

Gravity Probe B: Interim Report & First Results

APS Meeting Jacksonville, FL 14 April 2007

Francis Everitt

STANFORD UNIVERSITY

The Relativity Mission Concept

Geodetic Effect

- Space-time curvature ("the missing inch")
- Frame-dragging Effect
 - Rotating matter drags space-time ("space-time as a viscous fluid")

Seeing General Relativity Directly

STANFORD

Red: Unprocessed flight data <u>Blue:</u> After self-checking misalignment torque correction

The GP-B Challenge

- Gyroscope (G)
- 10⁷ times better than best 'modeled' inertial navigation gyros 10³ times better than best prior star trackers

<1 marc-s subtraction within pointing range</p>

- Telescope (T)103 times better that
- G T
- Gyro Readout
- \rightarrow calibrated to parts in 10⁵
- Modeling (if any)
- \implies must be intrinsic, not ad hoc

Space

"Drag-free", separation of effects, elimination of "seeing" limitations

Cryogenics

Readout, mechanical stability, low magnetic field, UHV technology

Testing General Relativity

- GM/c²R & the annoying successfulness of Newton
 - Sun ~ 2 x 10⁻⁶; Earth ~ 7 x 10⁻¹⁰; 1 m diameter tungsten sphere ~ 10^{-21}
- Einstein's 2¹/₂ tests Perihelion of Mercury, light deflection, redshift (¹/₂ test)
- Kinds of test enabled by new technologies since 1960
 - Clocks, electromagnetic waves, massive bodies
 - Observations vs controlled physics experiments

New non-null tests

- Shapiro time delay
- Binary pulsar, especially gravitational wave damping
- Geodetic (de Sitter) effect in Earth-Moon motion about Sun
- The Eddington PPN formalism & new null tests
 - Lunar ranging, Nordtvedt effect > restricts scalar-tensor theories
 - Earth tides, Will effect below eliminates Whitehead's preferred frame theory
- On to gravitational wave astronomy [50 years since J. Weber detector]

"Einstein's theory is a minimalist theory" - C.M. Will

The GP-B Gyroscope

- Gas Spin-up
- Magnetic Readout
- Cryogenic Operation

"Everything should be made as simple as possible, but not simpler." -- A. Einstein

The London Moment Readout

4 Requirements/Goals

- SQUID noise 190 marc-s/√Hz
- Centering stability < 50 nm
- DC trapped flux < 10⁻⁶ gauss
- AC shielding > $\sim 10^{12}$

Sub-milliarc-s Star Tracker

Detector Package

Dual Si Diode Detector

Dither & Aberration: Two Secrets of GP-B

Dither -- Slow 60 marc-s oscillations injected into pointing system

 gyro output
 main for the second output

 telescope output
 main for the second output

scale factors matched for accurate subtraction

<u>Aberration (Bradley 1729)</u> -- Nature's calibrating signal for gyro readout

Orbital motion warying apparent position of star (v_{orbit}/c + special relativity correction) Earth around Sun -- 20.4958 arc-s @ 1-year period S/V around Earth -- 5.1856 arc-s @ 97.5-min period

> Continuous accurate calibration of GP-B experiment

The GP-B Cryogenic Payload

Payload in ground testing at Stanford, August 2002

Near Zeros & Their Technologies

Seven Near Zeros

1) Rotor inhomogeneities	< 10 ⁻⁶	met
2) "Drag-free" (cross track)	< 10 ⁻¹¹ g	met
3) Rotor asphericity	< 10 nm	met
4) Magnetic field	< 10 ⁻⁶ gauss	met
5) Pressure	< 10 ⁻¹² torr	met
6) Electric charge	< 10 ⁸ electrons	met
7) Electric dipole moment	0.1 V-m	issue

Gyro Readout Performance On-Orbit

STANFORD

UNIVERSITY

Gyro	Experiment Duration (days)	SQUID Readout Limit (marc-s/yr)
1	353	0.198
2	353	0.176
3	353	0.144
4	340	0.348

Drag-Free: 2nd Near Zero

Boil off gas from Dewar vented continuously through 16 Proportional Thrusters provides spacecraft attitude and translational control

In-flight Verification, 3 Phases

- A. Initial Orbit Checkout 128 days
 - re-verification of all ground calibrations [scale factors, tempco's etc.]
 - disturbance measurements on gyros at low spin speed
- B. Science Phase 353 days
 - exploiting the built-in checks [Nature's helpful variations]
- C. Post-experiment tests 46 days
 - refined calibrations through deliberate enhancement of disturbances, etc. [...learning the lesson from Cavendish]

Detailed calibration & data consistency checks eliminated many potential error sources & confirmed many pre-launch predictions, but...

Observation (Phase B) – Segmented data (solar flare events, etc.) Discovery 1 (Phase A, B) – Polhode-rate variations \implies affect C_g determinations Discovery 2 (Phase B, C) – Larger-than-expected misalignment torques

Discovery 1: Polhoding & C_a

• **Issue:** C_g better than $10^{-4} \implies$ linking data from 6 or more orbits

The actual 'London moment' readout:

- M_L + dipole component of trapped flux along spin axis $M_T \sim 1\% M_L$
- Total trapped flux fixed in rotor but M_T modulated by polhoding
- Orbit-to-orbit fit complicated by varying polhode rate

• Current: Fit 4 to 6 polhode harmonics to get mean M_T

Refinement: Utilize Trapped Flux Mapping data

- Torque & misalignment angle ϕ , $\psi \longrightarrow 0.1$ to 1.0 arc-s/yr drift rates
- Probable cause Electrostatic 'patch effect' on rotor and housing

- M. Keiser observation
 - Component of R $|| \phi$ free of misalignment torques
 - φ modulated over year by annual aberration

Eliminating Misalignment Drift

• Two Complementary Approaches, 'Geometric' & 'Algebraic'

• 'Geometric', *rate-based*

(i) Torque-free component of *R* determined from e.g. 5-day batch-averaging (ii) BONUS: torque-coefficient *k* found in separate measure of component \perp to (i)

• 'Algebraic', orientation-based

- (i) Also utilizes geometrical relationships, BUT with
- (ii) Explicit torque models & continuous estimation & filtering

Complementarity

e.g., separate *k*-profile determinations from the two methods can be cross-checked against each other

For details: M. Keiser lecture & M. Heifetz poster, April 15

TANFORD

- Original Mission Concept
 - $\delta\Omega = Lt^{-3/2}$, t ~ mission length
- Simple Geometric Approach
 - $\delta\Omega_{\rm G} = \sqrt{2} \, \text{LT}^{-1} t^{-1/2}$, T batch length

SQUID Readout Limit (marc-s/yr)

	Gyro 1	Gyro 2	Gyro 3	Gyro 4
Original	0.198	0.176	0.144	0.348
Simple Geometric (5-day batch)	19.8	17.6	14.4	33.5

- Power of Geometric Approach
 - Clear proof of relativity separation
 - Diagnostic tool for other potential disturbances
- Requirement for Final GP-B Result
 - Recover t -3/2 dependence by Algebraic or Enhanced Geometric Method

Algebraic Method Example

85 Days with Solar Flare Segmentation [December 10, 2004 – March 5, 2005]

Initial Geodetic Effect Results

* Earth -6606, solar geodetic +7, proper motion +28 \pm 1 \implies net expected -6571 \pm 1

Glimpses of Frame-Dragging

STANFORD

UNIVERSITY

- Modeling of scale factor & torques improved substantially since June 2006
- Filtering technique more robust; can estimate many more parameters
- CAVEATS
 - Excessive sensitivity to modeling of torque coefficients
 - → occasional worrying outliers
 - Inconsistencies between 4 gyros are real

long-term modeling with detailed torque coefficient history in work

Combined gyro processing eliminates some error sources

Requires cross-checking with geometric method essential to understand physical processes

The Story So Far

- Geodetic effect clearly seen in unprocessed science data
- Gyro orientation data have reached SQUID readout limit in each gyro
- Results of In-Flight Verification/Calibration process
 - Most pre-launch estimates confirmed, eliminating many potential error sources
 - <u>Discovery 1</u>: polhode damping & its effect on C_g
 - <u>Discovery 2</u>: 'patch effect' misalignment torques

Need to be completely separated in final analysis

- Complementary 'geometric' & 'algebraic' approaches to misalignment torques
 - Encouraging agreement between torque-coefficient determination
- 'Glimpses' of Frame-Dragging effect
 - Probably authentic but strong caveat needed due to outliers which reveal model sensitivity

C_g & Trapped Flux Mapping

STANFORD UNIVERSITY

The Way Forward

- (1) Many issues completely solved, meet full accuracy
- (2) Elimination of C_q Scale Factor Issue by Trapped Flux Mapping Data
- (3) Completing of Misalignment Torque Modeling & Exploration of Other Potential Torque effects
- (4) Limit & Goal of Final Analysis through December 2007
 SQUID readout limit 0.144 to 0.343 marc-s/yr depending on gyro
 segmented data raises these limits to ~ 0.5 to 1 marc-s/yr (Duhamel effect)
- (5) Final 'Double Blind' Comparison with HR8703 Proper Motion Data
 - Irwin Shapiro talk this afternoon

GP-B Science Advisory Committee

- C. Will, Chair
- D. Bartlett
- R. Reasenberg
- R. Richardson
- J. Ries
- P. Saulson
- E. Wright

STANFORD UNIVERSITY

The GP-B Data Analysis Team

John Turneaure

John Lipa

Bill Bencze Michael Heifetz

Yoshimi Ohshima

Paul Worden

Suwen Wang Page 26

Peter Boretsky

David Santiago

Mac Keiser Jeff Kolodziejczak Jie Li

Barry Muhlfelder

Sasha Buchman

Karl Stahl

Bruce Clarke

Dave Hipkins

Tom Holmes

Students

Jonathan Kozaczuk, Shannon Moore, John Conklin, Michael Dolphin Alex Matthew Tran, Gregor Hanuschak, Ed Fei, Michael Salomon, Sara Smoot Silbergleit

