude estimate assume

that:

1)

2)

3)

4)

5)

6)

the drag-free satellite consists of a hollow spherical

shell of radius, [/, and mass, m with a single

ss’
gas jet of 'effective' length, h, and assume that the
center of mass of the satellite does not shift as gas

is expelled,

the thrust line of this jet makes an angle, eML’ with
a line drawn from the jet to the center of mass of the

satellite,

the jet runs continuously at a thrust level equal to
the average drag force acting on the satellite so that

mo, = m

+ +mt
s Mo ¥ Ot

SS
the velocity field of the control gas is zero with
respect to the satellite everywhere except where it
passes through the jet and that it is parallel to the
jet axis of symmetry and equal to ve everywhere inside
the jet,

effects due to centrifugal acceleration and &S may

be neglected in comparison with the Coriolis accelera=-

tion,

the only external moment acting on the satellite arises
from eddy-current damping in the earth's magnetic field

(26) given by - [2/3 B_ £ 0, cos (wg, B)] wg.

Under these conditions, the gas stream exerts a lateral force, 2wSmSh,

on the jet wall due to the Coriolis acceleration of the moving fluid in

the rotating satellite,.
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Under these conditions, the attitude equation of the satellite

may be approximated by

d . .
—_— (1 = = . -
It (Iw) b wg + 2 mg 4 h wg * mg Ve 2 eML (1-43)
where
2 .2 4 - -
=3 Be 2 Oa cos(ws, Be) . (1-44)
mv 6
2 2 - . 2 Sh b g e ML
—_ + = - - —_— - —_— = -
(mgg + 3 B T3 mgt)ws + 5 Oy ( 7 1) + 2 ]ws 7 . (1-45)
The solution of Eq. (1-45) is
™ 5h 5b n
2 . 7 "1 3
SVeGML/ZE 5 mg t 2mg£
ws = EE .. 5b 1l + _ . E . -1 . (1-46)
2 zﬁgzz SS S go

Since the total mass of control gas would be typically only

about one tenth of the total vehicle mass, |m t|<<|m., + 2. and
"8 SS 5 "go
- 2
wg % =t Mf - DR;G ML = 6.6 10 T eee (1D
S§ go me L+ 2m_ £°/5
ss go

for a drag-free satellite in a 400 km circular orbit (cf. pages 43 and
44 ) with a misalignment angle of one degree, In one year, wg can

typically build up to about 20 rad/sec ® 200 RPM. Thus, for some
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missions, the uncontrolled rates will not be excessive; but for long
lifetimes or low altitudes, a rate-limiting control system may be
necessary even in those cases where attitude control is unnecessary or

where spin is desirable.

F. SMALL-AMPLITUDE LINEAR MOTION OF A SATELLITE INCLUDING GRAVITY-
GRADIENT EFFECTS

The librations of a satellite will in general couple into the
center-of-mass motion, and the center-of-mass motions will couple into
the attitude motions. The latter effect is well known and has been
studied extensively (32), and the former is, in general, quite small,
For the drag-free satellite, however, any motions of the center of mass
in which the proof-mass does not share are important. In order to deter-
mine their exact size, these motions will be investigated by analyzing
the six coupled center-of-mass and attitude equations after they have
been linearized about a nominal circular orbit. Thesé equations may be
derived in two ways: 1) from Lagrange's equations, or 2) directly from
Newton's Laws. Furthermore, the resulting equations must reduce to the
linearized form of Hill's equations for a point mass (29) and to
Lagrange's attitude equations (30) for a circular orbit. (See page 36

and see the discussion beginning on page 110.)

1. DERIVATION OF THE COMBINED SIX-DEGREE-OF-FREEDOM TRANSLATION AND
ATTITUDE EQUATIONS ’

For the coordinates as shown in Fig. 1-6, the Lagrangian of the

satellite is given by

. km
L=T-V=>mnm_r + = Ww I -w, +=—— = —==——=r I -
= 5 = S
2 S'ES 2 S = S Tpg 2 rES ES E
(1-48)
1 k Trace l
+-2- 3
TEs
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where k Q’GmE is the earth's gravitational constant and I is the
L}
satellite moment-of-inertia dyadic. (Dyadics will be denoted by a

double underscore.) Clearly, when the linearization is about a nominal

. . - 2 . .
circular orbit, 1/2 mS rES + kms/rES must yield the linearized form

of Hill's equations(since these terms deal only with the center—of=-
mass motions as do Hill's equations); and 1/2 aé . ; -'GS must yield
the inertial terms in the Lagrange attitude equations (since they deal
only with the attitude motions). Hence, the terms of interaction in

the equations of motion may be obtained by differentiating only

V' = 3k 2 1. 2 . 1k Trace 1
2z 5 Tes " = " Tms 2 = . (1-49)
) ES TEs

If the vehicle attitude angles ®,8, and V¥ are called

91,92 and 93, then (when they are small enough that their products

may be neglected) the direction cosine matrix (Eq. (1-22)) becomes

1 63 -0
A= -93 1 el (1-50)
62 -61 1 .
In addition, if
reg = Ty * dr (1-51)
where
3
dr £ ul (1-52)

then Eq. (1-49) may be expanded to second order in the independent
variables g,n,g,el,ez, and 63.
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V! =

niw
H
z NIOEM

r 2 2 .2°
N 2 2 5 (4 ==
{Il[rN+ g - — (0, + 650+ 6,0 ezg] [rN- 4+ 3 <—§-—¥;—£—)

r
N, .2 .2 12 2
2—(62 + 63)+ 651 - ezg] + 12 [Tl - rNGSJ + 13 [g + rNezJ } (1-53)

2
_“’O(Il"'lz"'ls) 1_25_-2 ‘4§2+H2+§2>
‘9 rN 2 2 ‘

™N

The interaction terms are then given by:

2 > 3w2 2G2- G2- G2

2 £ - (] 1 2 3 (1-54)
2 2 r

N .

w N

2
1 ov' 6 o2 26, -
mg ot “o

2 2
Lo 3ug [, 4G - 3G
m_. On 2

wn

2
-G GZ -G
2~ 3 2 /71 2
5 >n + 3ug < - >63 (1-55)
N

2 2 2 2
. 3w 4G%- G2 -3G G2 -G
A 12 3 )p,32 (2—2L)e, -s6)
m 0o 2

0

(1-57)
ov? 2 2 _t -
= 3u, (13 - 11)62 + 3ws (1 1) (1-58)

2 .
= 3wS (I, -1)6_ + 3w, (I, - 1) . (1-59)
36, 2 173 o 1" "2’ Try
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To obtain these results directly from Newton's Laws, it is necessary
to sum all the forces and torques acting on the ith mass element

and then to integrate these over the entire body.

-k m, r,
_ i i . = ud} -
?GSi = ———:};———— where T, ry t &r + Sri (1-60)
i
and

s -

—_ L
Mg, = 8r] X ?GSi . (1-61)

Expanding l/r? to the third order, and neglecting terms
2 3
in (3r)~ and (Sri) and higher, and noting that

SS:n.(S?!)z = 1 Trace 1 , (1-62)
i 1 i 2 =
and
- Trace 1
ES m, dr' Brf =-1+ U — (1-63)
3 i 1 = = 2

(where the symbol SS has the meaning of sum or integral as the case
1
may require and U 1is the unit dyadic), the following expression, for

the force and torque terms are obtained by integrating ?hSi and
-

t dy.
MGSi over the body
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- = - - - - —> -
*1I°- o S &
15 (5r+rN) 1 (5r+rN) . 105 (5r rN)(rN i rN) -
2 7] 2 6 N
™N ™
- -
. . 2 Trace ; 15 rN i * Ty R
st 2 p) 2 ) T
™ ™
31 - (8T + 1) 8T - Ty
+ — > [1 -5 — (1-64)
I'N rN
and
2
- Sub R S;-;k ; 3w§ - - - -
M. = 5~ (rgX1° rN)<1 -5 3 )+ > (drx 1-ry+r X 1°86r).
ry - TN Ty = -

(1-65)

When coordinatized as in Fig. 1-6, the interaction terms in Eqs. (1-64)
and (1-65) reduce to Eqs. (1-54) through (1-59). The complete coupled

set is shown below.
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071 "2 ™

0721

+1282+4(I
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3
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2
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+ 0
62~02
+ 3w [ 1 2 ]9
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+ 0
+ 0
+ 0

- 2
+1393+3u0(12-11)83

i

(1-66)

(1-67)

(1-68)

(1-69)

(1-70)

(1-71)



Equations (1-66), (1-67), and (1-68) reduce to Hill's equa-
tions (without the nonlinear gravitational terms) when the satellite
becomes a point mass; and Eqs. (1-69), (1-70), and (1-71) become the

Lagrange attitude equations when E,7 and { are zero.

(& - 3uf - 205 (1-72)*

I}
la

Hill's equations
describing the
linearized motions
of a point mass <
with respect to a
nominal circular
orbit

(1-73)*

i
o]

Zubé + ﬁ

(7o
+

£ .
v

"

h

(1-74)*

Lagrange's / Ilél + (I_-I oo, - b (I.+I_-I) (1-78)

attitude 3 227071 021 "2 73 1
equations . .. 2
descr%blng ub61(11+12-13) + 1262 + 4(13-Il)ub62 9
the lin- <
earized . 2
libratory 1.6, + 3w (I
. 373 (6]
motions of
a satellite
in a circular
orbit

(1-79)

)6 (1-80)

|
=3

2711785 = Mg

*
It is important to note that the correspondence

E N

nq—brN¢
leads to a set of equations like (1-72), (1-73), and (1-74) in c¢ylindri-
cal coordinates

L1 2 .

o= 30y T 2ugry® = £, (1-75)
20y f + 1@ = £, (1-76)
E+t = £y (1-77)

Equations (1-75), (1-76), and (1=77) may be derived directly from the
orbit equations written in cylindrical form. When this is done ¢ may be
arbitrarily large (in Eq. (1-72). and (1-73), ¢ and n must be small),

but ¢ and # must be small (in Eq. (1-72) and (1-73), ¢ and n may be
arbitrarily large). The cylindrical coordinate (or with planar motion,
the polar coordinate) interpretation is much more accurate when the solu-
tion of Hill's equations contain large terms in 7. See Ref. (19).
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In order to analyze completely the effects of the disturbing
forces on the ball, the form of Egs. {(1-72), (1-73), and (1-74) with
the second-order nonlinearities included will be needed in Chapter IV,

These will be derived next.

2. DERIVATION OF THE HIGHER~ORDER NONLINEARITIES IN HILL'S ORBIT
EQUATIONS

Hill's equations may also be derived by substituting

T =87 + T (1-81)

directly into the orbit equaticn

k—>
IYY r
> ES -2 .
Teg + —5 = f. (1~82)
r
ES
The equation in ;N is assumed to satisfy
k—)
e r
- N
= -83
ry * 3 o, (1 )
N
and
2 2T Ty - :
. r - —
-3 -3 (dr) N 2
= 1-84
oo = ry <1+ X . . ) (1-84)
N N

is expanded as a power series in Br/rN. If Eq. (1-84) is carried to

third order, Hill's orbit egquations become

- = - - - > 2
- - L] 2
. ke o OTeTy 2,2 rs Br.ry - 3 5(5r ry) _ o’
dr + —g =38y Iy I+ 2 o "3 a 2z |
rN I‘N rN N N

- 37 - (1-85)
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Equation (1-85) may be written in scalar form

2 2 2 2
Y - 30 - — _3 2 2 -7 -t 2 4E - En 38 -
E - 3wy E - 2wy M = f§ 5 Y% Ty + Wy > (1-86)
r
N
2w E + 7 =f +32 81 _3,2 st - - (1-87)
0 n - 0 ry 2 “0 2
r
N
2 2 3
Y el - 2 _3 2 48t -n76-C"
E + Wy ¢ = f§ + 3wy = 5 Y 2 (1-88)
N

Equation (1-88) will be needed to compute the effect of the
disturbing forces when the satellite spin vector is normal to the

orbit plane.
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CHAPTER 11

TRANSLATION CONTROL WITH PERFECT THREE-AXIS ATTITUDE CONTROL

The object of this chapter is to discuss the basic translation=-
control problem (including fuel consumption) associated with the opera-
tion of a nonrotating drag-free satellite. The case where the satellite
does not rotate with respect to an inertial reference is of interest
for precision-gyroscope experiments where the gyroscope spin axis must
be compared with a fixed direction in inertial space. In addition,
omitting the satellite rotation makes it easier tec present the basic
properties of the translation control without the added complexity due
to the rotation.

The control must accomplish two things:

—
1) keep the vector o

the presence of the disturbing forces, and

within some specified bound in

2) do this with a minimum expenditure of fuel.

The bound on T will be dictated by the type of mission. For example,

C
in the case of an aeronomy mission, it is merely necessary that the
proof-mass not contact the cavity walls very much; and for geodesy
experiments, it is desirable that the proof-mass be controlled in
such a manner that the force interactions between it and the satellite
are as small as possible. For precision-gyroscope experiments, how-
ever, it is necessary that the rotor never contact the cavity walls;

and for some readout schemes, it is necessary that the rotor be very

stationary with respect to the sateliite during the readout period.

A, TRANSLATION-CONTROL SYSTEM DESIGN FOR MINIMUM-FUEL CONSUMPTION

In order to consider the fuel consumption, it is necessary to
examine the nature of the control system disturbances given in Eq.

(1-6) and also on page 15. They are
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1) AFG/mB (the difference between the acceleration of
gravity acting on the ball and that acting on the

satellite) = 10 20 to 1073g

-—p
2) (1 + mB/mS)FSB/mB (the acceleration due to the force
interactions between the ball and the satellite)

-11
~ 10 ""g . (See Table 4-1, page 139.)
e

3) (?PB - mB/mS ¥PS>/mB (the acceleration due to outside

perturbations).

(§PB - mB/ms -fps)/mB arises from

a) Meteorite collisions with the satellite,

b) Motion of a charged satellite through the earth's
magnetic field,

c) Undesired expulsion of matter due to outgassing or
control gas leaks,

d) Solar radiation pressure, and

e) Atmospheric drag.
(1) and (2) are negligibly small but (3) must be considered in detail.
Each of these disturbances will be discussed below.
1. EXTERNAL PERTURBING ACCELERATIONS

a. Meteorite Collisions with the Satellite

From elementary momentum considerations, it can be
shown that a meteorite collision with a typical relative velocity of
40,000 ft/sec between a 45 kilogram satellite and a 0.2 milligram
meteorite* would impart a velocity change of lo-zcm/sec to the
satellite. (This velocity change is typical of the limit-cycle-size
for the control system. See Fig. 2-7, page 62 .) Data on the fre-
quency of meteorite collisions is still rather poor; but the indications
are that collisions with meteorites of this mass 6r larger are extremely

rare, occurring approximately every one to 1000 years (40).

* Y :
This mass was chosen as a worst-case example. A collision with

a much larger meteorite would probably do serious damage to the satellite.
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b. Motion of a Charged Satellite Through the Earth's Maggetic Field

A charge will accumulate on a satellite moving through
the ionized upper atmcsphere because of the different mobilities of
the electrons and ions, and it can be shown theoretically that the
potential of this charge will not exceed a few volts (41). (However,
there is at least cne instance of a potential of several hundred volts
being measured on a satellite.) If one takes 100 velts as a reasonable
upper bound, the disturbing acceleration caused by moving this charge

through the earth's magnetic field will be of the order of 4 X 10-12ge.

c. Undesired Expulsion of Matter Due to Outgassing or Controcl Gas Leaks

Cold gas control valves have typical leakage rates which
vary between 10“3 and 10_5 standard cc/sec. By careful design and
quality control, it is reasonable to expect total gas leakages of the
order of about 10 standard liters per year. Such leakage values cor-
respond to flow rates which would cause negligible control-system dis-
turbance,

Gas leaks which result from system malfunctions or out-
gassing could result in sizable disturbing forces. There is no way to
analyze these in advance, but the disturbances will be relatively
constant. They will make the drag-free satellite uncontrollable if
their magnitudes exceed the control force, or they will only waste gas
while still allowing the control system to function if their magnitudes

are less than the control force.

d. Solar-Radiation Pressure

Solar-radiation pressure is about 1 dyne/meterz. This
causes a disturbing acceleration of about 10_8ge cn a 45 kilogram
satellite with an area of 0.5 metersz. This disturbance is constant
except for two times during the orbkit when the satellite enters or

leaves the earth's shadow.
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e. Atmospheric Drag

Consider again Eq. (1-14) (with some of the subscripts

dropped)

(2-1)

For most orbits the dominant contribution to fD is the atmospheric
drag, and it is instructive to compute the drag as a function of time
and orbit. The linear-scale-height model of the atmosphere, as pro-
posed by Groves (33), Jacchia (34),'and Smelt (35), provides a more
accurate representation than the conventional constant-scale-height
exponential model, and will be the one which is used in this calculation.

The drag force on a body moving at orbit speed v

0’
through a rarified atmosphere of density, p, is given by
F =1/2 p vZec A (2-2)
DRAG O D 'S
where AS = satellite reference area, and
CD = drag coefficient.

The atmospheric density, p, used in these calculations will be ob-
tained by integrating the equation of hydrostatic equilibrium using a

pressure-~scale-height, H, which varies linearly with altitude.
H=Hp + alh - hp) (2-3)

o

where R stands for '"reference™ and @ is the slope of the scale

height line versus h. The result is

H B,/r 2
- _R _ES > . (2-4)
P pR H rp
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where

">
[
R+

hR is the reference altitude about which the scale height is linearized,
and Tes and rp are the radii from the center of mass of the earth

to the satellite and to the reference altitude respectively. Equation
(2-4) is derived by Smelt (35).

Later in this chapter in the evaluation of the fuel-

. 2
lifetime integrals, it will be most convenient to have Tes and Vo
expressed in terms of the eccentric anomaly, E.*

Tpg = a(l - e c E) (2-5)
2
g R
v2 _ (w2 2) l+ecE e e l+eckE (2-6)
0~ Y? '1T-eckE 2 1-eckE"

If we define the normalized drag force, Dn’ as the drag divided by
- 3

the drag at the reference altitude (except for the factor Rga/rR),

then substituting Eqs. (2=-3) through (2-6) into Eq. (2-2) yields

2
D - FprAG _ /R 1-e? 2k (2-7)
n C - 3 a(a=-r_-ae c E) 1B * -
A D T 1+ R
TR*sPr8e \ 2 H

R
Equation (2-7) is plotted in Fig. 2-1 using constants interpolated from
the 1962 ARDC Model Atmosphere (42). The following values for the con-

" stants were assumed:

400 km

=3
]

250 sm

H, = 72 knm

45
R sm

]

*See Ref. (29) for a definition and discussion of eccentric anomaly.
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R.e = 6380 km = 3960 sm (2-8)
a = 1/7
-15
P = 6.5 X 10 gm/en® .
As an example, consider a satellite with C_ =2 and A_ = 0.5 m2 =

o D S
5.38 ft°, then

Re 2 b 5
roApog | — = 2,08 X 10 'ntns = 4,68 X 10 ~ 1lbs; (2-9)
R S"R%e Te

; = — . 2
and if msge = 445 ntns = 100 1lbs, then the nominal drag, rRASpRge(Re/rR) ’
expressed in ge's is

Re2

r A Pp —

fDRAG,R B R SR rR
ge mS

= 4.68 x 10" . (2-10)

Thus (Re/rR)? times Eq. (2-10) gives the drag acceleration, fDRAG/ge’
in a nominal circular orbit at the reference altitude of 400 km, and
Eq. (2-9) or (2-10) may be used in conjunction with Fig. 2-1 to deter-
mine the drag forces for other orbits,

From the preceding discussion, it can be seen that the

disturbing accelerations fall into five general classes:

1) Negligibly small,

2) Causing small step changes in velocity about once per
year (meteorite collisions),

3) Causing small step changes in a constant disturbing
acceleration about twice_per orbit (solar-radiation
pressure),

4) Relatively constant, but possibly not negligible (leaks
or outgassing), and

5) Periodic with period 2n/wo (atmospheric drag).
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FIG. 2-1. NORMALIZED DRAG FORCE












































































































































































































































































































































































































