

STANFORD UNIVERSITY

Satellite Test of the Equivalence Principle

John Mester Stanford University

© Alan Bean, courtesy Greenwich Workshop Inc

STEP International Collaboration

Stanford University -- PI Francis Everitt

Washington University, St. Louis

Marshall Space Flight Center

University of Birmingham, UK

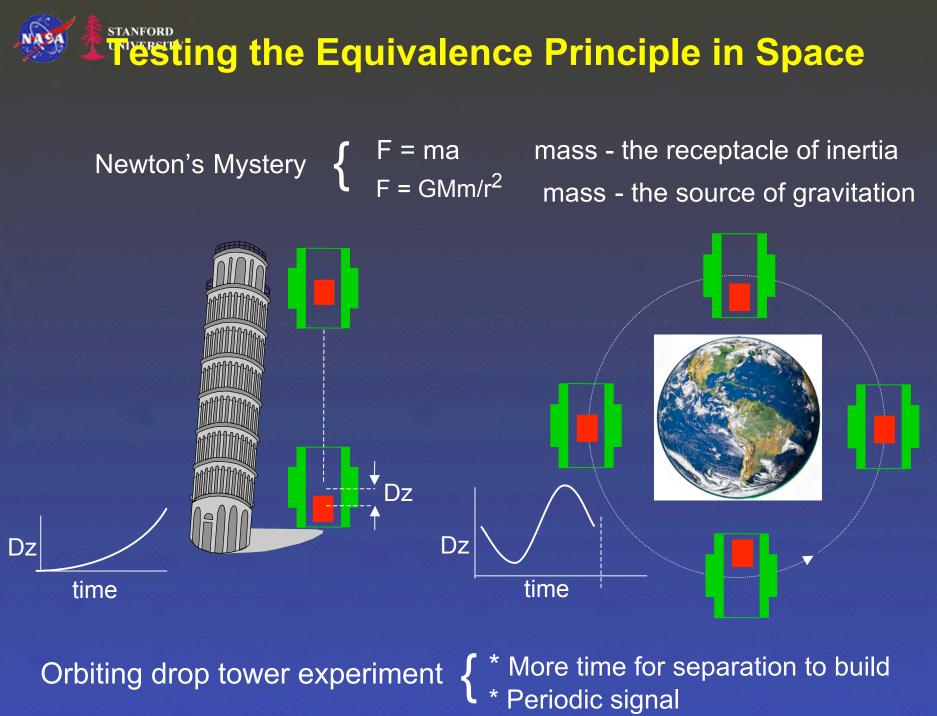
ESTEC

FCS Universität, Jena, Germany

Imperial College, London, UK

Institut des Hautes Études Scientifiques, Paris

ONERA, Paris, France


PTB, Braunschweig, Germany

Rutherford Appleton Laboratory, UK

University of Strathclyde, UK

Universitá di Trento, Italy

ZARM, Universität Bremen, Germany

• Unified Physics ?

- Problems with gravity
 - Resists Quantization
 - Hierarchy Problem

Electro Weak Scale / Plank Scale ~10¹⁷

~ 10⁻¹⁵

scalar-tensor theory, not Einstein's

• Partial steps toward Grand Unification

- Strings/supersymmetry in early Universe
- Damour Polyakov: small Λ long range equivalence-violating dilaton

• EP violations inherent in all known GU theories

- Runaway dilaton theories

 Runaway dilaton theories
 (Witten)
 (Damour, Piazza, Veneziano)
 Up to 10⁻¹⁴
- 1 TeV Little String Theory (Antoniadis, Dimopoulos, Giveon)
- **Observed(?)** $\overset{\bullet}{\alpha}$ (Webb, et al.) (Dvali, Zaldarriga) > 10⁻¹⁷ STEP's 5 orders of magnitude take physics into new theoretical territory

EP and Dark Energy

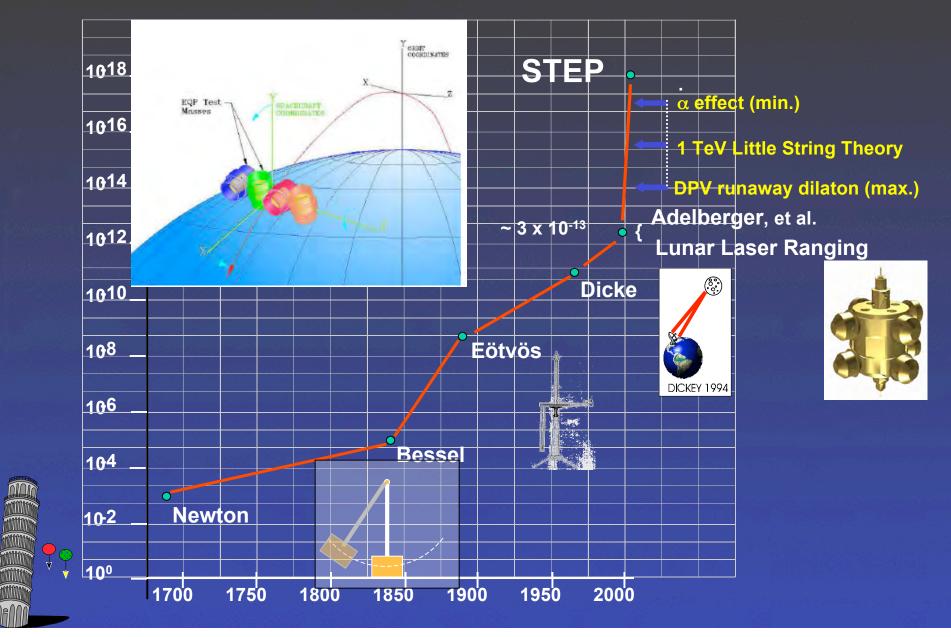
Distances to Type I supernovae => universe expansion is accelerating WMAP Measurements of CBM => universe is close to flat

74%	Dark Energy
22 %	Dark Matter
4%	ordinary Matter

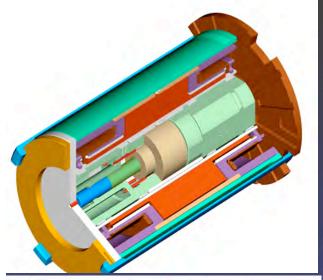
STANFORD UNIVERSITY

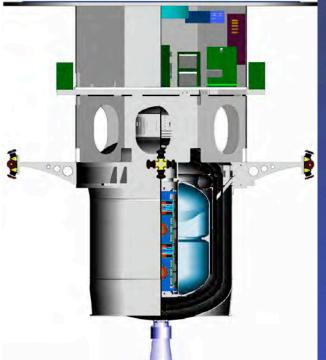
Dark energy - negative pressure => acceleration low density, 10^{-29} gm/cm³ => difficult to detect in lab

2 proposed forms of Dark Energy Cosmological Constant – constant, homogeneous energy density Quintessence – dynamical field


Couplings of Quintessence dynamical field => Equivalence violation

=> EP measurements can distinguish between Quintessence and Cosmological Constant alternatives


stanforspace > 5 Orders of Magnitude Leap


NASA

Goal: 1 part in 10¹⁸

STEP Mission

6 Month Lifetime

Sun synchronous orbit, I=97° 550 Km altitude Drag Free control w/ He Thrusters

Cryogenic Experiment

Superfluid Helium Flight Dewar Aerogel He Confinement Superconducting Magnetic Shielding

4 Differential Accelerometers

Test Mass pairs of different materials Micron tolerances Superconducting bearings DC SQUID acceleration sensors Electrostatic positioning system UV fiber-optic Charge Control

Test Masses

Dimensions selected to give 6th order insensitivity to gravity gradient disturbances from the spacecraft

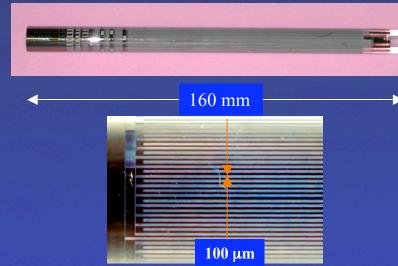
Micron tolerances

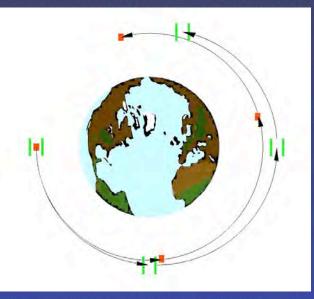
Test Mass should be as 'different' as possible

Material	Z	Ν	$\frac{(N + Z)}{(N + Z)} = 1$ 10 ³	<u>N</u> –Z	Z (Z -1)
			(μ 1)10	μ	$\mu (N + Z^{\prime})^{3}$
			Baryon Number	Lepton Number	Coulomb Parameter
Be	4	5	-1.3518	0.11096	0.64013
Si	14	14.1	0.8257	0.00387	2.1313
Nb	41	52	1.0075	0.11840	3.8462
Pt	78	117.116	0.18295	0.20051	5.3081

Damour C&QG 13 A33 (1996)

Magnetic Bearing UNIVERSITY SUPERCONDUCTING CIRCUITS ON CYLINDERS

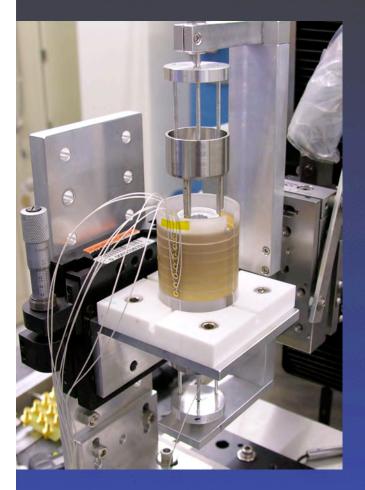



STANFORD

UV Laser Patterning System \bullet

- Sub-micron Resolution on Outside Surface
- Micron Resolution on Inside Surface

Superconducting Magnetic Bearing



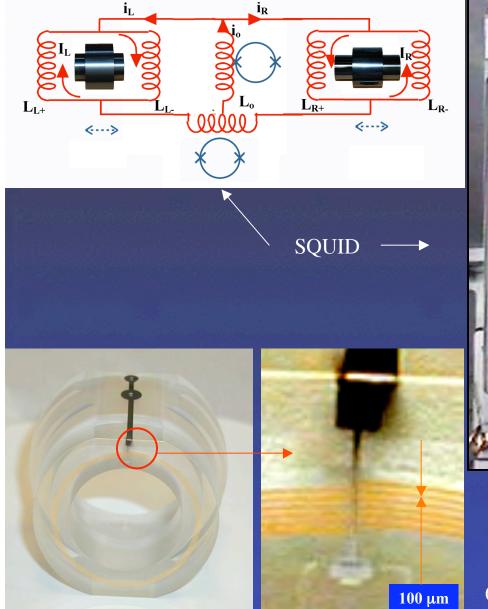
1 d constraint yields periodic signal

Normal Metal electrodes patterned on the inside of quartz cylinder structures

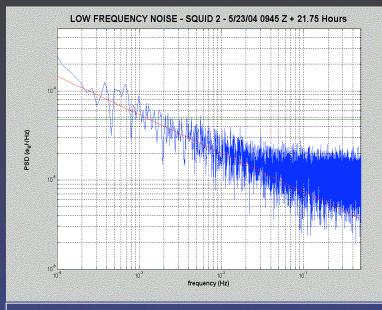
STANFORD UNIVERSIT

Enables test mass position measurement and control in all six degrees of freedom

- back up to SQUID detection along cylinder axis


Positioning Control will tune test mass CM to minimize gravity gradient signal

Position Measurement or control effort input to attitude and translation control system

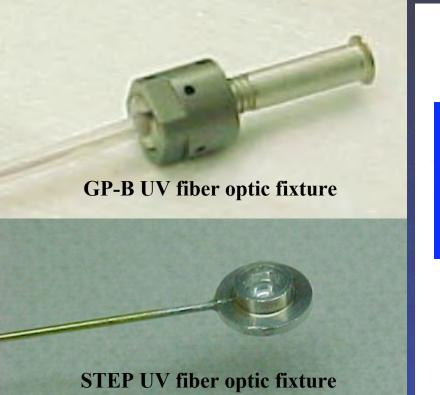

Charge measurement input to charge control system

SQUID DISPLACEMENT SENSOR

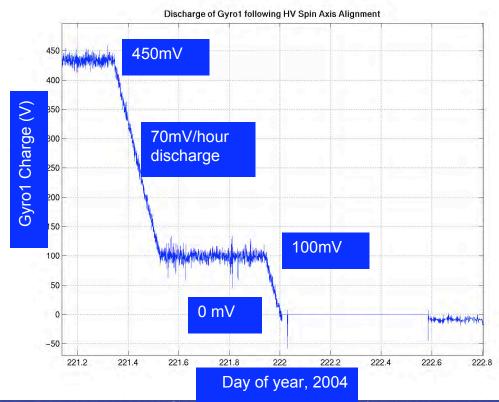
Differential Mode Sensor Yields a Direct Measure or Differential Displacement

STANFORD UNIVERSITY

GP-B On-Orbit SQUID Noise


Differential Acceleration Sensitivity $4 \times 10^{-19} g_o$ Natural Frequency $10^{--3} Hz$ Displacement Sensitivity $10^{-13} m$

On Orbit performance meets STEP requirements



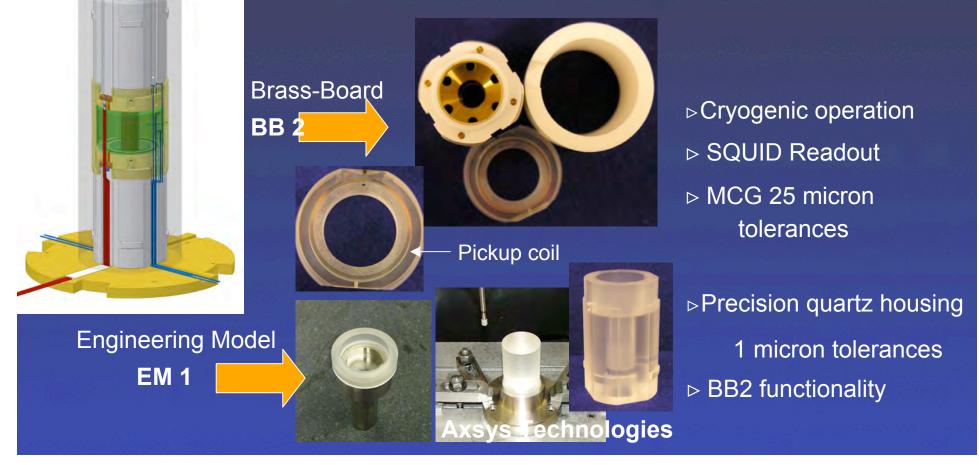
UV Charge Control

System Components: UV Light source, fiber optic, and bias electrode

Discharge of GP-B Gyro1

GP-B on Orbit operation

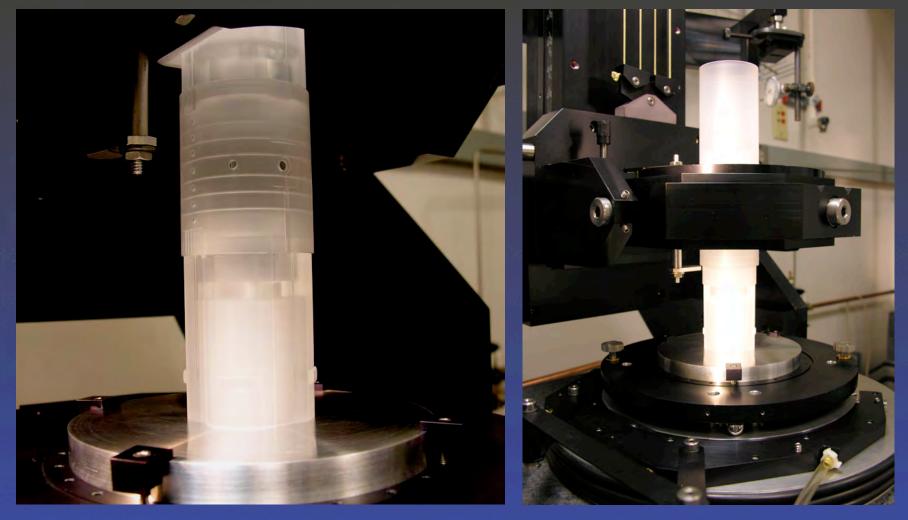
ST DA Development: Incremental Prototyping


Integrated Inner Accelerometers:

Brass-Board

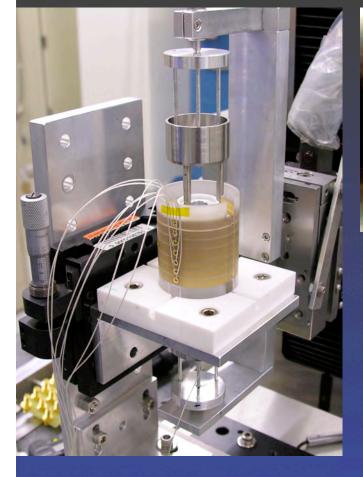
BB 1

 Non-cryogenic operation
 Gold surface coatings
 Electrostatic subsystem fully-functional

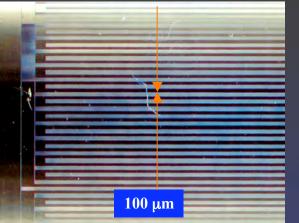


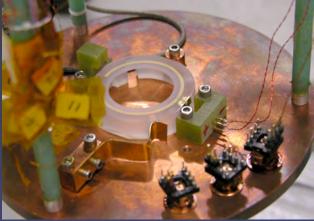
Quartz Manufactured by Axsys Technologies Inner Accelerometer Components

STANFORD Quartz Housing Assembly Check



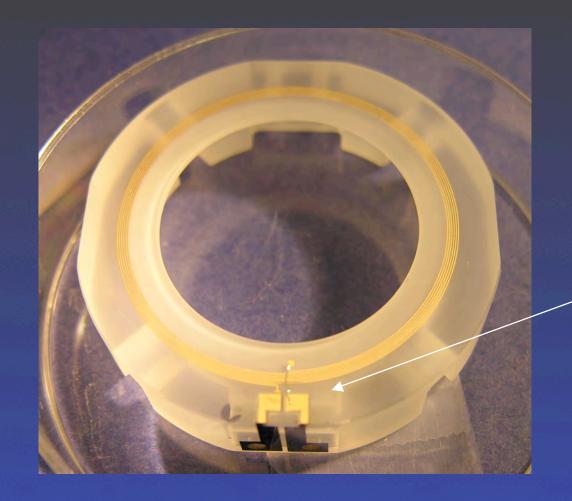
Assembly device integrated into Coordinate Measuring Machine for sub-micron control

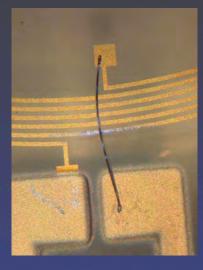

Inner Bearing Rod, EPSX-, EPS Cylinder, and EPSX+


STANFORD Piece Part Coatings and Testing

EPS Translation

Bearing Tc & Ic


SQUID Pickup loop Tc & Ic


Caging System

Cross-Over Bond Wire

STANFORD UNIVERSITY

multilayer crossover w/dielectric

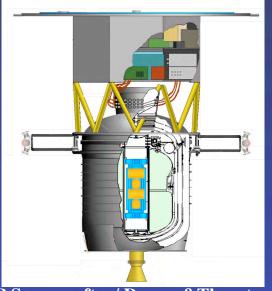
Staneord UNIV**Space Flight Dewar and Cryogenic Probe**

STEP Dewar

Lockheed Martin Design ID dewar Internal Development 230 liters

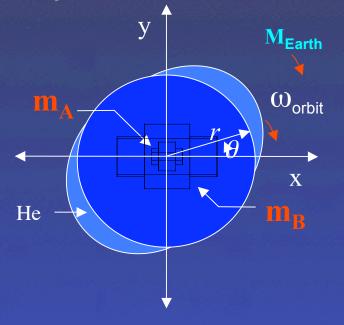
- > 6 month on-orbit life
- 1.8 K ambient temperature

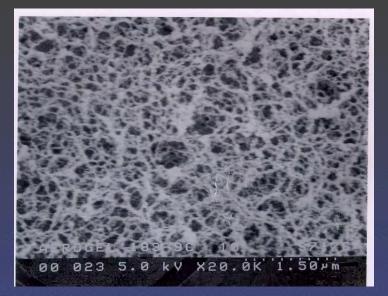
Cryogenic Probe RAL concept


He Boil-off Drives Proportional Thrusters Porous Plug device Aerogel Tide Control

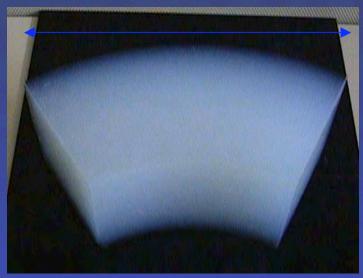
GP-B Dewar

GP-B Probe


STEP Spacecraft w/ Dewar & Thrusters



Helium Tide Control


Silica Aerogel Constraint

- large range of void sizes 100 to 1000 nm
- Confines He Even in 1g
- Passed Cryogenic Shake Test at expected launch loads



STANFORD Drag-Free Implementation for STEP

- Electrostatic and SQUID Sensing of Test Mass Common Modes
- He gas proportional thrusters and drive electronics GP-B Program,
- Specific impulse is constant over a range of nozzle diameters
- Gas supply already exists He cryogen boil off
- Control Algorithm development at ZARM and Stanford
- DFC controller and set-up procedures vetted by GP-B heritage hardware-in-the-loop simulator

 in collaboration with ZARM ATC group
 new support from ICRANet (International Center for Relativistic Astrophysics Network) for
 Physics and Astrophysics mission concept development

GP-B Proportional Thruster Schematic

STEP Error Model

Comprehensive error model developed to give self consistent model of whole system Advances in Space Research, COSPAR Warsaw 2000 Class. Quantum Grav. 18 (2001)

Calculates Spectral response of system to yield noise spectral density at signal frequency - more efficient than simulating time development

Implemented in spreadsheet structure to make interactions & dependencies explicit and traceable

Input: Analytic models of specific disturbances Environment parameters: earth g field, B field, drag, radiation flux etc. Instrument parameters: Instrument and Spacecraft geometry, gap spacings, Temp, gradients, pressure, emissivity and penetration depth temp coefficients, rotation rate, stability, etc. Systems parameters: SQUID noise, EPS noise,Thruster noise, DFC and attitude control laws, etc.

Outputs: Performance expectation, include sensor noise and disturbances

Uses: Set system requirements Evaluate design tradeoffs Data Analysis Tool

Error Model Output

DFC Reference accelerometer		nent at signal frequency	
Disturbance	m/sec^2		Comment
SQUID noise	1.80E-18		acceleration equivalent to intrinsic noise
SQUID temp. drift	7.46E-19		regulation of SQUID carriers
Thermal expansion	8.69E-22		gradient along DAC structure
Differential Thermal expansion	3.35E-23		Radial gradient in DAC structure
Nyquist Noise	1.19E-18		RMS acceleration equivalent-no electronic cooling
Gas Streaming	1.94E-19		decaying Gas flow, outgassing
Radiometer Effect	2.51E-21		gradient along DAC structure
Thermal radiation on mass	4.58E-25		Radiation pressure, gradient
Var. Discharge uv light	1.45E-19		unstable source, opposite angles on masses
Earth field leakage to SQUID	1.84E-19		estimate for signal frequency component
Earth Field force	7.74E-22		estimate for signal frequency component
Penetration depth change	5.30E-23		longitudinal gradient
Electric Charge	3.06E-20		Assumptions about rate
Electric Potential	3.83E-19		variations in measurement voltage
Sense voltage offset	8.05E-20		bias offset
Drag free residual in diff. Mode	2.21E-22		estimated from squid noise
Viscous coupling	6.87E-26		gas drag + damping
Cosmic ray momentum	4.64E-21		mostly directed downward
Proton radiation momentum	2.54E-19		unidirectional, downward
dynamic CM offset	2.59E-19		vibration about setpoint, converted
static CM offset limit	1.38E-22		A/D saturation by 2nd harmonic gg
Trapped flux drift acceleration	1.03E-22		actual force from Internal field stability
Trapped flux changes in squid	5.54E-20		apparent motion from internal field stability
S/C gradient + CM offset	3.39E-37		gravity gradient coupling to DFC residual of S/C
rotation stability	1.02E-23		centrifugal force variation + offset from axis
Eccentricity subharmonic.	5.96E-21		real part at signal frequency
Helium Tide	7.00E-20		worst case
position sensor gap, mm	1.00		550000 Orbit height
differential mode period	1385		8.9E-13 CM distance, m
S/C rotation per orbit	-2.70E+00		
		-	
Summed erro	or 5.34E-18	H	RMS error 2.37E-18 m/sec^2

Error Coupling

Consider the Impact of Orbit Altitude on Charge Control Performance

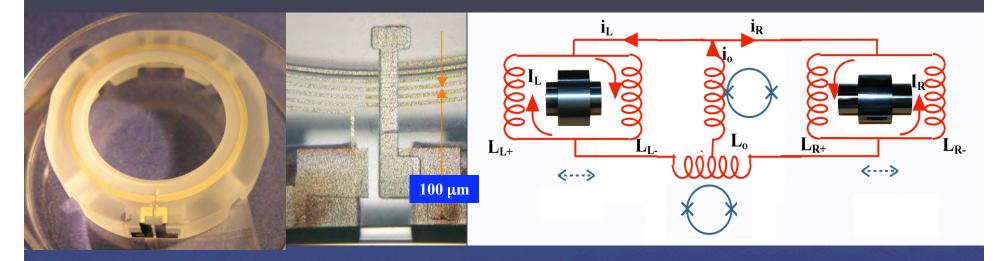
Orbit height 400 km: reduced test mass charging 700 km: increased test mass charging

So might expect the Charge Control Performance would be better at lower altitude

But: Charge control system is impacted by DFC residual

At 400 km: increased drag => decreased sensitivity in charge measurement

¡ Charge control performance is worse at 400 km than at higher altitudes !

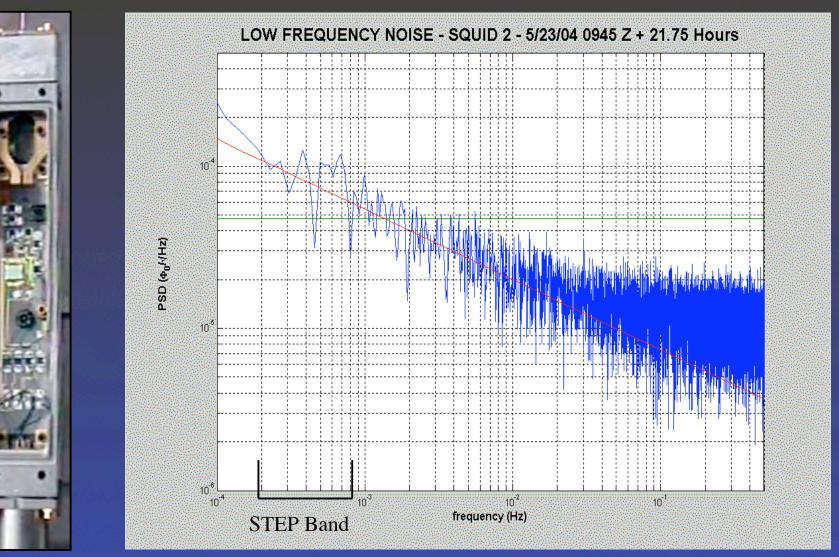

Also DFC system is impacted by test mass charge

Therefore should not rely on error estimates arrived at independently

SQUID DISPLACEMENT SENSOR

STANFORD UNIVERSITY

Mass on a Spring: Displacement measurement corresponds to acceleration Differential Mode Sensor Yields a Direct Measure or Differential Displacement Common mode sensor input to Drag Free Control system


Input: measured SQUID noise, SQUID inductance, test mass, circuit inductances, SQUID/Circuit couplings, gap spacing, setup current values

Differential Acceleration Sensitivity $< 4 \times 10^{-19} g_o$ (20 orbit integration)Natural Frequency $10^{--3} Hz$ Displacement Sensitivity $10^{-13} m$

GP-B On Orbit Performance Meets STEP Requirements

STANFORD UNIVERSITY

On Orbit Performance Meets STEP Requirements

Nyquist Noise

The Nyquist fluctuation force equivalent acceleration dA

 $dA^2 = 2 \omega K_b T / (Q M T_{obs})$

where ω is the angular frequency of the test mass, K_b Boltzmann's constant, T the temperature, M the effective mass, T_{obs} the observation time. Q is the ratio of the test mass angular frequency to the damping time

Q is limited by gas pressure and electrical losses, $Q \sim 10^6$

Electrical System Noise

Leading term is variation in Electrostatic Positioning System sense and control voltage fluctuations

Test mass forces proportional to dV^2 and dV^*q test mass charge

STEP expectation based on EPS electronics performance

and charge control residuals achieved by GP-B on-orbit

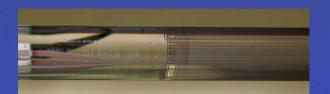
Patch Effect Forces in STEP

• Patch effect

- The issue is disturbance to the setup, not to the measurement
- Systematic time variation negligible
- Disturbance to setup similar to that from charge
 - ➡ Finer scale

 - --> Limits determine design requirements from patches
- Two limiting cases
 - Small gap, large patches

			est mass surface
		l I	ousing surface


Patch Effect in STEP 2

Large gap and small patches

- Patches averaged by distance, tend to cancel
- Disturbance has scale of the gap
- Extra spring constant ~ $\epsilon_o l_p^3 V^2 / (4 \pi r^4 \sqrt{A})$
 - → > 28000 second period for 0.5 kg mass, $I_p=10 \mu$, r=100 μ , A=100cm² V=0.3 V (STEP mass, GP-B patches).
 - Insignificant effect (1000 sec period nominal)

• Small gap and large patches

- Less averaging
- Scale of the patches
- Forces mostly perpendicular to surfaces
- Extra spring constant ~ 2 $\epsilon_o \sqrt{A V^2} (l_p r)$
 - 1800 seconds for STEP mass with 30 mV patches of GP-B geometry manageable, but too close for comfort
 - Mitigate by gold surface coatings

Dynamic Center of Mass Offset

Leading disturbance term related to expected DFC residual:

The dynamic center of mass offset – acceleration caused by changes in the center of mass displacement at frequencies which convert to the signal frequency

For STEP the largest effect is caused by drag free residual coupling to the radial mode of the mass by the radial spring constant (~100 sec period)

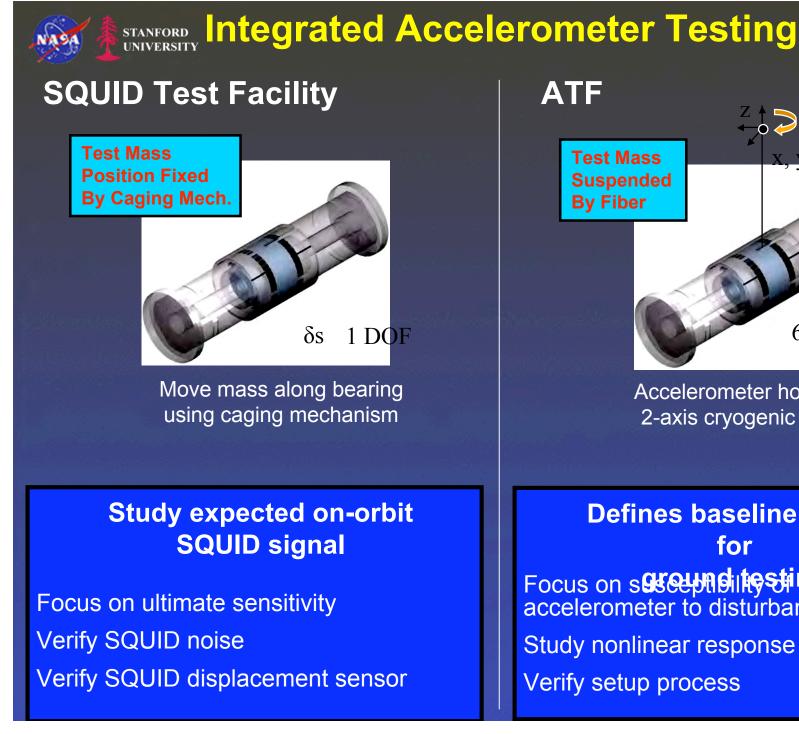
A DC center of mass offset yields an acceleration at twice signal frequency - need to limit to not saturate detectors

Radiometer Effect

Interaction of residual gas with test masses in the presence of thermal gradient =>molecules emitted from hot surface with greater momentum than from cold surface

Could corrupt science signal in case of temp gradient that varies in time.

In molecular flow regime can model resultant test mass acceleration as


P(dT/dx) 2Tρ

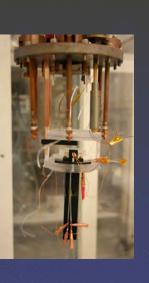
where P is pressure, T is temperature and ρ is test mass density

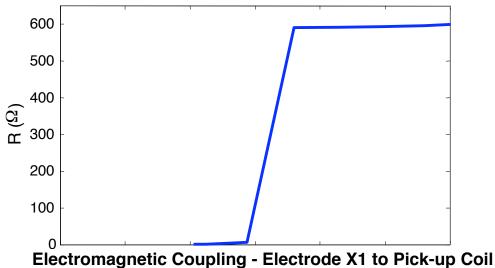
Advantage of Cryogenic nature of STEP: Temp gradients and Pressure are small

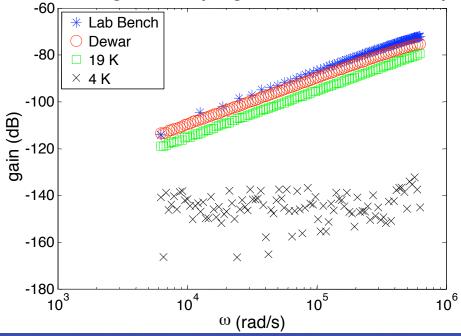
Radiometer Effect is not a leading disturbance

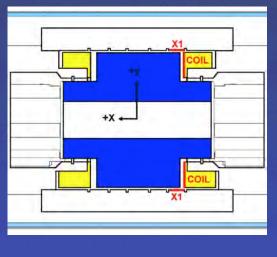
6 DOF

Accelerometer housing on 2-axis cryogenic tilt table


Defines baseline signal Focus on sgreepheintesting accelerometer to disturbances Study nonlinear response

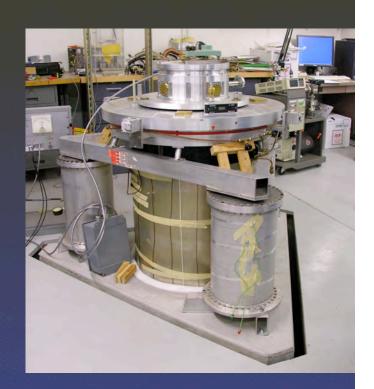

SQUID Test Facility

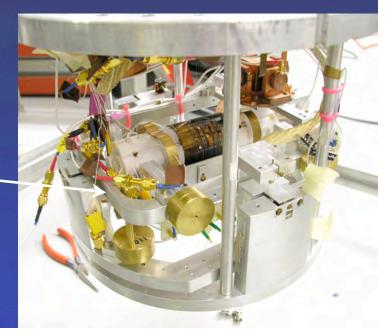

Pick-up Coil Tests



Pick-up Coil Resistance as a Function of Temperature

EMC Tests





ATF Status

- Facility operational in new building.
- Capable of controlling the test mass motion relative to housing in 6 DoF independently.
- Short term goal: Accelerometer signal dynamics evaluation
- Current activity: Improving the control and readout noise

Cryogenic _____ Tilt Platform

STANFOSTEP Uncertainty Conclusions

Comprehensive error model developed to give self consistent model of whole system

Top 5 Error Sources (Diff. Acceleration Equivalent m/s², typical setup configuration)
SQUID sensor Noise1.8x10-18 at signal freq, avg over 20 orbits
1.2x10-18Nyquist Noise1.2x10-18SQUID temp drift7.5 x10-19Electric Potential Variation3.8x10-19Dynamic CM offset2.6 x10-19+ > 20 others evaluated

Verification and validation efforts with flight like hardware are ongoing

STEP will test EP to better than 1 Part in 10¹⁸

SMEX 2008 Science Implementation Peer Review:

- >The proposed instrument can be built with technologies described.
- > The data returned will directly address the science goals and, ...

the instrument is likely to provide the necessary data quality.

The probability of success seems high