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Abstract. A detailed analysis of the polarization effects which lead to
nonlinearity in the non-ideal optical heterodyne interferometer is presented.
Extensive use is made of the coherency matrix representation by setting up a
‘cross-coherency matrix’ representation. A generalized treatment of periodic
phase errors (nonlinearity) is then presented. Individual contributions to the
nonlinearity have been characterized as either ‘independent’ or ‘dependent’ phase
errors. In the single-pass plane-mirror heterodyne system, to which the approach
is applied, phase errors for rotational misalignment of the nominally orthogonal
linearly polarized input states, beam splitter leakage, non-orthogonality,
ellipticity and the effect of misaligned polarizer—mixer are explicitly considered.
The latter effect is found to produce nonlinearity only when in combination with
any one of the'first three and is therefore a dependent phase error. The non-
linearity arising from ellipticity is identical with that from rotational misalign-
ment except that it has an offset. Rotational misalignment and ellipticity produce
nonlinearity at the second harmonic and are second order for practical set-ups.
It is also found that combinations of positive (anticlockwise) and negative
(clockwise) angular misalignments of the azimuth of the states, non-orthogonality
and misorientations of the polarizer—mixer, all relative to the polarizing beam
splitter axes, lead to different peak-to-peak nonlinearities in the given system.

1. Introduction

In the polarization coded laser heterodyne interferometer, the input beam
consists of two angular frequencies w and @ + Aw, each of which is ideally associated
exclusively with the transverse electric (TE) or transverse magnetic (TM)
polarization state. Ideally, the polarizing beam splitter (PBS) separates the two
frequencies (polarization states) so that the TE and the TM modes travel different
optical paths in pure form. The difference between the two paths is the optical"
path-length change and is carried by the heterodyne signal as a phase lead or lag 6,
with respect to a reference signal. In an ideal interferometer (the relative) signal 1
received at the measurement photodetector is

I=1+cos(Awt+ ), ¢))]

where Aw is the beat frequency which results from the mixing of the TE and TM
modes via a polarizer—mixer placed in front of the photodetector. The reference
signal Iy is obtained by sampling the input beam with an ordinary beam splitter and
then ‘beating’ the two modes in the reference detector, to obtain Jr =1 + cos (Aw 1)
(figure 1).

Most commonly, the heterodyne beam is derived from the spectral splitting that
occurs when a laser medium is placed in a magnetic field (Zeeman splitting); with
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Figure 1. Layout of a polarization coded heterodyne interierometer: P, polarizer-mixer;
PBS, polarizing beam splitter; M, mirror; pd, photodetector. Phase delay é = 4rd/A.

suitably positioned half- and quarter-wave plates, nominally orthogonal linearly
polarized states are obtained. The considerations of this paper also apply to
heterodyne systems using acousto-optic modulators, provided that beam separation
1s achieved through polarization coding. If the polarization modes associated with
the two optical frequencies are not ideal (i.e. they may be elliptical, non-orthogonal,
rotationally misaligned, or a combination of these), then strong and weak
components of both frequencies will propagate in both arms, leading to frequency
mixing of the wrong components. This effect ultimately results in a small periodic
error (nonlinearity) which limits high precision measurements of optical path
lengths [1-9]. °

It was first suggested by Quenelle [1] that, in practice, PBSs are imperfect and
allow through to each arm a small amount of the polarization state intended for the
other arm, and that elliptical states may cause nonlinearity. Sutton [2] carried out
experimental investigations and confirmed the predictions of Quenelle, finding
about 5nm peak-to-peak variations in nonlinearity. A periodicity of one cycle per
21t change in optical path length was immediately evident; however, Sutton also
observed a weaker second-harmonic component of the nonlinearity but came to no
firm conclusion as to its origin. Bobroff [3] also made experimental investigations
which confirmed the existence of the periodic errors of Quenelle [1]. In a related
paper, Rosenbluth and Bobroff [4] carried out a phasor analysis of the optical sources
of nonlinearity in heterodyne interferometers. Although they pointed out that a
purely scalar treatment was inadequate for a full quantitative treatment of
nonlinearity, they concluded that ‘frequency mixing is not a major cause
of nonlinearity unless the mixing is asymmetric between the two arms of the
interferometer’ [4]. Moreover, they obtained the surprising result that many
commonly cited causes of frequency mixing were not in themselves sufficient to
produce first-order non-linearity. One example cited by these workers was the effect
of rotational misalignment of the input polarization states on nonlinearity; for a
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symmetric interferometer no nonlinearity is predicted. More recently, using
a coherency matrix analysis [8], the present authors have shown that rotational
misalignment in the absence of any ‘asymmetry’ can produce appreciable
nonlinearity and does so at the second harmonic (i.e. two cycles per 21 change in
optical phase), although in principle it is a second-order effect for practical
interferometer layouts. Experimental results pertaining to the effects of rotational
misalignment of the input states were provided by Picoto and Sacconi [7]. Other
investigations were carried out by Xie and Wu [6, 10] who provided a matrix analysis
and identified the source of non-orthogonality and ellipticity of the laser output as
the birefringence and dichroism loss ratio of the laser cavity.

A significant approach to the understanding of phase-dependent polarization
effects was introduced by Berry [11] and later shown to be related to the
Pancharatnam phase [12-14]. Geometrical (topological) phase effects occur when
the state of polarization evolves along a closed path on the Poincaré sphere. However,
in classical interferometry treatment of polarization effects through the use of Jones
and coherency matrices will also yield the same results and is therefore adequate for
a detailed study of polarization effects in heterodyne interferometry.

The aim of this paper is to provide a detailed model of polarization effects in the
heterodyne interferometer, expanding the coherency matrix treatment given initially
in [8]. We specifically show that some effects, although second order in nature, can
give rise to substantial nonlinearity when combined with other first-order or
second-order effects. The model assumes that the differential heterodyne optical
path error (due to separation of the heterodyne spectral lines) is very much smaller
than the optical path length. We consider only those effects related to the polarization
phenomena in a non-ideal interferometer. In a sense these effects are geometrical,
but discussion will relate only to the geometry of the polarized states, as opposed
to the interferometer geometrical layout effects such as Abbé errors. No effort is
made to cast this work into the geometrical (Berry’s or Pancharatnam’s) phase
interpretation, as has been done for the heterodyne fibre optic fed interferometer by
Bergamin et al. [9].

2. Theoretical background

This section develops the basis of the Jones calculus used in the analysis. This
is then converted into the coherency matrix representation, and the appropriate
phase extracted. A key feature of the coherency matrix representation, is that it can
represent partially polarized light, with the ability to assess the noise properties of
the optical system (for example [15]), although this is beyond the scope of the present
paper. The Jones representation limits consideration to non-depolarizing systems.

2.1. Approximations and the Jones matrices for an interferometer

In a general two-beam interferometer, the Jones matrix for the ‘reflection’
(TE or reference) and ‘transmission’ (TM or measurement) arms of the
interferometer may be written, following Fymat [15, 16}, as

NI (7 ;=
DY=[d}] (,7=1,2), 3
where dfj') (z,7=1,2)and dg) are reflection and transmission coefficients respectively
for the interferometer as a whole. Thus, for example, D"’ may represent reflection
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Figure 2. Jones matrix description of the general interferometer. Qutput may be at O or O’
depending on Q and Q'.

R in the cube PBS, followed by transmission Q through optical element(s) in the
reference arm, reflection M in the mirror and finally a retrace of the beam path, where
R, Q and M are the Jones matrices for appropriate optical components. Then,
D" = RQMQR,; similarly one may write the Jones representation for transmission
as D® = TQ'MQ'T, where T and Q’ are the Jones matrices for transmission through
the beam splitter and the optical elements in the transmission arm respectively
(figure 2).

Let §; and J, be the optical phase changes that occur in the measurement (TM)
arm (subscript f) and reference arm (TE) (subscript r) respectively. Using
superscripts & and § on the § values to denote the phase change associated with the
incident field E*" at angular frequency w, and E®Y) at frequency o+ Aw, then
the Jones matrix D for the whole interferometer can be written for each field as

D®=[D"+ DWexp (— i6®)]exp (—i6®),

4)
D = [D(r) + DW exp (— ia(ﬂ))] exp (— i5<,ﬂ)),

where 6® = §® — §* (with u = «, B). Although the optical path lengths traversed by

the fields in each arm may be identical, they nonetheless yield different optical phases
because of their slightly differing wavelengths A* (with u = «, B). In general, one has

Ly
oW = % f n, (AW, Ddl (u=ao,fv=1t7), (5)
0
where n, (A*, 1) is the refractive index along the beam path taken by wave field E@D
(u=a, B) and L, is the path length along the beam path.
The difference between the magnitudes of 8 and 6% (which can be considered
as a measure of the heterodyne ‘beat’ error) is usually small, and to a first-order
approximation is (appendix A)

A
50— 5= 5y, + 80 ©)

where A4 is the difference between the two input wavelengths, d is an offset phase



Polarization effects in heterodyne interferometry 1879

corresponding to the interferometer path difference and §, , is a group optical phase
change corresponding to dispersive material in (say) the measurement (transmission)
arm and is given by,

K Lo+d
AUy,
where ng,, is the group refractive index of the dispersive material, of length d. Thus,
by ensuring that AA/A is sufficiently small, which is commonly the case, an

approximation can be made for the Jones matrices such that both D® and D® can
be replaced by a single Jones representation

D = [D" + DY exp ( - i8)] exp (— id,), (8)

Og,¢ ng, (4, 1) dl, 7

Note also that, in the process of finding the coherency matrix (see section below),
D will be multiplied by its Hermitian conjugate and, as such, the free multiplier
exp (— id,) will always be cancelled and can be neglected leading to the expression
in {8]:

D =D+ DWexp (— id). 9)
The wave-field E returning to the measurement photodetector is then .
E=PD(E™" + E%1), (10)

where P is the Jones matrix for the polarizer-mixer, which is intended to mix the
polarized components in optimum proportions. The input wave fields are

5 [ESD
E‘”z[EmJJeXP[—in+AwVL (1)
y
6.0 = [EL”
ER"=| g |exp(—iwn), 2
y

where E®" and Eg,“’i) (u= a, B) are incident orthogonal components (superscript 1)
of the amplitude of the electromagnetic fields, and ¢ denotes time.

2.2. Coherency matrix representation
The coherency matrix J describing interference and coherence concepts in terms
of the wave-field vector E (w, ¢), is given by [17]

J=(EXE"

s wen)

where the matrix elements are denoted by J;; = (E:EF) (i,7= x,y), X stands for the
Kronecker product, the dagger denotes Hermitian conjugation, the angular brackets
represent infinite time averaging, and the asterisk stands for complex conjugation.
It is readily seen that the average intensity of the beam is given by
I=Ju+J,=Tr(]).

The coherency matrix describing the interaction of two wave fields E“w, f) and
E? (0 + Aw, t), with different frequencies will be denoted by J* (u,v=aq, B.
Note that there are four possible matrix representations describing, firstly,
interactions between E® and E® with themselves (i.e. ‘self-mixing’), which are

(13)
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Table 1. Phasors associated with J.

Coherency matrix Mp,(2)
Jeb o exp(—iAwi)
(o, 1) 1
J(ﬁﬁ, i) 1
Jbaid exp(iAmt)
p

termed homodyne interference, and ‘cross-mixing’ between E® and E®, referred to
as heterodyne mixing. This can be written in a straightforward notation as

J(uv) = (E(u) X E(v)’r> (w,v=a, p)

_[Eerey e

<E(u)E fvv)"‘> <E(u)E (v)“) MKZ)(t)y (14)
y y y

where MY (¢) is the characteristic function or phasor associated with the matrix;
neglectlng noise effects, M$ = exp ( * iAwt) when u # v and is unitary when u = v,
where Aw is the average heterodyne beat frequency (see appendix B and table 1).
In the rest of the paper we shall use Aw instead of Aw.

The matrix elements of J*? will be denoted by Ji —(EE")EJ(-“”)*) G, j==x,v)
and (u, v = a, ). Although for the homodyne case J; (“”) = J @) this is generally not
the case for J (“”), u¥* v. For example, J, (“’3 )= (E€ (“)E B s clearly not equal to
TP = <E<°°‘E<”>> but it should be obvious that Jg —J}:’“”. The following results
may therefore be stated.

(a) Given partially polarized waves E* and E® with orthogonal components
EW*, E(")'a dE®™", E(v)* respectively, and defining the cross-coherency element
J("”) (E(“)E(” Y (i,j= x,y) then

JE = Jeer, (15)

Provided that the cross-coherency matrix is defined as in equation (14), we then have
from (a) the following.

(b) For cross-coherency matrices, J*» = Jot,

The interpretation of J 5}"’) is also straightforward; the matrix element represents
the coherence between the ¢ coordinate component of wave field u, and the j
coordinate component of wave field v.

Thus the coherency matrix J of the output wave field of the heterodyne system
is, using (10) in equation (13),

J= pDJ(aﬂ.i))DTP‘r + pDJ(m,i)DTPT + PDJ(ﬂa.i))D‘rPT + pDJ(ﬂB, ptpt, (16)

The first and third terms of the above equation describe optical mixing and other
influences of the interferometer optics on the partial coherence properties of the two
initial (heterodyne) polarization states, E*" and E%?. The second and fourth terms
describe the effects of the interferometer optics on the partial self-coherency
properties of similar initial (homodyne) states. The description of reflectivity and
transmissivity of the interferometer is contained in the Jones matrix D (equation (9)).
A similar treatment of the cross-coherency vector has been carried out in appendix
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D, so that the corresponding analysis in terms of the Mueller representation and
Stokes vectors is easily accessible.

2.2.1. Intensity
The intensity I observed at the photodetector is
I="Tr(PDJ*/"D'P!) + Tr ( PDJ**'D'P") + Tr (PDJ#* 'DIPH
+ Tr (PDJ##)DtPH). (17)
It can be shown (appendix C) that, for the matrix J* (u,v = a, f),
Tr (PDJ“”D'PY) = [yf™ + 9 exp ( — i6) + 3§ exp (i8)] ME(z), (18)

where M§ is the characteristic function or phasor associated with the coherence
states (uv) (table 1). Note that only the cross-coherency matrices (i.e. those with (o, B)
and (B, a)) have a time-dependent characteristic function.

Now using the result (b) above in equation (18), one finds that

7 = 9, (19)
W =y, (20)
M = MEo*, (21)

which allows equation (18) to be written in the generalized form for the heterodyne
interferometer as

I'=Ko+ 2R {K;sexp (— i) + Kawexp ( — iAwt) + Kap+ sexp [ — i(Awt + 8)]
+ Kaov-sexp[ —i(Awt - 0)]}, (22)

where #{} means the real part of {}, Ko = +y§?, K;= WO+ 580 Ky, = &P,
Kawss =P, Kaop-s= 7% and the K values in general are complex (see also
appendix C). The term in exp ( — i) results from homodyne interference between
components at o traversing the TE and TM arms, plus similar effects involving
components at  + Aw. The term in exp ( — iAw t) (usually considered to be the main
‘nuisance term’) results from interference of @ + Aw with @ components in each arm
separately. The term in exp[— i{Awt + §)], the main photodetector signal term,
arises from interference of the main @ + Aw component traversing the TM arm with
the w component traversing the TE arm. The final term in exp [ — i(Awt — d)] results
from w components in the TM arm (from, in general, both leakage and misalignment .
effects) interfering with w + Aw components in the TE arm. The parameter J in the
phasor terms is the phase change introduced by the Jones matrix D.

2.2.2. Phase errors

In this section, general formulae are given for the measured phase ¢ and the
resulting phase error . for cases when the K in equation (22) are real and complex
respectively. Note that the K are real for linear states only, and complex for
elliptically polarized light.

(@) Real K; linear states. It is usual in heterodyne interferometry to pass the
measurement photodetector signal through a high-pass filter to remove
low-frequency components lower than Aw. In so doing we arrive at the a.c.
measurement signal I5.c. Since the K in equation (22) are now real then
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Inc. = Kawcos(Aw t) + Kap+scos(Aw t + 8) + K, —scos(Awt —6). (23)

We reiterate here that the main photodetector signal is represented by the
term in cos (Awt + §), while the first and last terms introduce phase errors
into the measurement system. Ia c. is therefore suitably rewritten as

Ipnc. = cos(Amt+ @) 24)

where o is the measurement signal amplitude and ¢ is the measured phase
and is given by

K_tand )’ 25)

=t _1<————
¢ = tan Kppsecd+ K4

where K+ = Kpw+s+ Kaw—-s5 and K- = Kay+5 — Kaw—s. The square of the
amplitude o/ is given by the sum of the squares of the numerator and
denominator within the large parentheses in equation (25). The definition of

the phase error d. is somewhat arbitrary; however, retaining the framework
of [8], we have

de=¢— 0. (26)

It is a straightforward matter to show that the resulting phase error
(nonlinearity) is-

(27)

5= tan~! ((K_ -K, —KAwsecé)tané).

Kapsecd+ K, + K_ tan?$

Complex K; elliptical states. In the most general case (i.e. where the K are
complex), one may  write  Ka, = Rawexp (— idaw), Kaw+s=
Raw+ exp (— 10aw+ ), Kaw—-6= Raw— €xp(— ida,-). The a.c. part of equation
(22) becomes

Inc. =kaocos(Awt+ 8ap) + Raw+ cos(Awt + 0+ dap+)
+ kapy— cos(Awt — 6 + dap-). (28)
Such a system is easily reduced to give the generalized phase error as

5.= tan-! ( Raw SiN (Oaw — 0) + Raw+ SINOaw+ + kaw - sin (0pm- — 26)
e—tan RawCOS (0pp — 8) + Raw + €OSOap+ + Raw— cOs(Opp— — 20)

): 29)

It is clear from equation (29) that ks, introduces nonlinearity at the
fundamental, while ks, - introduces nonlinearity at the second harmonic.
For a proper interferometer set-up these two parameters will be small in
comparison with Rae +, the main signal amplitude. The phase da,+ of Kaw+5
represents just a constant offset between ¢ and 9.

The opportunity is taken here to introduce the concept of independent and
dependent phase errors. Returning to equation (25), it is clear that ¢ = J and
de =0 when Ka, = Kaw-s5 = 0, that is the ideal case. However, if for a specific
non-ideal effect, for example rotational misalignment in the plane-mirror
heterodyne interferometer, Kaw # Kaw-s and both are not simultaneously
zero, then the effect is independent and produces independent phase errors.
This is in contrast with dependent phase errors where, by itself, the non-ideal
effect does not independently produce phase errors but only in conjunction



Polarization effects in heterodyne interferometry 1883

with an independent effect. Moreover, two dependent phase effects cannot
produce nonlinearity. These two types of phase error will be discussed in the
next section in relation to the plane mirror system.

3. The plane-mirror interferometer

The simplest interferometer layout possible is one in which Q=Q’' =1, the unit
matrix (figure 2). In such a case, the output returns in the same direction as the input.
Moreover, the matrix D is diagonal. In more complex interferometer configurations
involving quarter-wave plates and retroreflectors (cube corners), D is not diagonal
since these optical components induce rotations in one or both of the linearly
polarized states [18, 19], or by improper alignment of the wave plates. Although this
particular study is limited to the plane-mirror configuration, it is believed that it is
a fairly good representation of most single-pass interferometer configurations. First,
a detailed description is given for the output of the interferometer observed at the
measurement photodetector, followed by the treatment of special cases affecting
nonlinearity in the interferometer.

3.1. Parametrization

3.1.1. Generalized Jones input states.

The axes of the PBS are taken as reference axes for the nominally polarized
heterodyne input E*? and E#?, These may be written in the generalised format of
Shurcliff [20] as

. R -4
E®D) = (co% exp 2 wl)) exp[— 1w+ Aw)t], (30)
sin Rexp (3iu1)
@i — [ ~sin(R+AR)exp(— —%im)) . 1
E < cos (R+ AR) exp (3iuy) exp (=) eh

where R is the angle between the diagonal of the rectangle circumscribing the ellipse
and the x axis (figure 3). R is related to the azimuth « of the major axis of the elliptical

e

Figure 3. Description of the ellipse and definition of parameters. x and y are the axes of the
beam splitter.
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state through

1 —cos(2f) cos (20:))1/2
1+ cos(2B)cos 2a)/ '’
where tan B = b/a is the ellipticity of the state. For a given ellipticity, if the azimuth
o changes to o + Aa, then R will change to R+ AR where
1 — cos (2f) cos [2(a + Aa)])‘”

1+ cos (2f) cos [2(x + Aa)]
Note that a variation in ellipticity f will also yield a change in R, its magnitude
depending on azimuth «. The parameters y; (=1, 2) are related to the ellipticity
through g = tan ™! [tan (28)/sin (2a)]. A

Orthogonality of the elliptical states occurs when E®DTE®D = 0, which leads to

tan Rcot (R+ AR)exp [ — i — )] = 1. (34)

tanR=( 32

tan(R+ AR) = ( (33)

Here two conditions must be satisfied simultaneously for orthogonality, namely
w1 = 2 and AR = 0. These two conditions are satisfied by heterodyning via an ideal
Zeeman process. Clearly AR =0 when both A and A are simultaneously zero.
In particular, equations (30) and (31) become linear states when u; = pp = 0. In such
a case, R=a. Moreover, when § (ellipticity) is small, R=~a. However, it must be
emphasized that R is not necessarily zero if « is zero; this can be seen from equation
(32) since R = B when a = 0. The significance of this is that an effect akin to rotational
misalignment can occur, based on the presence of ellipticity alone, even though the

major axes of the two elliptical states are orthogonal and aligned with the axes of
the PBS.

3.1.2. Interferometer matrix D

Leakage through the beam splitter is denoted by terms €* and eyz for the x- and
y-axis components of both input wave fields E®? and E®?. The ideal and non-ideal
Jones matrices for optical components related to the interferometer are given in
table 2. The non-ideal polarizer—mixer is described by a parameter #p; this is related
to the ‘efficiency’ of the device which is defined as 1-—|qp|. Under ideal
circumstances, #p = 0 and the polarizer—mixer is at azimuth 0 = 45°, where it causes
the largest components of both polarization states (and frequencies) returning to the
input, to be optimally mixed and averaged on the surface of the measurement
photodetector. The non-ideal Jones matrix D for the plane-mirror interferometer
(as developed in section 2) is therefore simply

D=[exp(~—i5)+€x 0 ]’

0 —[1+ ¢exp(—id)] (35)

where § is the optical phase change acquired following a change in optical path in
the measurement arm. This reduces to the ideal Jones representation for D when
€=¢€,=0.

3.2. Nonlinearities in the plane-mirror system

This section identifies contributions from various non-ideal optical polarization
effects which lead to phase errors (nonlinearities) in the plane-mirror heterodyne
interferometer. First, a general description of the measured phase error is given,
which will be followed by the shorter individual source effects.
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Table 2. Ideal and non-ideal Jones representations of some optical components.

Jones representation

Optical
component Ideal Non-ideal
10 1 0
PBS Tpps = [ ] Tpps = [ ]
PBS= |0 o pBs = | ) e; P
00 er o
Ross=[ ] Riss=[ % ]
PBS= | 0 ¢ PBS 0 1
1 0 1 0
Mirror M= [0 _ 1] M= [0 —1
. . 1 0 , 1 0
Polarizer~mixer Py=Ry R_y Py=Ry R_y
0 0 0 np
cosf  sin 0]
Ro= [ —sinf cosf
Plane-mirror D" = RpgsMRpgs D® = RppsMRpgs
interferometer D® = TpgsMTpgs D@ = TppsMTpps
D=D"+ D= [exp(—ié) 0} b= [exp(—i5)+€x 0 ]
D® exp(—10) 0 -1 0 —[1+ ¢ exp(—id)]

Substitution of equations (30), (31) and (35) into equation (17) and neglecting
squares and cross-products of €, and €, leads to specific expressions for OAwy Orm+
and da, - of equations (28) and (29):

P _1<(A—D)sin5’+(B~C)sin5"> (36)
o= \(4+D)cosd + (B + C)eosd’)’
with
A= —2cos’OcosRsin(R + AR),
. B= — (& + ¢,)sin(20)cos Rcos (R + AR),
C = (. + ¢)sin (20) sin Rsin (R + AR),
D =2sin’0sin Rcos (R + AR);
A'sind' + B'sind” — C'sind’
— a1
Oa0+ = tan (A’cosé’ + B’ cosé"+C’cosé'>’ (37
with
A'= —2€,cos’cos Rsin(R + AR),
B'= —sin(28)cos Rcos (R + AR),
C' =2¢,sin’#sin Rcos (R + AR);
A"sind’ — B"sind" — C"sin &' )
o1
Oaw- = tan (A"cos ' +B"cosd” + C"coséd’'/)’ (38)
with

A"= —2€,cos’cos Rsin(R + AR),
B"= —sin(26)sin Rsin (R + AR),
C"=2¢,sin’0sin Rcos (R + AR);

where 0 is the azimuth of the polarizer—mixer (see table 2), &, €,, R and AR are as
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before, &' = 1(u1 — p2) and 6" = 3(p1 + p2). The corresponding amplitudes kaw, kaw +
and ka,- can be found by evaluating the square root of the sum of the squares of
the numerator and denominator within large parentheses for each of equations (36),
(37) and (38). Of course, when the inputs are not elliptically polarized
(i.e. ' = 6" =0), the K in equation (22) are real and are given by

Ky,=A+B+C+D, 39)
Kap+s=A'+B +C', (40)
KAw_a = A" + B" + C". (41)

3.2.1. Effects involving linearly polarized states

The effects involving linearly polarized states are relatively straightforward to
obtain. For linear states, R = a and f = 0; therefore §' = 6" = 0. Moreover, the extent
of non-orthogonality, for example, is simply described in terms of a single parameter
Aa in contrast with elliptical states. By allowing a specific effect to influence the ideal
interferometer, we are able to observe the extent and nature of that non-ideal effect.

(a) Rotational misalignment. In [8], it was shown that, when the input
polarization states were rotated about the input beam relative to the beam
splitter, the phase error was (using equation (27))

5.=tan" " ([sec (2a) — 1] tan 5)
€ 1 + sec(2a) tan?é

(42)

(where « is used in place of R in [8]). It was also pointed out in [8] that the
second-harmonic nonlinearity, which equation (42) represents, is the result
of the non-zero amplitude introduced by Kas-s, for non-zero rotational
misalignment angle a. Note that, for linearly polarized light, only rotational
misalignment can independently produce second-harmonic nonlinearity,
although beam splitter leakage and non-orthogonality also contribute to
second-harmonic nonlinearity.

(b) Misalignment of polarizer—mixer. For an ideal interferometer with a
polarizer-mixer at arbitrary azimuth 8, one finds that only Ka. + 5 is non-zero;
this shows that misalignment of the polarizer-mixer alone does not
independently produce non-linearity. However, in cooperation with an
independent effect, such as non-zero a, a significant amount of nonlinearity
may be introduced, in this case, first harmonics in addition to second
harmonics. In fact, Ka, = — sin (2a) cos (20), Kaw+s= — sin (20) cos?a, and
Kap-s=sin (20) sin’a, and the phase error is (equation (27))

5= tan ! ({[sec(Za) — 1] — tan (2a) cot (26) sec 8} tan 5)
¢ [1 + sec (20)) tan? 8] + tan (2a) cot (26) secd /°

(43)

Clearly, equation (43) reduces to equation (42) when 6= mn/4. A plot of
equation (43) is shown in figure 4 where 8 = n/4 + «, as can occur in some laser
metrology systems, when the laser source, polarizer—mixer and photodetec-
tors are found in a single unit.

(¢) Effect of non-orthogonality. Non-orthogonality will independently produce
nonlinearity. Moreover, we find that Ka, = —sinAa, Kaw+s= — cosAa,
and K., —s =0, so that we have from slight rearrangement of equation (27):
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tan o
b= —ant ()
tan 1+ cot Aasecd (44)

Non-orthogonality is therefore an independent effect, dominantly producing

fundamental nonlinearity. The extremum of equation (44) is given by
tan Aa )

(1 — tan®Aa)'2)?

which is approximately equal to Aa for small Aa. This turns out to be

particularly significant for the plane-mirror interferometer as A up to 3° has

Sermes = tan~" ( (45)
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Figure4. Phase errors due to a combination of input orthogonal states rotated through angle
a (relative to the beam splitter) and misaligned polarizer-mixer with azimuth 8.
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Figure 5. Phase errors due to non-orthogonality alone.
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been observed in [4]. A worst-case peak-to-peak error of 6° is estimated.
A plot of equation (45) is shown in figure 5.

(d) Effect of beam splitter leakage. In this case K, = (€. + €,), Kap+5= — 1 and
K, -5=0, leading to phase nonlinearity (equation (27)):

_.[ (&+¢€)tand
b= — (e edun )
an (6. +€) +secd (46)
The extremum of equation (46) is
€.t €
55,max=tan'l< > ), 47
(1 - tan’ (e, + )] “7

which is approximately equal to €, + €, for small €, and ¢,. This also turns
out to be significant for two reasons: firstly the error is first order in the
leakage terms, and secondly the error is identical with J¢ jeak calculated from
a factorization of D, the interferometer Jones matrix, into a retarder and
variable partial linear polarizer (appendix E). Polarizing beam splitter
leakage parameters are often unique to each device, but some manufacturers
quote for intensity leakage of the TM (p or transmission) state into the TE
(s or reflection) state as 1% and 2% respectively. A worst-case estimate of the
peak-to-peak nonlinearity is therefore 3-4°. As is readily seen from equation
(46), the effects of beam splitter leakage are independent.

3.2.2. Effects involving elliptically polarized light

The major difference from linear states is that, since f # 0, the parameter R is
related to both & and f through equation (32). Because these two parameters are
bound up in R, individual expressions for nonlinearity will involve R, as well as the
phases u; and u,.

(a) Ellipticity and rotational misalignment. The phase error resulting from
ellipticity alone (i.e. assuming accurately aligned orthogonal states) in terms
of R is given by
5. = tan ! ( sec (2R)tan (6 + 8") —tan d + tan (2R) sec (6 + ") sind’ >

€ 1 + tan d [sec (2R) tan (8 + 8") + tan (2R) sec (6 + §")sind']/”

(48)

It was pointed out earlier that, although the major axes of the elliptical states .
are orthogonal and aligned (i.e. Ao =0 and a = 0), we still have R = f, the
ellipticity. Moreover, 8’ = 0 and 8" = p from the orthogonality requirements.
Under these conditions, equation (48) becomes

5 =tan_1( sec(2f)tan(d + ) —tand )
€ 1+tandsec(2f)tan(d+ u)/’

(49)

This result is identical with rotational misalignment of linearly polarized
states at angle « = f§ and shows that ellipticity gives an independent effect at
the second harmonic. Note, however, that the effect from ellipticity has an
offset of u.

Attempts to find analytical expressions for other effects in analogy with
linear states lead to cumbersome expressions and are best instead studied
directly through equations (36)—(38).

e et i i
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(b) Second-harmonic nonlinearity. For elliptical states, second-harmonic nonlin-
earity occurs when Kj,- # 0. The only parameter which independently
supports second-harmonic nonlinearity is R. However, equation (38) shows
that, if R =0 but AR, €, and €, are non-zero, then together they contribute
to second-harmonic nonlinearity, although none of them can do so
independently.

The collapse of elliptical states to linear states when =0 leads to R =«
corresponding to rotational misalignment. On the other hand, if & = 0, then
R = . This point was alluded to earlier and could be expressed as

0, a=0and f=0,
R= { b (50)
constant, a#0or B#0.
Thus we find that rotational misalignment and ellipticity can each
independently support second-harmonic nonlinearity.

3.3. Non-linearity in a practical interferometer layout

We now consider the nonlinearity in a practical plane-mirror set-up, based on
a Zeeman split-frequency heterodyne source. An ellipticity ratio of semiminor to.
semimajor axis of 0-01 (f=0-58°) was used, with o =2° Ax=3°, € =0-02 and
€,=0-01. We determine y1 = tan~ ![tan (2B)/sin (2a)], and similarly for w2 from fand
o+ Ax. R and R+ AR are then found from equations (32) and (33) respectively.
In laser metrology systems where the detector, polarizer and source are physically
linked into a single unit, then the polarizer misalignment is coupled to the rotational
misalignment of the input polarization states; thus 8 = /4 + «. The values for §’ and
0" are then determined and substituted along with R, R+ AR, 0, €, and ¢, into
equations (36)—(38) to give the amplitude and phase for the complex K values.
The phase-amplitude results for the K are then used in equation (29) to yield the
phase error d..

An interesting question arises with regard to the importance of the sense of
misalignment and non-orthogonality. In previous analyses in the literature, this was
never explicitly considered. However, there are four possible input configurations
to the beam splitter (figure 6); these occur for various combinations of anticlockwise
(positive) or clockwise (negative) rotational misalignments and non-orthogonality of
the input states (which have the same input ellipticity ). Substitution of the above
values for the practical set-up shows that there are four distinct nonlinearity effects
(figure 7). This result is not surprising since the combination of odd (asymmetric)
functions, particularly terms involving sin R and sin AR, can significantly alter the
behaviour of é..

4. Extension to more general interferometers

Although equation (22) for intensity and equation (29) for phase error are general,
the plane-mirror interferometer treated in detail in section 3 is obviously a special
case. A complete generalization requires fully general Jones matrices D™ (u=7,1)
to be written for both paths of the interferometer, and the question arises as to
whether explicit relationships can be established between phase errors and the
parameters of those matrices.

One approach relies on the following parametrization of the Jones matrices.
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y

Figure 6. Input configuration of polarization states. x and y are beam splitter axes.
The arrows are vectors along the major axes of the general elliptically polarized
heterodyne states. Angle o is measured relative to the x axis while Aa is measured relative

to y', the y axis rotated through a.

x1o_2
TP T T
-30 . 90

200 Aa=3° =2
)
@
l
5 200
@
8

G
)
C 0
e}

[

[
(]

& 200

@
c
a

Ao=-3° a=-2°
-400
TRt B S S S VN P W | PRI R R

* l—1150‘ J—1OO -50 — Q 50 ' li(I)O‘ — '1éo‘ '
Optical Pathlength Change (degrees)
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It is straightforward to verify that any Jones matrix can be expressed as
D" = gWH, (51)

where a is a complex amplitude factor, W a member of SU(2) and H is Hermitian;
alternatively, using a unitary transformation to diagonalize H,

D™ = qUPV, (52)

where P is a real diagonal matrix (corresponding to a partial linear polarizer), V is
a restricted member of SU(2) with only two parameters, and U is a general member
of SU(2). Similarly, the matrix D for the full interferometer can be written in the
form of equation (51) or (52). This parametrization corresponds to the well known
result for the Lorentz group, which is of course homomorphic to the group of 2 X 2
complex matrices, that a general Lorentz transformation reduces to a single special
transformation (corresponding to P) and spatial rotations (corresponding to U and
V). )

In some cases this parametrization does allow a useful re-expression of D. For
instance, in the plane-mirror interferometer the expression for D in equation (34)
can be readily rewritten as the product of a partial linear polarizer (P) and a linear
retarder (V), where both elements depend on the interferometer path difference &
(appendix E). Also, for a system in which both r and ¢ paths, and the overall
interferometer are all lossless, then D, D and D all reduce to members of SU 2),
allowing the parameters of D to be obtained straightforwardly. Such a description
is appropriate, for instance, to transport through a highly birefringent fibre as
discussed by Bergamin et al. [9]. More generally, however, while the parametriza-
tion procedure based on equations (51) and (52) does provide algorithms to obtain
the parameters of D, explicit relationships between phase errors and their sources
are difficult to establish. In general, then, it appears that the K parameters in
equation (29) must be obtained by consideration of a particular interferometer
configuration on an individual basis.

The form of equation (51) can, however, be applied to a treatment of beam
splitters, which somewhat extends the generality of the discussion of section 3.
Again, it is not easy to find relationships between the parameters of a completely
general beam splitter. However, consider a lossless beam splitter in which inputs
(expressed as Jones vectors iz and i3) at ports 2 and 3, say, produce outputs d; and
d, at ports 1 and 4; further suppose path 2 to 1 (representing, say, reflection) is
equivalent to path 3 to 4, and path 3 to 1 (representing, say, transmission)
is equivalent to path 2 to 4. Such a device, modelling a dielectric beam splitter with
negligible spurious reflection losses, can be represented by

[:l] - [l; :]m (53)

in which T and R are Jones matrices for transmission and reflection paths, and the
condition that the beam splitter is lossless then requires

RR+T!T=1,
(54)
R'T+TR=0, »
where 1 is the 2 X 2 unit matrix. Writing R and T in the form of equation (52), it
is straightforward to show that equation (54) then implies R and T must share the
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Figure 8. Leaked components appearing at an output port of an ideal PBS, following
rotation of the returning polarized states by the cube corner reflectors. The output

intensity I = cos’ € + cos® €, cos (Awt + 8). The leaked intensity I = sin® €; + sin’ ¢,
cos (Awt + 8).

same SU(2) matrices U and V and that, to within an overall phase factor, they can
be expressed as

R=UPRrV
(55)
T=1UPrV.

where Pr and Pr are real and diagonal. Hence, to within the SU(2) elements U and
V which are common to both reflection and transmission paths (and which can be
readily combined with other such elements appearing in the interferometer system),
a beam splitter within these fairly realistic restrictions can be represented by real
diagonal R =Pz and T =P, as used in section 3.

The most substantive omission from the treatment of section 3 therefore is the
case where SU(2) elements are included in both arms, which will have a major effect
only if the beam splitter is substantially imperfect. As an illustration, if Q (figure 2)
induces rotational misalignment of the state returning to the beam splitter from M,
then only the visibility is affected (figure 8).

5. Conclusion

We have undertaken a detailed analysis of the polarization effects which lead to
nonlinearity in the heterodyne interferometer. Qur approach is based on Jones
matrix and coherency matrix analyses, leading to a general expression for output
intensity (equation (22)) and corresponding expressions for phase error (equation
(27) or (29)). Although these results are straightforward, they show explicitly the
origins of the fundamental and second-harmonic nonlinearity in terms of the Jones
matrices of system components. This is sufficient to provide a complete analysis of
the plane-mirror interferometer. Although analytical results for more general
interferometers are elusive, it does appear that the separation of effects shown in
equation (22) provides a good basis for calculating results in individual cases.

The choice of a coherency matrix approach, rather than direct use of Jones
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calculus, was made to provide a more generalized framework. Although this has not
been exploited in the presented paper, it should for instance allow calculation of noise
resulting from partial coherence of laser modes.
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Appendix A. ‘Beat’ and dispersion effects
Equation (5) may be rewritten to include explicitly a path length d in a material
of refractive index n, in, say, the measurement arm, as

4 /(L Lo+d
5= ( f n (A%, 1) dl + f (A, 1) dl) w=a,p). (A1)
0 L
'The optical phase changes acquired in the interferometer are §® = §® — §® and
0P = 5P — 5P Thus the difference between optical phase changes for wave fields
labelled « and B is
4 (Lt L +d

3W— s =" | (4@ 1ydi—

i (P, ndl+ 65 - 5P  (A2)

(ﬂ)

t

where, for u=a, f,

4n

L,
=3 f r(A©, l)dl—:(rc)f m (A, ) dl. (A3)

Note that, if the interferometer is balanced, for example L,=L,, and n, = n,, then
6P =6f=0. Now, making the substitution A®=1 and A’=A+A1 in
equation (A 2),

5®— 50 = —4n fLLM ("‘(j i ﬁj’ h_ "’(j’ l)) di+ 6§ - 8. (A4)
Writing
n(A+ALD  n(4,0) _AnfA+ AL D — (A+ Alng4, ]) Al (AS)
A+ AL A AL+ ANAL
Toa (nt(j l)) At (A6
and substituting into equation (A 4) gives

8@ — 5P = — 4 AL f R (”'(l; 1)) di+ 55— 8. (A7)

Using the first-order dispersion approximation
an(4,1) A D) —ng (4, ]) (A8)

A A

in the derivative expansion in equation (A 7) yields

Al
39— 3P === 5.0+ 85" - 5. (A9)
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To get an idea of the order of magnitude of 8§ — 8P, let n, = n, = #1, the average
refractive index for both wave fields, so that

4
8 = 7n A(L,— L) (A 10)
@ __Th
o6 TT A a(L,— L,). (A11)
Using 4> Al,
4 AA

50 — 5O ~ 7“ AL~ L)~ (A12)

A
~ 3. (A13)

/.

Thus 6% — 6P is closely equal to 6 — 6 and both are small compared with &.
Finally, we rewrite equation (A9) as

50— 5B~ % (8g.0+ 60). (A14)

Note that this treatment indicates only the scale of such effects. In general, the
cross-coherency matrices will contain phasors involving for example 6 — 8® and
5@ — 8¥ which depend on total path, as well as path difference.

Appendix B. Derivation of phasor terms for cross-coherency matrices

In this appendix we give a simplistic derivation of the phasor terms associated
with the cross-coherency matrices J* (u, v = a, ). Starting with equations (11), (12)
and (14), we find for example that, for u= o and v = §,

JOB = (EDEP”" exp (—iAw b)) (B1)
Treating Aw as a random time-dependent function with mean Aw, then we may write
Aw(t)=Awt+ @a(t) (B2)
where @,(t) is a phase noise term. We therefore have, rewriting equation (B 1),
ISP =(EPEL exp[—iga ()] exp(—iBw), (B3)

whereupon, assuming independence and that @n(t) follows a zero mean Gaussian
distribution, then

I = (EPEP N exp[—ign(t)])exp(—iAwt)
=(E@QEP"Yexp(—ip,— ) exp(—iAw?) (B4)
=(EPEP"Y exp (— al)exp(—iAwt), (B5)

since @, = 0 by hypothesis, and where af, is the variance of the noise process. A similar
analysis can be carried out for (uv) = (82), (xa) and (Bf). The phasors associated with
particular coherency matrices are given in table 1.
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Appendix C. Evaluation of Tr (PDJD'P!)
Let P=[p;] and D = [d;] (1,5 =1,2), then we can write
Tr (PDJD'PY) = (apJ.. + arJyy + ard,e + a3l ) Mao(t) (C1)

where Ma.(t) is the phasor associated with J (see table 1), and the a are combinations
of the elements of P and D. These are obtained from straightforward multiplication
PDJD'P!. Note that a; = a¥ and that ay and a3 are real. If D is diagonal, then
diy = dy» = 0 as is the case for Q=1 in the plane-mirror interferometer, and

ao= (p3; + plo)ldul?,

a1 = (pup12 + papr)dnds,

(C2)
ay = (pupi2 + pupn)dndf,
a3 = (pl + p3,)|dnf’.
The matrices D™ and D® are given by
D" = [ri 0]’ (C3)
0 7€
t. 0
po-[% 0] c4
0 ] ( )
Then using D= D" + D®Wexp (— id), we have
v, +tiexp(—id) 0 ]
D= . C5
l: 0 n+ tyexp (—id) (€3
For the polarizer—mixer (with azimuth 8),
P_[cos@ —sin()][l 0}[ cos @ sin()}
sinf cosf JLO ypll —sin® cosh
_[1—(1—11p)sin20 (l—np)sinHCOSO] C6)
(1 —1np)sinfcos® 1—(1—np)cos®d

which yields,

ao = [(cos?§ + npsin® 0)” + (1 — #p)* sin? O cos? O] [|r, + ¢, exp (—i6 )|*]

= (cos? 0+ npsin O)[|ro |2 + |to? + rLt* exp (i8) + r¥2. exp (—id)]

= fo+ fsexp (—i8) + f¥ exp (i6), («©7
a1 = [(cos? 8 + npsin® 0)(1 — yp) sin O cos O + (np cos? @ + sin?6)

X (1 —np)sinBcos O)(r, + ty exp(—id))[r} + ¢ exp ()]

=[(1 ~ np)sinOcos Bl [r v} + tit¥ +r 1T exp (i0) + £,7} exp (— i6)]

=got grexp (—id) + g% exp (id) (C8)
a;=at =gt +glexp (i0) + g¥ exp(—id) (€9
a3 = [(np cos® 0 + sin® 0)* + (1 — yp)? sin? O cos? 01l(ry + tyexp (— i5))?

= (mpcos’ 0+ sin? O){|nl* + [g* + 7t} exp (i6) + rfyexp (— i6)]

= ho + hsexp (— i0) + k¥ exp (i6). (C 10)



1896 J. M. De Freitas and M. A. Player

Substituting for ag, a1, a; and a3 in equation (C1) yields
Tr (PDJD'PY) = [(fo/ux + g0Juy + 88Ty + hoJyy)
+ (folux + 815y + 833+ hoJ ) exp (— 16)
+ (8t 82Jy + g1y + B3J,,) exp (10)] M au(2)
=[yo+ 71 exp(—i0) + y2exp (10)]Mau(?). (C11)

Appendix D. The Mueller representation and the Stokes vectors
In this appendix a slightly different approach is used, where the coherency vector
is manipulated in contrast with the coherency matrix in section 2.2. The advantage
of this is that there is a straightforward method of converting coherency vectors to
the Mueller and Stokes representations.
The cross-coherency vector £ is defined as
I
J(u-v)

xy

F ) = (E® x V") = M. (D1
(uv)
T
J(uv)
vy

Note here that since the discussion of section 2.2 demands that J§¥ =J§""
(i,7 = x,y), then F* # ##" when u # v. In order to maintain consistency in the use
of cross-coherency vectors, a new transformation B must be introduced, so that
(following on from (b) in section 2.2).

(c) For cross-coherency vectors £ =B F¥" where B is a unitary transformation
and is given by

100 0
0010

B= (D2)
0100
000 1

B performs the operation equivalent to matrix transposition by allowing J S‘y”)
to swap places with J g’;”) in equation (D 1) so that, when result (a) (section 2.2)
is applied to the elements of #®, the result will be consistent with the
definition of the coherency vector #® and its complex conjugate.

It is well known {21] that the coherency vector is easily transformed to the Stokes
vector $%* through the transformation

s(uv,i) = Aj('wy i)’ (D 3)

where

(D4)
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Moreover, for an optical system possessing a Jones matrix Q, the corresponding
Mueller matrix M is given by [21]

M=AQXQ"HA ™! (D5)

Furthermore one writes the output Stokes vector $“*), in terms of the input Stokes
vector 8% ag

St = MSH 1), (D6)
We also have $™ = AB_#®" but, since AB = A*, one gets the following result
(d) For ‘mixed’ Stokes vectors
gli) = gw*

If N different frequencies are input to the optical system, then the input
coherency vector is written as

N N
F= 2 (EVXET)= 3 gt (D7)
u,v=1 u,v=1

and therefore the total output Stokes vector denoted by 8 is
S=MAY/. (D8)

However, substitution of equations (D 3) and (D 7) into equation (D 8) yields the
result

N
S=M ) St (D9)

u,v=1
Thus the output Stokes vector for a system of N frequencies is the Mueller transform
of the sum of the Stokes vectors of the pairwise permutations of the input wavefields.

Appendix E. Factorization of the Jones matrix for an interferometer
The ideal interferometer matrix D can be written as

_ [exp[—3i(6 — m)] 0
b= [ 0 exp [3i(d — ‘It)]]’

which is identical with a linear retarder of retardation § — © with azimuth 0°. Thus
an ideal plane-mirror heterodyne interferometer could be described as the.
combination of a variable linear retarder followed by a polarizer—mixer in front of
the measurement photodetector. Secondly, the Jones matrix for non-ideal D could
be written as

(E1)

D=[(1+26xc085+6§)exp(—i@x) 0 | ] E2)
0 - +26ycos6+e§)exp(-—1@y)
and is easily factorized, neglecting overall phasor terms, to give
D= [(1 +2€,cos 8 + €) 0 ]
0 (1+2€,cos8+ €)
% [exp [—3i(O,— 6O, —n)] . 0 ]’ (E3)
0 exp [4i(0. — O, ~ m)]
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where

tan d
oo (2
an 1+ e.secd

tan é )

= -1 -
6, =tan (1+(1/€y)se05

This factorization suggests that the introduction of leakage into the polarizing beam
splitter can be described by the combination of a variable-intensity non-polarizing
beam splitter followed by a retarder of retardation @, — ®, — n. Note that, as €, and
€, approach zero, @, — ¢ and ©,~0. Thus the parameter 6, — @, replaces § in
equation (E1) and can be re-expressed as @, — 0, =3+ J jeak, Where O e is a
retardation error resulting from leakage in the beam splitter, which depends on §.
Bruning [22] also pointed out a similar distortion which occurs when extraneous light
fields enter the scanning Twyman—Green interferometer. The importance of this
new retardation is that the ideal variable retarder acquires a phase error which
depends on ¢ and contributes to the nonlinearity of the interferometer. Moreover,
the variable-intensity non-polarizing beam splitter also introduces phase errors
indirectly since it is a function of d, the main measurement parameter, as well. The
final phase error results from the mixing of the leaked components with the main
components in each arm separately.

Neglecting squares and cross-products of €, and ¢, the non-ideal Mueller
matrix M for the interferometer (corresponding to non-ideal Jones matrix D) is
written as

1+ (ex+€)cosd (e,—€)cosd 0 0
M (ex—€)cosd 1+ (e.+¢€)cosd 0 0
0 0 —[(&+ &)+ cosd] —[(ex+€,)+sind] |

0 0 (€. + €) +sind — [(&x + €) + cos d]
’ (E4)

(This must be multiplied by the Mueller matrix for the polarizer—mixer to describe
output at the photodetector.) Like the non-ideal Jones matrix D, the non-ideal
matrix M describes a distorted linear variable retarder, as can be seen when M
reduces to the ideal linear retarder for €,= €, = 0. These results can be viewed as
examples of the general parametrization given in section 4. '
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