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> ldentify and understand “anomalous effects” &

> ldentify single cause of effects if possible &

» Establish physical base for data analysis &

» Experimental Observations

» Ground Measurements

» Classification of Effects on GP-B
» Discussion of Effects

» Remaining Work

» Lessons Learned
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Modulation at low spin wg, and polhode @, frequency
in the ~ 1.5 Hz GSS band

G wg =1.3 Hz mod. control effort: 30% of ~1.5x10"" N

» wg =1.3Hz mod. position at : 40 nm,,; ~0.1% gap

@ wp Mod. z (telescope axis) bias at 80 Hz spin : 10N
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Rotor-fixed Mechanisms
Explain “30% rotor bumps” (102 of expected)

1. Rotor geometry
a. Mass unbalance: ~10nm measured (3x10* gap)
= Smaller than observed coupling by ~ 103
b. Surface waviness: ~10nm measured (3x10-4 gap)
= Smaller than observed coupling by ~ 103

2. Trapped flux interacting with magnetic fields

Three independent calculations
=» Smaller than observed coupling by > 103

3. Non uniform potential of rotor surface
= Coupling consistent with ~50 mV — 100 mV patch
effect modulating V, ~ 200 mV suspension voltages

» Variation of electric potential over the surface
> It can arise due to the polycrystalline structure Gyroscope
> It can be affected by presence of contaminants

» Modeled as dipole layer o o o
» Patch fields present on rotor and housing walls Housing
» Cause forces and torques between surfaces

Data explained by patch potentials of ~50-100 mV on rotor and housing
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: . . i S - oo o, I
» Pre-launch investigation Ao e ﬁﬁ«? |

> Contact potential differences ~ 0.1V - 1V , — e
» Patches mitigated/eliminated by grain size i e z :
Housing Ti coating |

0.1 um << 32 um rotor-electrode gap
» Kelvin probe measurements on flat samples
» Post-launch ground investigations
» Work function profile by UV photoemission

0.8 4

AR

: . i A,AP\ 2
» Detailed analytical modeling o ,W;ﬁiig}& g
: 33 ] S0 S T -
> Kelvin probe measurements 2 lq’.'ﬁis‘i&ﬁfrf%{eﬁ“‘ 10
31 l.= : \“ g=== 11
30 X { I, 12
29 RS o ..' 13
28 O ()~ 14

ST-7, LISA, LPF, LIGO find:

Patch potentials 30 -100 mV
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Gyroscope
The rotor coating process can lead to variations in the patch potential
» Coating is the result of many layers
» Each layer covers about 2/3 of the rotor surface
» Coating is axi-symmetric, but varies with angle to deposition source
Thickness variations
Impurity variations
Crystal structure variations
Contaminants

Housing

All suspension electrodes coated with same axi-symmetric process
» Small variation from center to edge
» 6 separate depositions

Ground plane coating

» Substantial variation expected due to coating process / angle
» 2 separate depositions

Thickness variations
Impurity variations

Crystal structure variations
Contaminants
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» Coupling to GSS » V; 50-100 mV

> 7 axis force

» At zero frequency
» At polhode harmonics (mentioned)

» Torques

» Misalignment = following talks
» Resonance > following talks
» Dissipation mechanisms
» Spin-down
» Polhode damping
» Charge measurement bias
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Two Approximations:
A. Dipole only

B. Harmonic expansion

>V rotor potential, V,;: housing potential
» Potentials are real

o0

Y000 10(0 s _.VR M AL Vesn = (2" Varn
"on 2 s "o VH l-m — (_1)m VH*J,m
vy, (0",¢") = Y..0, O);;mZ:IVH,I,mYI,m(H ¢")

Statistical Model
» Spherical harmonics terms are uncorrelated

» Assume a power spectrum characterized by the parameter r
» Assume that Vg, and V,, , are both Gaussian and have the same o

* *
V V* _ VR,l,OVR,l,O V V* _ VH ,1,0VH ,1,0
RIm YR,Im — Ir Hilm YH,Im Ir




Axial thrust towards guide star (z axis) for the GP-B mission

Effective Z-axis thrust (uN)

0.6

0.4

o
N

» Average atf=0

» Varying with Vg
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Amplitude of Control Effort at Polhode Harmonics : Gyro #1 (a Axis)
107 ‘
® Aug 29-31 2004 (day #131-133), T=10,083 s
. 80 ® Mar 7- 92005 (day #321-323), T= 3,121s
= 10 ° ® Jun 19-21 2005 (day #424-426), T= 3,121 s
s 0
2 1099 .
LLl °
§ * ’ ’ 0 °
%‘10-10 o e 0 J_.__.. 0..+.
O o N o % 8, %, 0
N | .:$o° o0 ¢ :.}.:".:“w
10-12 () 090 ‘“ [
100 101 102
Polhode Harmonic Number

Polhode Modulation
> Patch potential model gives the force for the pth harmonic of polhode

» Using the observations and the statistical model

VR0 cl)o( =7)—Vuio -1 "
wTO)) el Z V2l +1-,20-1)+1 M' oo s (PN +Ve o dya () -(141))
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z- axis force: zero frequency average V,, =72mV
» Model: V4, rotor - housing dipole component

» Force
(F;)=9nN; V,=10mV

z- axis force: variation with rotor charging V,, =81mV
» Model: V4, rotor - housing dipole component

AF, =8nN; AV, = d;/tR At =10mV; d;/tR =0.12 mV/day

87: &I

AF
27 3 (2

AV, V.,

Data explained by patch potentials of ~50 - 100 mV on rotor and housing
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» Torque model for givenland m=20

C, NPT IS
Ny =—=—"Vei1oVhio d7 [do,o(ﬂ)]— 5 I(I +1))VR,I,OVH,I,OIB

3
| 5

» Statistical model
Equivalent dipole field as a function r

Magnitude of Drift Rate vs. Angle of Misalignment

1(1+1)
T

O Gyrol

Gyro 2
O Gyro3
o Gyro4
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g L Data explained by patch potentials

g ‘ ~50-100 mV on rotor and housing
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Parameter characterizing spectrum, r
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» Statistical Model

N

= _?VR,LO Vi 1,0 Z
I=m

o ,,_Tﬁ47
» Torque model

C.y1(1+1)
6

C : d _
_?VR,I,lvH,I,l dom (7P)@[d0’1(’8)”/3=0 -

VR,I,lvH 11 d(I),m (7/P)

C, ~ [\/I(I +1)d(l),m (}/P)JZ
Ir

Equivalent dipole potential, mV

Equivalent dipole field as a function r
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100 L
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Data explained by patch potentials
~30-150 mV on rotor and housing

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Parameter characterizing spectrum, r
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Gyro 1 df /dt vs. Time Gyro 2 df /dt vs. Time
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» Spin-down rate decreases 5% -10% at start of mission

» Spin-down rate change is consistent with polhode damping
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Gyroscopes spin-down and polhode parameters

Gyro Spinl-—lszpeed u?_{; (/jf:r Iis pPVSV N-ml\-IJS_O‘15 yrjr]S_03 dgy (AEszOT (AEP‘;TOT (AEp) o/
1 B (AEg) o7
Gl 79.39 -0.57 1.25 5.0 9.9 15.9 32+2 41 3.3 8.0%
G2 61.82 -0.52 0.75 35 9.1 13.6 753 68 1.0 1.5%
G3 82.09 -1.30 1.33 11.7 22.7 7.2 31+5 93 2.5 2.7%
G4 64.85 -0.28 0.83 20 4.9 26.4 61+2 32 6.8 2.1%

WHY NOT GAS DAMPING?

»No change in df/dt observed for 75 mK temperature increase

» df/dt = 6 puHz/hr at 4 K (from about 1 pHz/hr at 1.8 K)

» Inconsistent with gas damping by more than 103

1r,-p 27 -KT 2
==l P |27 R o=niexp| =2 |: A= h . 70K <E, /k, <150K
5 P Mg kgT 27 -my KgT

P, —exp| E AT dopdt (B AT doy/dt—daydt [ (E, AT)|
da, /dt keT T da, /dlt keT T

2x107Y Pa < <P>He <3x107%? Pa "Calculated* 2x10°Pa< <P>He <6x10° Pa "Actual"



o _T%
» Model

> Electrodes and ground plane are grounded through resistors

> R;=300 MQ, C; =500 pF; Rg = 20 kQ3, C. = 78 pF

> Voltage induced at spin and harmonics on electrodes and ground plane
» Calculate induced voltage on each electrode for each [ and m

» X m(6,9) Is areal function combining Y, . (6,¢) and Y, _..(6,¢)

LO )

1
Vitm = \Tojith Suface Xl,m (9’ ¢) ds

» Calculate electrode power loss | and m

_ ViunVe) (maosRCY Equivalent dipole field as a function r

hhm R 1+(mwsRC)

(ws RC). <<1; (wSC)ERES{L} <RZ

RC), >>1: L = Ror
(ws )GP > {(V”’mvo )2 :IGP GP

Data explained by patch potentials

~50-150 mV on rotor and housing



LOCKHEED MARTIN ﬁ
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Polhode damping periods calculated from spin-down power dissipation

Gyro K, 0] (dagp/dt), {Zyis)sD Tyis
x106 (s (s2) x1020 (day) (day)
Gl 3.36 499 2.2 44 31
G3 2.07 516 1.9 33 30
G4 0.93 407 0.3 70 64
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» Why not plastic dissipation in gyroscope
» Nb to Quartz interface: No credible mechanism

> Quartz <2x1018 W
> Nb Coating < 2x108 W

ar(0) = 2225 _p, 00sg) LN @-2)] (o o) o 3(Lrcosi2d)) L
3Y >

— (Gyroscope #3
Gyroscope #2

I I I 1 I
T T T T T
0 20 40 0 20 100

Elastic deformation (nm)
Uh

|
[y
=]

1

Latitude on sphere (degrees)

Elastic deformation of spinning gyros

(7 +5v) 5 2 2
2 Ar
ES=Y5 V and (P,)= Es 5E<_>; v =0.16
2 Q(T,) r
Material Q Y (N-m?) vV (m?) p Es (9) (Pp) (W)
(quality factor) (elastic modulus) (volume) (Hr (strain energy) (power loss)
Quartz 107 7.17x10%0 3x10° 2.4x107 6x108 < 1.9x10-18
Nb 10* 12x10%° 5x10° 4x107 5x1011 <1.6x1018
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Dissipation to ground at ik ZEAULN can
reduce polhode energy exponentially

Continuing work
» DeBra

Polhode maximum power dissipation 0.1 - 1 pW > Silbergleit

» 10 -40% of average spin-down power

> Keiser
» Turneaure
> Buchman

Polhode average power dissipation 40 — 400 fW
» 1.5 - 8.0% of average spin-down power

Polhode power dissipation is consistent with
patch induced dissipation to ground

Complete derivation NOT yet successful

Gyro Ps (Pe)max  (Pp)max/ (Pp) (AEp)ror  (Pp)/
(PW) (pW) Ps (fw) (nJ) Ps

Gl 5.0 1.09 32% 400 3.3 8.0%

G2 3.5 0.14 10% 54 1.0 1.5%

G3 11.7 0.87 42% 316 2.5 2.7%

G4 2.0 0.12 13% 42 6.8 2.1%

Data consistent with patch potentials ~30-150 mV on rotor and housing
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Rotor Patches Ad =0 y S v
Ve =Vg +1/2(V1 "‘Vz) Ve =Vgy # Vg, ” y i h .
Vry = Vi +1/2(V1 "‘Vz) Ve@oo) # f(Ad(a,b,c)) II,*’I ST x'xl
V. =V, +V, .
II V3 and V.,
Rotor Patches Ad = 0 ey
Viea # Ve # Ve T~y

VRa :VR +1/2(V1 +V2)+Ada(vl _Vz)
VRb :VR +1/2(V1 +V2)_Adb(V1 _Vz)
Vi =V +V,

Vian = f(Ad(a,b)) v, s
V. # f(Ad,)

The Spin Averaging GP-B Gyroscopes

Rotor and Housing Patches Ad # 0

VRa :VR +]/2 [(Vl _Va+ )_ (VZ _Va— )]+ Ada[(vl _Va+)_ (VZ _Va— )] VRa ;tVRb ;tVRc

VRb :VR +1/2 [(V1 _Vb+)_ (Vz _Vb— )]_ Adb[(V1 _Vb+)_ (Vz _Vb— )] VR(a,b,c) = f (Ad(a,b,c))
VRc :VR +V3 _1/2(VC+ _Vc—)_Adc(Vc+ _Vc—)

» Rotor and Housing patches required for data modeling

» GP-B data is insufficient for unique solution

Ed Fei senior thesis
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Relative position of gyroscope #3; same for all three axes

VRa '_"&VRb ¢VRC

VR(a,b,c) — 1:(Ad(a,b,c))

a axis
b axis
C axis

max\Vy; — V| ~ 60mV

Gyroscope #3 potentials and their shifts due to miscentering

Data explained by patch potentials of ~50-100 mV on rotor and housing
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Equivalent dipole field as a
function of r with all results

Equivalent dipole field as function
of r without spin-down results
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Dependence of effects on Vg, V,, and |

Effect due to patch Dependence on
) Dependence on |
potentials Vi and V,,
Zero-frequency z-axis force Ve, (Vs - V,) Only for combination of
due to change in rotor charge Q\'R H | = 1 and rotor charge Q

Zero-frequency z-axis force

modulated by polhode Vg x (Vr- V) No dependence on | for | <p

Vi

Gyro acceleration at spin speed
(rotor charge > 200 mV)

Principally for 1 <3

Gyro spin-down Vi Independent of lup to 1

Rotor charge measurement VR - VH Principally for 1 <3

Misalignment torque Vi x V|, rion;g%nm 1D (AL e
Proportional to [I(1+1)]”

Roll-polhode resonance torque VR X VH for | > polhode harm. res. #
and | <~1300

All Data explained by patch effects ~30-150 mV on rotor and housing
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R ¢fgt2 | Gyroscope Nb coating
T W | -

| B . —

| d=32.5pm

HI ¢f(t)| Housing Ti coating

Time Independent
Present Model

Gyroscope Nb coating

Electrode Ti-coating p, S.1Q/sq

14! I T | |

TT

With time dependence
of electrodes

With time dependence
of ground plane

Characteristic time scales of the gyroscope system

Source

Te

Spin/m

Tg

Roll Orbit Polhode/p

Time constant (s)

1.6x10°6

1.5x102

1.5x101

77.5 | 5.9x10% | 2.4x10% - 1.4x104
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» Include time dependence ?
» Estimates of presently understood effects

Vary between < 0.1marcs to > 5 marcs
» Roll averaging efficiency

» Other symmetries: electrodes, ground-plane

» Polhode damping torques ?

» Other patch effect torques & resonances ?

» Approach to estimating the GP-B error
» Statistical versus systematic
» Achievable accuracy
» HS guide star data
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» Reduce patch potentials
» Improve materials

» Improve cleaning and assembly processes

» Compensate patch potential effects
» Bias electrodes to compensate PPE average

> Increase gaps (d-3 force variation dependence)
» Make gap and test mass sizes comparable

» Shift spectrally
» High: above measurement band
» Low: as closeto f =0 as possible
» Minimize electric fields

» Eliminate electrostatic forcing (spheres)
» Eliminate electrostatic sensing (optical)

Will work !
Might work

Will work ?

For:
LISA, STEP
LIGO, other
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» Optimize charge management system
» Eliminate charge measurement (passive)
» Make charge generation continuous
» Eliminate control loop

» Simulate control system

» Extensive with hardware in the loop
» Analytical simulations
» Data acquisition rates
» Measurement band x 2 to 10
» Plus highest electronics frequency snapshots

Will work !
Might work

Will work ?

For:
LISA, STEP
LIGO, other
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» All known effects (eight) can be accounted for by patch
potentials on the rotor and housing in a quantitatively
consistent way (polhode damping not completed)

» Limits on patch effect sources of systematic errors not a
problem above 5 marcs and probably better (time
dependence, misalignment and resonance not included)

» Work remaining in torque modeling, error estimation, polhode
damping

» Complex experiments in space work

» All GP-B systems worked beyond expectations

» Surprises can be overcome: GP-B patch effects modeling




Back-up slides
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1HSPIN1 Spin Speed obtained from the first harmonic for SQUID 1

‘ l

79.7 l l

| |

| |
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| |

795 | | : | :

| | | | |

794l {--eoeeeooooo R 1 1 1 1 1
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Elapsed time, min.
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Yl,m' (H” ¢’) — Z e_i mOldrln,m' (ﬂ) e_i " YI,m (9’ ¢)
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» Better UV source: UV LED
+ Long lifetime >10,000 hours to date

+ Lower power consumption
+ LOwer mass
+ AC modulation up to 1 GHz

0.9

: | —®@ 6442 hours |
: 3700 hours |:
o | —@— 250 hours :
: | @ 0 hours

0.6
0.5

MNormalized Electric Power

0.3

0 I I i 1 i I i
235 240 245 250 255 260 265 270 275 280
Wave Length [nm]
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Qusa< 1083 C T sa= 3 hours Q requirement drivers
Qepe <101 C Tgpg = 4 months a) Laurence force, b) kocQ?/d
1. Reduce the LISA frequency of discharging requirement

by 10 from 10+ Hz to 10 Hz

Now (1017C/s) / (10-13C) = 10*Hz

+ Improve radiation shielding by 10 = 10'" C/s to 1018 C/s
Improve EMI shielding by 10 = 1013 Cto 1012 C

Increase gap by 10 = 3 mm to 30 mm
Minimize patch effects on TM and housing
Combinations of above

2. Reduce the LISA test mass potential requirement

by 50-100 from 2 mV to 100 - 200 mV
Now (10-13C) / (50x10-12F) = 2x10-3V
+ Improve EMI shielding by 10 = 107 C/s to 108 C/s

s Increase gap by 10 = 50 pFto 5 pF
+ Combinations of above
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3. Control magnitude and time dependence of patch effects
+ Materials development
+ Ground testing

4. Extensive charge measurements and calibrations
+ Measurement frequencies must be different for different sensors
+ Single electrodes

+ Variable TM positions
+ Particle monitoring

5. Use improved position
measurement and control of TM

«+ 3 pm/VHz with optical read-out

« Control position to <10 pm/YHz with 3 pm/\Hz position noise

micro-thrusters
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A. Charge measurement
+ Not required
+ Frequency of measurement below SM band
+ Continuous measurement

B. Charge generation (use UV LED)

+ Continuous
+ Frequency of discharging below SM band

. Charge control loop
+ Not required
+ Frequency of discharging below SM band
+ Continuous control
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