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1 Introduction

Magnetic dipole, which is developed, according to F. London, by a rotating supercon-
ductor, is always aligned with its rotation axis. The Gravity Probe B London moment
readout is provided by measuring the London dipole magnetic flux through the pick-up
loop of the SQUID (1]. Hence the readout signal is proportional to the sine of the angle
(say, BrLar) between the gyro spin axis and the plane of the pick-up loop. The angle
is rather small, thus, as shown in [2], its cube can be safely neglected for the required
experimental accuracy, and the readout proves thus to be linear in this angle.

To detect relativistic drift of the gyro spin axis relative to the inertial reference of
the Guide Star (GS), we need to use a proper model expression for G, as a function
of time. It is desired to be as simple as possible while meeting, at the same time, the
accuracy requirements. For this reason, the formula for Gra is usually simplified by
neglecting higher powers of certain other small angles involved, such as, for instance,
the angle between the apparent and true directions to the GS, or the spin to roll axis
misalignment.

The validity of such assumptions, which has never been systematically studied before,
is examined in the next section of this document. It is demonstrated that in the answer
there are, in fact, no terms quadratic in those small angles. Therefore the first corrections
to the linear terms turn out to be cubic, and thus small enough to be safely neglected,
so that the linear measurement equation can be retained.

Another potential source of nonlinear terms in the measurement equation for the
SQUID signal is some nonlinearity of electronic circuits and devices through which the
signal runs onboard (see c. f. [1]). The effects of these nonlinearities on the measurement
error is studied in sections 3 and 4. The results are summarized in section 5.

2 Linearity of London Moment Readout:
Expression for the Angle Between
Gyro Spin Axis and Pick-Up Loop Plane

Let 7 be the unit vector in the apparent direction to the GS where the telescope is
pointing, and which is also the direction of the satellite roll axis. Let # and 7 be the
unit vectors fixed in the body of the satellite, such that (z,7, 7) form a right-handed
Cartesian basis.

In the inertially fixed frame defined by the GS Cartesian basis (éns,éew,éas) (3],
the vector 7 is given by

T = TnNséNs + TEwéEw + \/ 1 —7&s — TBweas, 1)

where Tiyg is the sum of the aberration, starlight bending, parallax, telescope pointing
error and perhaps some other optical effects (1, 3, 4], projected onto the NS direction,
and similarly for 7gw. Note that, in fact, 7yg and TEw are functions of time changing
slowly as compared to the roll period. Also, Gravity Probe B operates in the regime

with |7ns|, |TEw| < 1, that is, the telescope is pointing very close to the true direction
to the GS.



Let us denote the satellite angular velocity by w,. This is the velocity of rotation
around the 7 axis. To describe this rotation, we write down the expressions for the
unit vectors o and g forming a Cartesian right-handed basis together with 7. Appar-
ently, there is some freedom in their choice represented by an arbitrary initial phase, or,
equivalently, by an arbitrary start time. So we pick a phase that allows %, to have no
component in the égw direction, i.e., for which

Zo = Tons €Ns + Togs €gs -

Then, from the conditions 2y - 7 = 0 and £ - ¥y = 1, we obtain
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Now gy should be defined as
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The vectors £(t) and §(t) can be derived from & and 4 by means of the standard Euler
rotation matrix, giving

2(t) = coswyt o + sinw,t gy =

1

ﬁ {(—\/1 - T12VS - T.%'W COS(urt + TEWTNS Sinwrt> éNS -
— T
EwW

(1 - TI%W) sinw,t égw + (2)

(TNS cosw,t + TEW\/ 1- ”12vs - TI%W sinwrt) éGsJ

and
9(t) = —sinwrt B+ cosw,t o =

1

—\/1_—*2— {<\/1 - T12VS - TI%JW sinw,t + TEWTNS coswrt) éNns —
-T
EW

(1 - TI%W) coswyt épw + (3)

(— Tng sinw,t + TEW\/l —TI%,S —T%W coswrt) écs] .

The SQUID pick-up loop makes an angle (« 1) with the satellite roll axis 7.
Therefore, in the Z,9, 7 body-fixed system, the normal unit vector to the pick-up loop
plane can be written in the form

Vi—oa?cosdod + V1—-alsingg§ + o, (4)
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where ¢p is some constant phase.

We can now substitute the expressions for &, § and 7 from equations (2), (8), and
(1) into the equation (4) to obtain # in the inertially-fixed frame of the GS, namely

. [\/l—a2 cos ¢o

n = <—\/1 - T,%,S - T}%W coswrt + TEWTNS sinwrt) +
Vv1-1hy

v1—a? singg

- (\/1 —Thg — TAw sinwrt + TEWTNS cos wrt) +
\/1 - TEW

a TNS] ens + [— V1-—a? cosgy (1 - T}%W) sinw;t —

V1 — a2 singyg (1 - 'rf;w) cosw,t + « TEw] eEw + (5)

[\/ 1 — a2 cosgy <7'NS coswrt + TEW \/1 - vas - T%W sin wrt) +

V1 —a? singy (—- TNs sinw,t + Tgw \/1 —Ths — Thw cosw,.t) +

« \/1 — TI%,S — TI%W:l eas

Next, let § denote the direction of the spin axis (London moment) of the gyroscope.
In the inertial GS frame the unit vector § can be written as

§=NSéns + EW épw + /1 - (NS)? — (EW)2 égs . (6)

Here the current North-South misalignment NS is the sum of the initial misalignment
NSy, relativistic drift, and the drift due to classical torques, and similarly for East—

West misalignment EW. Under the GP-B conditions, both misalignments are small,
INS|, |[EW| ~ 10~% at most.

Finally, the angle 8Ly between the London moment direction, §, and the pick-up
loop plane is given by

BLm ~sinfBry =387 (7)

By working in the inertial basis, we can easily compute this dot product. We write
it down to the second order in the small quantities T™NS, TEW, NS, EW,a :

Brm =~ NS coswrtcosgy + NS sinw,tsingy —

EW sinw,tcosgg — EW cosw,tsin do +
TNS COSwrl COS Py + TEw Sinwyt cos g —
TNS Sinwytsingy + Tew coswrt sin ¢y +

a + cubic terms in all the angles .

4



Trivial trigonometric grouping of terms allows us to obtain the final expression for 8 in
a compact form: '

B = (tns — NS) cos(wrt + ¢o) + (Tpw — EW)sin(wrt + ¢o) + o + cubic terms + . .. (8)

The coeflicients in front of the roll harmonics are just the differences of the current
gyroscope and telescope misalignments (caused, respectively, by mechanical and optical
factors) in the two directions perpendicular to the true direction to the GS. Thus, we
recovered our first order signal model [1, 5], and demonstrated that all corrections to it
are cubic in the small angles. At worst, the corrections should be not larger in the order
than 10713, which is definitely negligible as compared to the order 10=5 — 10~% of the
main linear terms.

3 Electronic Nonlinearities of SQUID Readout

There are several sources of readout nonlinearities in the onboard electronics. The
SQUID itself is an intrinsically nonlinear device. Namely, although the magnetic flux in
the SQUID, ®,, is directly proportional [6] to the flux in the pick-up loop, ®:

®, = $/363, (9)

the output voltage of the SQUID, Vsq, is a nonlinear function of ®,, well approximated
by a cubic polynomial:

Vsq =Csq @, (1 + 107 &, + 5x 107 42) , (10)

where Cgq is the proper scale factor. Note that the small coefficients on the right are
the result of the optimization of the operational point of the SQUID. Note also that
both ® and ®, are dimensionless, expressed by the number of magnetic flux quanta, ®;
in particular,

¢ = Qin/(DOa (11)
where ®;,, is the dimensional flux in the loop.

Let us show that the nonlinearity (10) can be neglected, for the required GP-B
accuracy of one part in a hundred thousands. For this, we express the dimensionless flux
in the loop through the equivalent London moment angle, O, by the formula (see 2],
(1.1.3)): \

P 2rN.M
& = é;f: ”R L%Eﬁ =87r2N*-}%me;fSBL. (12)
Here R is the pick-up loop radius, N, = 4 is the effective number of turns of the pick-up
loop [6], My is the dipole magnetic London moment whose expression is used in the
utmost right, r is the rotor radius, m, and A are the mass of electron and the Plank

constant, respectively, and f; is gyro spin frequency. After substituting the proper values
of all the parameters involved, we obtain

¢ = CL:BL, L = 40N*fs = 16Ofs, (13)



where the value of spin frequency should be taken in Hz. The SQUID range in terms
of the equivalent London moment angle is 7'** = 100as = 4.85 x 107 rad; a plausible
spin speed of the GP-B gyro is f, = 150 Hz. Therefore, by (9) and (13)

I

max ®; = max®/363 = 160 x 150 x 4.85 x 107/363 = 0.032. (14)

Accordingly, the nonlinearity in (10) is at most 3.2 x 107, and we can definitely neglect
it.
Thus, the output readout voltage after passing the whole onboard electronic circuit,

including the A/D converter, can be generally written in terms of the flux in the pick-up
loop as [see (11)]: '

i . 2
Vour = C®;y, [1+€2 (;‘" )+e3 ( q)’") +...}+b =

mazx ¢ma:c

(C20)® [1+ €2 (D0/Brmas) ® + €3 (Bo/Bpmas)? & +..]+b, (15)

where C and b are the readout scale factor and bias, respectively. The harmonic distor-
tions €, €3, ... are constant in the low frequency range f ~ 1lmHz — 1Hz, which we
only discuss here. The typical for GP-B magnitudes of the first two harmonic distortions
are [7):

€2 = 3.7 x 1074, €3 =94x107%. = (16)

It is more convenient for us to study the effects of nonlinearity in terms of the
equivalent London moment angle, B, rather then the dimensionless magnetic flux, .
So, we substitute the expression (13) for the latter through the former in the formula
(15). Using the equality

cL®0/Prmaz = 1/07%*

implied by (13) and (11), we find:

Vo = Cofr [1 + e (BL/BE™) + Be/B=?+..] + b, (17)
or
CybL (1+a2ﬂL+03ﬂ%+~--)+b' (18)
The new scale factor, Cj, is related to the old one, C, by
Cg = CL@()C - 160fs‘1)()C, (19)
and the magnitudes of the new harmonic distortion coefficients, ay, as, ..., are:
laz| = |e2| /BT = 0.75,  |as| = |es|/ (B7)2 = 4000, ... . (20)

Since the higher order harmonics were found to be much stronger suppressed in the

GP-B readout signal, we limit ourselves with only the quadratic and cubic nonlinearities
in the analysis below.



4 Effects of Electronic Nonlinearity

4.1 Opverall Nonlinear Effect on the Readout

The basic measurement model used for GP-B data reduction does not contain any terms
nonlinear in By. So, for the validity of the linear measurement model it would be best
if the total relative nonlinear corrections were less than 10-5. As seen from (17) and
(16), this requires, however, BL/BT*® < 0.1, which is never true if, for instance, the
calibration signal (see the next section) is present. At 3, /BT* = 0.5, which is about
a peak number for the GP-B signal, the relative contribution of nonlinearity is about
3 x 107, Therefore it would seem that the accurate analysis of the SQUID readout
requires modeling of nonlinearities. Fortunately, this turns out not completely correct

because of the specific structure (time signature) of the signal, which we are going to
consider in detail.

4.2 Time Signature of the Low Frequency SQUID Signal

We now introduce the time dependence of all the low frequency components of the
equivalent London moment angle 3, = BL(t) [recall that, by (13), the dimensionless Aux
in the pick-up loop is ® = cLBL]. In the presence of the London moment signal, trapped
flux, and calibration signal, taking also inte account the intrinsic SQUID bias, it can be
written as a sum of the four respective contributions:

AL(t) = Bm(t) + Br(t) + Be(t) + Bu(t) - (21)

Let us examine each of the contributions.
According to (8), the London moment angle, Bra(t), is

ﬂLM(t) = Arm COSQST(t) + a, (22)
Apy = \/(TNS —NS?2+ (16w —EW)2, ¢, =w,t + ¢ro,

[see also [2], formula (1.2.10); note that only the low frequency components are included).
The slowly varying amplitude of the roll harmonics is Arm < 30as = 1.5 x 1074, This
maximum value consists of 20.5as = v/52 + 202 as of orbital and annual aberrations
taken at their peaks, with almost 10as left for the spin-to-roll misalignment, which, in
fact, is required to be within Just las averaged over the year of observations. Hence, this
is the worst-on-worst upper bound, which, most probably, will never be reached during
the experiment. Also, a = 55as = 2.7 x 10~4 is a constant angle between the roll axis
and pick-up loop plane involved in (4).
The trapped flux contribution, Sr(t), turns out to be

Br(t) = (er/eL) Bim(t) = (cr/cr) [Arm cosgp(t) + o] | (23)

where cr is the flux-to-angle coefficient for the low frequency trapped flux in the pick-up
loop [see [2], formula (I1.2.16); note once again that we include only the low frequency
components]. Generally it is a periodic function of time with the polhode period; its
magnitude could be very conservatively estimated as ler/cL| =< 0.05.
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The angle 5.(t) represents the calibration signal,
Be(t) = Ac cos c(t) Pe = wet + Pep - (24)

A very stable (to one part in 10%) calibration signal amplitude A, will be kept within
30as = 1.5 x 10~4.

Finally, the magnitude of the equvivalent SQUID bias angle, Gy(t), is determined
by the threshold of the bias offset algorithm, whose reasonable value is 5as. Within
this threshold, the long-term variations, such as the thermal ones, are estimated to be
extremely low, below 1mas, so they can be safely neglected. On the other hand, the
big fast jumps in the bias, caused by energetic cosmic particles at a rate of about one
hit per day, will be immediately countered by the bias reset algorithm. Therefore in our
analysis we can consider the bias angle constant,

Bo(t) = Bp = const = 2.5 x 1075 ; (25)

the effect of changing this constant abruptly, i. e., of the bias reset, on the scale factor
is studied in section 4.6.

Summing up the expressions (23), (23, (24), and (25), we write the equivalent London
angle (21) in a convenient form:

BL(t) = A; cosd(t) ’+ Ac cosde(t) + Ar ;(26)
Ar = (L+cr/cr) \/(tns — NSY + (rgw — EW)?, Ap=(1 + erfer) o + By .(27)

For the estimates that follow, and that are not sensitive to the time variation, we will
use the worst case values

A = A, =1.5x 1074, A7 =3 %1074, (28)

according to the above discussion and the formula (27). On the other hand, wherever
necessary, the time variation of A, and Az will be taken into account using

A, =15x107 1+ eu(t)], Ar=3x10Y1+eu(t), e=005, (29)

where the function |u(t)| < 1 describes the polhode modulation.

The calibration signal frequency can have Just two fixed values, 1/62 Hz and 1/124 H z.
The roll frequency during the data acquisition period is expected to be 1/180 Hz. In
any case, the two frequencies will be well separated, and their combination frequences,
with much smaller amplitudes, will not influence the GP-B signal enclosed in the slow
variation of the amplitude at roll. For this reason, when introducing (26) into (18) to get
the SQUID output voltage in terms of various harmonics, we retain only the multiple
harmonics of the roll and calibration frequencies. In this fashion, we obtain:

n=1

3
Vour = Cy {Z [Ag") cos(ng,) + A™ cos(nch)] + .. } + B, (30)

where the constant Cy is given in (19), the dots stand for the dropped harmonics we are
not interested in,

B = b+ Cg [AT(]. + agAr + agA%) +0.5 (a2 + 3G3AT)(A,2. + Az)] , (31)
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and

AD = 4, [1 +2a2A7 +0.75a3 (A2 + 242 + 4 A%)] ; (32)
AP = 0.5 A%(ay + 3a3Ar); (33)
A® =0.25a3 43 . (34)

Evidently, the amplitudes of the calibration signal harmonics are given by the same
formulas in which the indices r and ¢ replace each other:

AW — 4, [1 + 20 A7 +0.7505 (A2 +242 + 443)] (35)
A?) =0.5 Ag(az + 303AT); (36)
AP®) =0.25a3 A3 . (37)

These are the desired expressions allowing one to analyze the main effects of the nonlin-
earity on the SQUID readout.

4.3 Harmonic Distortion at Roll and Calibration Frequencies

Formulas (33), (36), and (20) provide the same estimate for the relative amplitudes of
the second harmonics of both roll and calibration frequences:

AP

o~ = 054i(az + 3a34r) <84 %1075,  i=r c. (38)

For the third harmonics, from (34), (37), and (20) one finds:

AP
T =0.25a3 A7 < 7.3 x 1075, i=r c. (39)
i v

The above estimates do not imply that one necessarily needs to model higher harmonics
in the GP-B data analysis. Indeed, those are the worst-on-worst case estimates, since
the calibration signal amplitude could be deliberatley reduced 23 times, and the typical
value of the roll signal amplitude is at least two times smaller than the one used. Most
importantly, if not modeled, higher harmonics would just add somewhat to the noise
whose influence on the accuracy of the relativistic drift determination is strongly reduced
by the large number of measurements. However, the check for higher harmonics of the

roll and calibration frequencies should be perhaps carried out periodically during the
experiment.

4.4 Time Variation in Scale Factors of the Science and Calibration
Signals Caused by Nonlinearity

The scale factor of the science signal, i. e., the scale factor at the roll frequency, Cy(w),
is defined in a natural way as

Vout(wr) = Cylwr)A, .

9



The accuracy of the relativistic drift measurement requires, within the baseline data
analysis, that Cy(w,) is constant to one part in 105, which issue is examined here.

According to the equations (30) and (32), the scale factor at roll is given by the
expression:

Colwr) = Cy [1+ 20247 +0.75 a5 (42 +242 +443)] . (40)

The effect of the nonlinearity on the scale factor at roll is described thus by

6Cg(wr) — Cy(wr) = C,
Cy - Cy

= 20247 +0.7505 (A2 +242 + 44}) =
1.5 A7 + 3000 (A,% +2A2 44 A%) . (41)

Any additions to unity on the utmost right of (41) do not play any role as soon as
they stay constant, i . e., do not change with the time. Their variable part is obtained
from introducing expressions (29) for A, and Ar in (41), which, to lowest order in the
modulation parameter € = 0.05, provides the variation of the scale factor at roll in the

form

8Cq(wr)
Cy
This worst-on-worst number is about an order of magnitude larger than the desired one.
It is proportional to the level of the polhode modulation set at 5% in our estimate. Most
probably, the actual level of modulation will be just about 1%; combined with a two
times reduction of the typical amplitude at roll, this gives an acceptable value of the
time variation in the scale factor. Nevertheless, additional measures should be taken to
further reduce this variation, and modeling of the polhode modulation of the scale factor
in the GP-B data analysis may be needed.

As implied by (35), the scale factor at the calibration frequency is

=1.39 x 107*|u(t)] < 1.4 x 1074 . (42)

var

Co(we) = Vour(we)/Ae = C, [1+2a2AT+O.75a3 (A§+2A3+4A%)] . (43)

Its properties are also very important, since we check on the scale factor at roll by
measuring it. The effect of the nonlinearity on Cy(wy), by (43), is:
0Cq(we) — Cy(we) — Cy
Cy - Cy

= 2047 +0.75a5 (A2 + 242 + 4.42) =
L5 Az +300 (A2 +2.42 + 443) . (44)

Because of the twice larger coefficient in front of A? here as compared to (41), the
variable part turns out slightly larger than in the case of roll:

’ 0Cq(we)
Cy

= 1.45 x 10™*|u(t)] < 1.5 x 1074 . (45)

var

An important feature of the time variation in both scale factors is that the source of

it, i. e., the trapped flux polhoding, and thus its time signature, are the same in both
cases.
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4.5 Ratio of Scale Factors of the Science and Calibration Signals

For the reason stated above, it is also useful to look at the ratio of the scale factors,

Colwr) _ 1+20pAr +0.75a5 (A2+242+442) B 3000 (A2 — A?)
Cylwe)  1+42a3A7 +0.75a3 (AZ + 242 + 4A4%) 7 1+ 15Ar +3000 (A2 + 2 A2 + 443"
(46)
Dropping higher order terms, which are smaller than 10~?, we obtain
Cy(wr) 2 2 -5
——t = 1-4, | = 3000|A; — AZ| < 7.75 x 1077, 47
AT 61 = 3000) | (47)

in the worst-on-worst case.

4.6 Effect of the SQUID Bias Reset on the Scale Factor

A SQUID bias reset, i. e., an abrupt change in 3, value from (25) for our analysis means,
according to (27), the replacement of Ar with some A1 + 5Ar. As seen from (41) and
(44), it leads to the same change in both the roll and calibration signal scale factors,

\5(jg(uu)
Cg

reset

(48)
The last quadratic term on the right is completely negligible even for the biggest resets
having § AT = 30 as. For the resets with Ay = 1 as, expression (48) gives

lé(jg(uﬁ)
Cg

=42 x 1075, (49)

reset

which rate tentatively shows that many bias resets should not inflict significant changes
on the scale factor.

5 Conclusions

Here is a brief summary of our results.

1. Geometrical nonlinear corrections to the model (8) of the angle between the London
moment and pick-up loop plane used in GP-B data reduction are at least eight orders
of magnitude smaller than the main linear term.

2. Contributions of the intrinsic SQUID nonlinearity (10) is, in the worst case, about
one order of magnitude smaller than required by the experiment accuracy.

3. The estimates of the effect of the onboard electronics nonlinearity that follow deal
only with the quadratic and cubic nonlinearities. The analysis is carried out for the low
frequency SQUID signal consisting of the London moment, trapped flux, and calibration
signals in the presence of a constant intrinsic SQUID bias.

4. The worst-on-worst case second harmonic distortion is within 8.4 x 10~° for both the

science and calibration signals. The corresponding limit on the thrid harmonic distortion
is 7.3 x 1075,

11
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9. The ratio of the scale factors of the science and calibration signals differs from unity
by less than 7.8 x 10~° in the worst-on-worst case.

6. The worst-on-worst case time variation in both the science and calibration signal
scale factors, due to bias changes, is about 10~* of the magnitude. The plausible value
for the science scale factor variation is estimated to be within 2 x 1075,

7. The worst-on-worst case relative change in both the science and calibration signal
scale factors, due to SQUID bias reset, is 4.2 x 10~° per 1 as of the bias change.
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