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Gravity Gradient Gyroscope
Drifts in the NASA
Relativity Mission/Gravity
Probe B Experiment
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Abstract

This paper examines the torques and resulting drift of the Relativity Mission or Gravity
Probe B (GP-B) gyroscopes due to gravity gradient forces. Drifts are examined for both
forces transmitted through the gyroscope suspension and torques due to the gravity gradient
acting directly on the spherical rotor. The orbit averaged gravity gradients torques are
derived considering a nonspherical Earth (J, oblateness only) and a slightly eccentric orbit.
The effects of the Sun and Moon on the gyroscopes are also discussed. The resulting drift
rates for various guide star candidates is presented.

Introduction-

The Relativity Mission, or Gravity Probe B (GP-B), is a NASA experiment
to test Einstein’s General Theory of Relativity. In 1959, Leonard Schiff of the
Stanford University Physics Department predicted, using General Relativity, that
a local, free-falling inertial frame in a polar orbit about the spinning Earth would
undergo two orthogonal rotations with respect to the universe’s inertial (fixed)
frame. Schiff’s predictions, called the Geodetic and Frame dragging effects, are
represented by the angular velocity {1 expressed as
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where ¢ is the speed of light, r is the radius of the orbit, v is the velocity in orbit,
G is the universal gravitation constant, Mg is the mass of the Earth, I is the
polar moment of inertia of the Earth, and ws is the angular velocity of the Earth.
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FIG. 1. The Relativity Experiment.

These drifts, depicted in Fig. 1, are not predicted by Newton’s gravity theory
and amount to 6.6 arcsec/year in the orbit plane (the geodetic effect) and
33 milliarcsec/year perpendicular to the orbit plane (the frame-dragging effect)
for a 650 km altitude polar orbit. Schiff proposed that these effects be measured
by orbiting near perfect gyroscopes and comparing their spin axis directions (fixed
in the local, free-falling frame) with a far inertial reference provided by pointing
an onboard telescope at a fixed guide star [I,2].

Gravity Probe B is the culmination of this proposal [3—10]. Scheduled to be
launched in 1999, the GP-B science instrument consists of four superconducting,
electrostatically suspended gyroscopes (Fig. 2) housed in a block of fused quartz
that is optically contacted to a quartz telescope, used to point the satellite at the
guide star (Fig. 3). In order to obtain an uncorrupted measure of the relativistic
effects, it is necessary to free the gyroscope’s quartz rotors from all inertially
fixed forces and torques, thus reducing the Newtonian drift below the experiment
goal of 0.3 milliarcsec/year.

There are two categories of these disturbances —torques arising from inter-
actions between the imperfections in the electrostatic suspension system and
asphericities in the rotor (known as support-dependent torques) and torques arising
from direct action of conservative and nonconservative forces acting on the
rotor (known as support-independent torques). In order to minimize the effects
of support induced torques, accelerations of the satellite causing the suspension
system to act are virtually eliminated by the use of drag free control [I1]. This
system maintains near zero acceleration by controlling the satellite to fly centered
about a proof mass (which is thus in a purely gravitational orbit or geodesic) to
nanometer position accuracy and thus reducing the accelerations on the gyroscopes
to under 107% g. Note also that the satellite is rolling about the line-of-sight to the
guide star. This acts to both average many body fixed torques on the gyroscopes
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FIG. 2. The Gravity Probe B Gyroscope.

and shift the measurement signal away from zero frequency where the readout
sensors are less stable:

The largest torques acting on the gyroscope arise from disturbances due to
gradients in the Earth’s gravity field. These torques fall under both the support-
dependent and support-independent category. The support-dependent torques
occur because the gyroscopes are a distance from the proof mass and thus
experience a gravity gradient force. This force must be supported against by the
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FIG. 3. The Quartz Block Assembly and Telescope.
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suspension system which also produces unwanted small gyroscope torques. The
support-independent torques occur because the slightly non-isoinertial rotors (that
is, rotors with non-equal principal moments-of-inertia) interact with the gradient
of the gravity field directly. (The normalized inertia differences, Al/I, are on the
order of 107% to 1073.)

Using the work of Keiser [12] that modeled the gyroscope torques induced
by the electrostatic suspension, Vassar [13] and Vassar et al. [14] computed the
support induced gravity gradient torques on the gyroscope for a perfectly circular
orbit about a spherical earth. They showed that the torque on the gyroscope is
proportional to the angular deviation between the satellite line-of-sight and the
orbit plane, which can be written as a function of the orbit co-inclination (i),
node (1) and guide star declination (4):

7% i'sind + Qcosd 2)

where i’ and () are assumed first order small (very near polar orbit) and €} is
defined as the angle of the line of nodes from the guide star direction rather than
the Vernal Equinox. Equation (2) implies that for an ideal circular, polar orbit,
gravity gradient torques average to zero. An additional benefit of such an orbit is
that the two relativistic effects are exactly orthogonal [14, 15], whereas for small
deviations of the coinclination and node the larger geodetic effect corrupts the
frame dragging measurement. This can be seen by looking at the drift rate of
the gyroscope due to relativity (equation (1)) for small co-inclination and node
resolved in the inertial 1 and 2 directions (North and East) [15]:

Qs = Ag(i'cos 8 — Qsin S)E + AgN
QFD = AFD cos 6 E - AFD?)iI cos & N 3)

where A; and App are the geodetic and frame dragging drift rates from
equation (1):

Mell Ay = Glowe
cta(l — €2)’ 2 2c2a3(1 — )

3
Ag = - 4

Axelrad et al. [15] recognized that such an ideal orbit is impossible in practice.
The various effects of the Earth’s shape, Sun, Moon, and tides, for example,
will cause deviations of the orbit plane away from these nominal conditions. The
object is then to find an initial target orbit such that the long term deviations
over the year long experiment result in minimum average drift on the gyroscope.
Axelrad et al. thus produced a simulation of the long term effects of the Earth
oblateness, Sun, Moon, and tides and derived optimal target orbits and injection
requirements for the GP-B spacecraft. Such orbits can be found for any of the
possible GP-B guide stars.

This paper addresses the fact that the gyroscope drift equation derived by Vassar
and used by Axelrad et al. only assumed a spherical Earth and circular orbit while
the orbit modeling considered the more extensive perturbations mentioned. New
torque and drift equations are thus derived considering the Earth’s oblateness (J/>)
and orbit eccentricity. The small effects of the Sun and Moon on the gyroscopes
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are also examined. New drift mechanisms are shown proportional to J, while the
drifts are shown to be independent (to first order) of orbit eccentricity.

In order to find these torques, first the satellite orbit is modeled including the
J, oblateness perturbation. Then, the gravity force on the gyroscope is computed,
including the J; effect as well as the direct gravity gradient. These are then used in
the gyroscope torque equations, averaged over a satellite orbit, and finally inserted
in the drift equations for the orbit averaged gyroscope drift.

Spacecraft Orbit Modeling

The first step in the calculation is to find accurate equations describing the
satellite orbit defined by the free falling proof mass. Figure 4 shows a schematic
of the GP-B satellite orbit. The vector r, locating the proof mass is defined by
its magnitude and argument of latitude ».

While the orbit is nominally circular at a constant rate, the J, oblateness of the
Earth introduces small perturbations. This nominal orbit is circular with radius rg
and true anomaly §. The position of the proof mass is then expressed:

r,(v) = (r, + 6r)u,(8) + r,60 uy(0) (5)

where u, and uy are unit vectors in the radial and tangential directions. The mean
orbit rate is given by:
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FIG. 4. The Satellite Orbit.
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while the perturbations due to the oblateness (J,) as derived by Breakwell [16] are:

1 (RN
8r =r,| —Jol == cos (20) — e, cos (8 — w)
4 o
1 (R . .
o6 = ?Jz — ) sin (26) + 2e,sin (6 — o) 7
r()

Note that the orbit modifications due to higher harmonics (J; and greater) are
small compared to those caused by oblateness.
The final result is that the position can be expressed by the following equations:

r,(v) =r,(v)u,(v) )
r,(v) = r, + 8r(0)
v=@6-+ 6000 )

In the derivations that follow it will also prove useful to rotate from the inertial
frame defined by the axes labeled x, y, and z in Fig. 4 to a frame in the plane of the
orbit. This is accomplished by the following direction cosine matrix (assuming
first order small i’ and Q):

‘ cos 6 —i sin
obitel = ) j'cos§ — Qsinéd 1 Qcosd + i'sind (10)
—sin 0 -Q cos O

Therefore, the unit vector along r, in the orbit frame is:

. sin v
it =10 (11)
CcOos v

while rotated into the inertial frame it is given by:

cos & sin v — sin 6 cos v
iip = —i'sinv — Q cosv (12)
sin 8 sin ¥ + cos & cos v

Note that throughout this paper a superscript / on a vector indicates that the
vector is to be coordinated in the inertial frame. The absence of any superscript
implies that the vector is coordinatized in the spacecraft body frame with z-axis
along the telescope boresight (and roll axis), x-axis perpendicular to one of the
gyroscope readout planes and y-axis completing the right hand set.

Gyroscope Equations

The first step in computing the gyroscope drift is to derive the rotational
equations of motion for the gyroscope rotor. This is done by equating the inertial
time derivative of the rotor angular momentum L with the torques on the rotor,

7, expressed in inertial space:
dLY
<—> =7 (13)

dt
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This equation is most easily completed by expressing L in a frame aligned with
the spin axis of the rotor, w,, and taking the derivative there using the rotation
angles of this frame with respect to inertial space, EW and NS. Note that the
nominal orientation of the spin axis with respect to the inertial frame is aligned
with the z-direction, i.e., the initial direction to the guide star (see Fig. 5). The
relativistic effects are measured as a rotation of the angles NS (geodetic) and
EW (frame dragging). Any additional drift due to Newtonian torques is an error
indistinguishable from science (except to the extent it may have a unique time
signature). The final equations of motion, linearized in the small angles EW and
NS, are given by:

7'1 TI,
EW = ——=EW - =
L L
7.I 7.I
NS = ——=N§ + =
L L
AL = 7! + 7INS — rlEW (14)

The next section briéﬂy discusses the derivation of the torques to be used in
equation (14).
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FIG. 5. The Spin Axis Direction in the Inertial Frame.
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Gyroscope Suspension Torques

Once the drift equations of motion are derived, the task is to find expressions
for the various torques on the gyroscope rotors. This has been an ongoing effort
at Gravity Probe B in order to confirm the required 10™"" deg/hr performance of
the gyroscopes. In this paper we focus on only one, though the largest, source of
torque — that resulting from the Earth’s gravity gradient. There are two sources
of gravity gradient torques, direct torques acting on the inertia differences of the
spherical rotors and indirect gravity gradient forces acting through the electrostatic
suspension. This section provides a general description of the electrostatic torques
on the rotor while the following section specifically derives the gravity gradient
torques including orbit eccentricity and J, oblateness. Subsequently, the direct
torques are addressed.

As mentioned earlier, the GP-B satellite is drag free, that is, it is forced to
fly about a free floating proof mass that is in a purely gravitational orbit. This
effectively cancels the drag on the satellite (within the bandwidth of the controller)
and keeps the satellite in as ideal an inertial frame as possible. However, since the
gyroscopes are not free floating, they must be suspended against residual motion
of the spacecraft and excess gravity gradient forces. This is accomplished through
a six electrode electrostatic suspension system depicted in Fig. 6. Unfortunately,
because the gyroscope is not perfectly round, the electrostatic suspension forces
used to center the rotor also result in smail torques.

The first major effort to derive expressions for the electrostatic torques on the
GP-B rotors was done by Keiser [12]. This has been followed since by a number
of additional studies using his same method. His approach was to expand the rotor
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FIG. 6. Schematic of Rotor and Suspension Electrodes with Important
Reference Frames: Housing (H); Electrode (E); and Spin Axis (L).
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shape in a series of spherical harmonics and differentiate the total energy stored
in the capacitance between the electrodes and rotor with respect to the rotation
angle, 7, about some arbitrary axis:
U aU aC
T an aC an
where U is the total energy and C is the capacitance between the rotor and
electrodes.

The second term on the right in equation (15) is a function of only geometry
and can be found, with some work, in terms of the rotor shape coefficients in a
spherical harmonic expansion and some dimensionless numbers. The final result
is a set of equations for the torques on the rotor in terms of the rotor shape
coefficients, ryo, the roll angle of the satellite, ¢, and the voltages on the top and
bottom of the electrodes a, b, and ¢ (V,4,V,_,Vy, Vo, V.y, V)

(15)

1 €1} |
) dzg {_(V“z+ VL -V - V}?—)ZAl(l)r[() sin ¢

@ leven

- (V3+ - Vf- - Vi3+ + VE—)
X > rilA:(I) (NS'sin 2¢p + EW cos2¢) + Ao()EW]

loda

+ (Vi — Vi + V- V}f—)ZAl(l)rl() sin ¢

lody

+ (VI + V2 + V2 + V)

X > rip[Ay(1) (NS sin2¢p + EW cos 2¢) + Ag(DEW]

leven
- (Vi + VD)
X > rg[Co(1) (NS sin2¢ + EW cos 2¢) — Co()EW]

Leven

— (V2 — Vf_)ZC,(l)r,o cos qﬁ} (16a)

lodd

1 &ory
T; = 7 d2g {(Vaer + Vaz, - V,§+ - Vﬁ_)ZAl(l)"]()COS(i)

0 leven

+ (Va2+ - Vf— - V13+ + szf)
X > rp[Ay(1) (~EW sin2¢ + NS cos 2¢) — Ao(/)NS]

load

- (V3+ - Vf— + V3+ - V;?JZAI(I)VI()COS¢

lodd
o (V3+ + Vj— + V§+ + Vbz-)
X > rilAs(l) (—EW sin 2¢p + NS cos 2) — Ag(1)NS]

leven
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+ (V2 4+ V2)

X D rplCo(l) (~EW sin2¢ + NScos 2¢) + Co(1)NS]

Leven

- (V3+ - fo)zcl(l)rl() sin ¢} (16b)

load

where Ag, A;,As, Cy, Ci, and C, are dimensionless coefficients defined by
DiDonna [17] and are of order one, d, is the rotor/electrode gap (32 um), r,
is the rotor radius, e, is the permitivity of free space, and ¢ is the roll angle
of the satellite.

The voltages can be replaced by assuming a perfect suspension controller that
exactly cancels the applied specific forces on the rotors, f,, f,, and f.. The voltage
differences are then given by:

VZ _ V2 — Zmd(% <fx\ _fl'>
at T g,mr? sin’ 0, V2

: 2md; [t 1
Vi, SV = (£55)

g,mrlsin’ 9,

yro_yr oo 2mdy f (17)
o “ 8,,7Tr§Sin20h :

where 8, is the half angle of the electrode (29 degrees) and m is the rotor mass
(roughly 65 g).

The voltage sums are slightly more difficult to find and require assumptions
about the suspension implementation. For this work we have assumed the
traditional preload based controller used on GP-B. In this, the nonlinear force
equations (equation (17)) are linearized by adding and subtracting from the top
and bottom electrode voltages a preload voltage of fixed amplitude, V. This is
equivalent to a preload acceleration on the rotor from each electrode, A, for flight
conditions of 2 X 1077 g. The result is an expression for the sums of voltages:

2md? — [
v -2l (), L U L)

€, 7Tr§ sin’ @, 2h
2md> (fe + f2)?
Vi 4+ Vi = ———%— (h 4o Z)
b+ b= g,rlsin’ 6, b 2h
2md? 13
v, + VvV = — 2 |h + = 18
o ¢ g, mr?sin® 6,,( h (18)

These voltage expressions are substituted into the torque equations to produce
torques that depend upon the forces and preload on the rotor as well as its shape.
They are divided up into odd terms, that is, those that depend only upon the odd
coefficients of the rotor shape, and even terms, that is, those that depend only



Gravity Gradient Gyroscope Drifts 139

upon even coefficients of rotor shape as follows:

(THoaa = #[f Zr,o[Az(l) (NSsin2¢ + EWcos2¢) + Ay(DEW]
700 7 Sa
+ fxerOAl(l) sin ¢ + %Zrlocl(l)cos q’)] (19a)
odd odd
/ V2 .
(7 )odd = —5—1— /- Zrlo[Az(l)(—EW sin2¢p + NScos2¢) — Ay(/)NS]
’ w50, odd
_fohoAl(l)COSd) + iz:rloCl(l)sin qS’ (19b)
odd \/Eodd
1 XJ 2 .
(T)[()even :7TSiI'l2 0, lzf};f evzcn r[OAl(l) sin d)
L+ .
M > rolAx(D) (NS sin2¢ + EW cos 2¢) + Ag())EW]
e
= 25D ro[Cal) (NSsin 26 + EW cos2¢) — Co(DEW]} (200)
| .
(T}Iv)even = 7rsin2 0;, { - 2fl:lf ev%] rIOAl(l) Cos ¢

2 2
_ L ;: i Z rio[A>(I) (—EW sin 2¢p + NS cos2¢)

even

— Ao(D)NS]

2
- % D rolCo() (~EW sin2¢p + NS cos 2¢)

even

‘ co(z)zvs]} (20b)

where here the torques have been normalized by the gyroscope mass. Observe that
the preload dependence has been removed as that has no bearing on the gravity
gradient induced torques.

Note that the odd terms depend upon the specific forces directly while the even
terms depend upon the square of the voltages. It turns out that the dominant forces
are given by the / = 1 terms (mass unbalance of the rotor) and / = 2 terms (rotor
oblateness, primarily induced by the spin of the rotor), which simplifies the torque
expressions significantly. In terms of the mass unbalance along the spin axis, z,
the odd torque is given by:

(rh = =z {fs + fLEW}
(1)1 = zdfi — fiNS} (1)
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where we have here expressed the specific forces applied by the suspension in the
inertial frame for convenience. In terms of Ar, the difference between equatorial
and polar radius of the rotor, the even oblateness torque is given by:

(rh) = :A—r;MKﬁ - @%@)(NS sin2¢ + EW cos2¢ + EW)
= 2f.f.sin d)l

(19)2 = iér—;’s—ei‘(ff - gf;—fzz)>(EW sin2¢ — NScos2¢ + NS)
+ 2f, f. cos ¢] (22)

The largest contributor to these support induced torques comes from the
suspension force used to center the rotor against the gravity gradient arising from
the rotors not being located at the proof mass, that is, the nominal orbit location.
These forces and resulting torques are described in the next section.

Gravity Gradient Support Induced Drift

As mentioned earlier, Vassar [18] computed the gravity gradient force on the
gyroscope rotors and the resulting even and odd torques for a perfectly circular
orbit about a spherical Earth. Axelrad et al. [15] then used this in their orbit
simulations to find the optimal target orbit, considering variations in node and
co-inclination, to minimize the final gyroscope drift. For a gyroscope located a
distance d from the proof mass, the gravity gradient force for a spherical Earth
is found from the standard formula:

- _ e _ n
e

_ He _

- V?,(l + (1)3/2 [d g(a)rp] (23)

where @ = (d* + 2r, - d)/r}.
The function g(a) can be given by Battin’s formula:

a(3 + 3a + a?)

gla) = (1 + a)? - 1= I+ +a)” (24)

For the GP-B case where the distance from the proof mass to gyroscope is very
small compared to the orbit radius, the gravity gradient force can be linearized
with little error in the small quantity (d/r)):

Fgg = —nzd[id - 3(ir,, : id)ir,,] (25)

where 7 is the nominal orbit rate \/u./r, ia is the unit vector along d, and i,, is
the unit vector along r,. When equation (25) is computed for a nominally polar
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orbit aligned with the guide star, the result, linearized in i’ (the co-inclination) and
€} (the right ascension relative to the guide star) and averaged over the orbit is:

0
(Fy)average = nzd’:(3/2) (i'sin 8 + Q cos 5):| (26)
-1/2

where § is the declination of the guide star. This is the result found by Vassar and
results in the torque dependence given by equation (2). In the next section, the
gravity gradient torque expression is modified to include the effects of the Earth’s
oblateness (J,), small eccentricity (e, ), Sun, and Moon effects in order to be more
consistent with the orbit modeling and to search for possible modifications of the
optimal target orbit.

Specific Gravity Gradient with Oblateness and Eccentricity
The gravity gradient force on the rotor is modified by an additional small term
when considering the oblateness of the Earth:
F=F, +f, @n

where the second term is found by considering the gradient of the total gravita-
tional force including oblateness and ignoring the smaller higher order terms:

. L pe (R “NY
F, = —Fep - — “—12(—-> 6(r - N)N + 3r — 15(r ) r| @8
r? 2 r r r
where N is the unit vector directed along the Earth’s spin axis.

This operation results in the expression for the small gravity gradient force due
to Jy:

2
1 He R,
f,,=~-~——"—=/| = 6(d - N)N + 3d
&8 2 r,%(l-i—a)S/2 2<rp){( )

. 15g(a) . — 18 - d
~h@) (60, - NN+ 30,) + 229G, N, 156, - NP
d-NY d-N)|d+r
_ . . : P
) o w(e]32)

(29

where h(a) = (1 + a)”* — 1.
This expression can also be linearized in the small quantity (d/ r,) with little
error; the resulting first order expression for the gravity gradient force is:

2

3 R, . C . .

foe ~ — 7'1212(_> d{ is — S, - )i, — 5(i,, - N)ig
Fp

~ [10G,, - N) (ig - N) = 35(i,, - i) Gy, - N,

+ [264 - N) = 10G,, - N)G,, - 1)]N] (30)
The total expression for the gravity gradient force is now substituted into
equations (21) and (22) to find the even and odd support induced torques. Note

that the complete derivation must also consider that rp is a function of J; and e,
as given by equations (5-9). That is, r, is written r,(v).
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0dd Harmonic Gyroscope Drift

The odd torque on the gyroscope is computed by substituting the gravity
gradient force expressions above into the torque equations and orbit averaging.
These are then divided by the angular momentum of the gyroscope and substituted
into equation (14) to find the final orbit averaged drift equations due to mass
unbalance:

d 4 3 EW

LNy = — = n? + i'sin & — —}

dt< S) (2/5)r§ws 5 no[ﬂ cosd + i'sin d 3

d -z 3 51 <R8>2 : NS

CEW) = —2 22| —s =) sin28 — > 31
dt< ) (2/5)r§a)s 2 dn0|: 8 & v, sm 3 S

where z, is the gyroscope mass unbalance along the spin axis, r, is the gyroscope
radius, w, is the rotor spin rate, d is the distance from the proof mass to gyroscope
center, and n, is the circular orbit rate \/u./r3.

We see that the NS term has the same dependence as the simpler case. However,
there is indeed a modification of the EW term due to the Earth oblateness
independent of the specified orbit. There is no first order dependence upon the
eccentricity. The target orbit must still be chosen, however, to keep the eccentricity
small in order to validate the first order assumptions used in the analysis. The target
orbit is also chosen to ensure an average co-inclination and node as close to zero
as possible over the one year experiment.

Even Harmonic Gyroscope Drift

The even harmonic torques are computed in the same manner. These are signifi-
cantly more involved, however, as the gravity gradient forces must be expressed in
the satellite body-axes, substituted into the quadratic torque expressions, and orbit
averaged. While this can be done for the more general even harmonic equations
(equations (20)), the resulting drift is dominated by the gyroscope oblateness. It is
therefore more straightforward to use the / = 2 torque equations (equations (22)).
The resulting drifts are given by:

d —Arcos 8,d*n* | 15 53 n .
A NSy = —LSB T Mo | 220 cos & + i'sin ) — EW + f{ -2
dt<NS> @0 2 {Q cos i’ sin 8) P f 3
d

—Arcos 8,d’n* | 33 (R >2 1 n
A pwy = 2L InE Mo | 22, (Re ) n28 — —NS + g| =2 3
a'EW) @/5r2en | 3270\, )" 64 8\ 8 (32)

As for the mass unbalance, the NS drift rate is identical to that for a circular
orbit about the spherical Earth. However, as in the odd case, the Earth oblateness
introduces an EW drift component proportional, in this case, to the sine of twice
the guide star declination. There is, again, no first order dependence on the orbit
eccentricity.

Note that equations (32) has the additional functions f and g. These functions
are nonzero when the roll rate () is not an integral multiple of the mean orbit rate
(n,). They arise because some of the terms in the gravity gradient torque that are
roll modulated don’t exactly average to zero over an orbit unless roll and orbit are
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integer multiples. While it is somewhat involved, it is possible to find expressions
for these functions. It turns out that the resulting drift is significantly smaller than
the leading terms in equations (32), that is, always less than 0.005 milliarcseconds
for any combination of roll rates and experiment length.

Direct Gravity Gradient Drift

In addition to the drift mechanism described above, the gyroscopes experience
torques due to differences in their moments of inertia interacting with the Earth’s
gravity gradient. This effect has been known for some time and accounted for
in the GP-B error budget. For a spherical Earth, the torque on the gyroscope is
given by:

3. .
Bl X (- i) (33)

where [ is the gyroscope inertia tensor and, r the radial position on orbit, i, a
unit vector along the radius, and u. the Earth’s gravitational parameter.

In this section we augment equation (33) to consider the torque and resulting
drift of the gyroscope for an oblate Earth and averaged over a slightly eccentric
orbit. In this case, the torque due to the Earth becomes (again ignoring small
terms higher than J,):

2
T :3:/; i, X (1-1,) + %12<R7> [[ir X (-] = TG, - N

+ 20, -AN)[i, X(-N)—-(G,-I) X N] + %[(N - I) X N]:H (34)

The torques on the gyroscope are now computed in the spin axis frame. If we
ignore polhoding of the rotor (or average over it) then we can safely approximate
the inertia dyadic as diagonal in this frame (that is, assume the spin axis is along
the principal axis). This is also a good assumption because a dominant contributor
to the inertia difference is the oblateness induced by spin. The resulting inertia
matrix is written:

1 — ag, 0 0
I1=1, 0 l—¢ 0| 0sa=1, g =5x%x10"°
0 0 1

where &, represent the small inertia difference and a allows for an asymmetric
rotor. Using this in equation (34) the resulting torque in the spin axis frame is:
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3pd e, g
b =~ ZBeBor O cosveos(v — 8) — i’ sinveos(v — 8)

r3(v)
+ EWcos® (v — 8)]

—3u.l.ag,

20— 26) - _
Sra(y) |5 (@Y = 20) — NS cos (2v — 29)

L _
Ty =

2
512( R, ) [1 — 7sin® vsin Qv — 28)
r(v)

2
+ 4sin vcos (v — 28) + gsinZB]]
(35)

This torque is rotated back into inertial space and inserted into equation (14).
It is expanded to first order in J, and e, to find the final orbit averaged drift
equations:

3 gn
£ "( Qcosd — i'sind + EW)

5

2
d 3 ag,n?] 1 R\’
—(EW _— — = in 20 36
dt< ) = > [ g Jz(r,,) sin } (36)

A

Sun and Moon Effects

Lastly, it is possible to compute the gravity torques on the gyroscopes due to
the Sun and Moon. As before, these fall into both the support dependent and
support independent categories. The gravity gradient force on the gyroscope due
to a body B a distance rp from the center of the Earth is given by:

Feo = — £ (r, —rg) +

M B
—(
Ir, — rgl®

ETE r, —rg+d (37
B

r,

Assuming r,/rp is small, this expression can be expanded to find:

Fgg = MBd{3(13 ipipg —ig + 3r_p[5(i8 “ig) (s - irp)iB
rp ]

(g - iy, — G, ia)ig — (g - i,pm]} (38)

This gravity gradient force is then substituted into the support dependent torque
equations above in the same way as the Earth torque was computed. In this case,
though, it is more complicated because of the complicated time dependence of the
Moon’s orbit relative to the Sun and Earth. The Sun is more straightforward to
orbit average and does result in a closed form solution. For brevity, these results
are not shown here. However, both were numerically integrated and found to result
in torques at least 3 to 4 orders of magnitude less than the Earth induced drift.
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The Sun and Moon also produce a direct gravity gradient torque on the
gyroscopes, which to first order is expressed:

1'%3#—;B
rp

iB X (I . iB) + (%)[_ir,, X (I ° iB) - iB X (1 * i,p)
+ 5@, - ig)ipg X (I - ip)]] (39)

This torque is negligibly small compared to the others and thus will not be
expanded upon here.

Conclusions

This paper examined the torques and resulting drifts on the Gravity Probe B
gyroscopes due to gradients in the Earth’s gravitational field and due to the
influence of the Sun and Moon. While past work has addressed this question,
this study expanded it to include the influence of the Earth’s oblateness (J»), an
eccentric orbit, and the effect of the Sun and Moon. The results are used for
error analysis, data reduction of the flight science data, and for orbit planning.
In addition, general equations were presented for the gravity gradient forces and
torques on bodies due to the oblate Earth.

The calculations showed a significant contribution to gyroscope drift in the EW
direction due to the Earth oblateness not realized previously. It was also discovered
that gyroscope drift is independent, to first order, of the orbit eccentricity. This
is very helpful for final orbit planning as it is very expensive to finely trim the
orbit eccentricity.

Table 1 summarizes the critical EW drift angle due to Earth oblateness for
the baseline ‘GP-B guide star, BH CVn (HRS5110), the four current backup
stars, and the original GP-B guide star, Rigel. All drift rates fall below the
requirement of 0.3 milliarcsec/year. These values were computed for a 2 win
mass unbalance, 2 uin oblateness, and a rotor spinning at 130 Hz. The offset
between the gyroscope and drag free sensor is 24.75 cm. A moment of inertia
difference ratio for the rotor of 5 X 107% was assumed. -

TABLE 1. EW Gravity Gradient Drift for the GP-B Guide Stars

EW Gravity EW Gravity EW Direct Total EW

Declination  Frame Gradient Drift Gradient Drift Gravity Gravity
Star 82000 Dragging mass unbalance oblateness  Gradient Drift Gradient Drift
(deg)  (mas/year)  (mas/year) (mas/year) (mas/year)  (mas/year)

BH CVn 37.183 33.31 -0.127 —0.103 0.011 —0.230
o? CrB 33.86 34.72 -0.122 —0.099 0.01 —0.221
A And 46.46 28.8 -0.131 —0.107 0.011 —0.238
V711 Tauri 0.588 41.81 —0.003 —0.002 0 —0.005
IM Peg 16.84 40.02 -0.073 —0.06 0.006 —0.121

Rigel —8.200 41.4 0.037 0.03 —0.003 0.067
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