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A. Introduction

Systematic measurement errors may arise either (1) from effects which have
exactly the same time signature as the effects that are being measured or (2) from effects
that have a different time signature but nevertheless some correlation with the measured
effects. In the first case, experimental techniques may be used to place limits on these
errors, but limits may not be placed on these error sources by data analysis alone. In the
second case, if the spurious signals are ignored in the data analysis, there will be
unmodeled errors in the data analysis, and the post-fit residuals will not be noise limited.
As long as the magnitude and time signatures of these unmodeled signals are well
understood, and they can be shown to have a negligible effect on the overall experiment
error, they can be ignored. For those effects that make a significant contribution to the
experiment error, the error bars of the formal statistical error must be increased to
account for the potential systematic errors. In some cases, augmenting the data analysis
model to include the additional effects will reduce the unmodeled errors. However, this
reduction in the unmodeled errors may come at the expense of an increase in the
statistical errors of the other measured quantities.

The effects of these unmodeled errors in the Gravity Probe B experiment were
first discussed by Haupt [1], who examined the effects of bias error at various frequencies
on the gyroscope drift rate. The effects of potential unmodeled data reduction errors have
been included in the Gravity Probe B Error Tree [2].. The document, “Gravity Probe B
Data Reduction: Analysis of Unmodeled Error”, [3] describes two equivalent methods of
calculating these unmodeled errors. Using either of these methods, the effect of any
assumed temporal variation in the combined gyroscope and telescope signals on the
gyroscope drift rate determined from the data analysis may be calculated. These
calculations have been done numerically in the Gravity Probe B Error Tree

The purpose of this document is to present the analytical solutions for unmodeled
error for various temporal variations in the bias, scale factor, and phase shift of the
combined signals from the gyroscopes and telescope in the Gravity Probe B satellite.
These analytical solutions provide some insight into the effect of potential disturbances
on the experimental results. They also provide a convenient method of verifying some of
the numerous requirements on the satellite hardware.

Basic Gravity Probe B Measurement Model

Without any interfering effects, the combined gyroscope and telescope data may
be modeled as linear drift in the gyroscope spin axis in two orthogonal directions and the
optical effects which cause the apparent direction of the guide star to differ from the true

direction. Then, the model for the combined the gyroscope and telescope data, z, may be
written as



S0895
6/12/03

c-c, [(NSO + Rys (£ =15)+ ay )cos(g, +5p) + } AD

+(EW, + Ry, (t —1,) + ag, )sin(@, + 58) +b
In this equation, z is a scalar function of time, and the symbols have the following
meaning: C, is the scale factor with determines the conversion between the measured
voltages and the angle of the gyroscope from the direction to the guide star, and 8¢ is the
angular difference between the measured roll phase, ¢, and the normal to the gyroscope
pick-up loop. The angles NS, and EW,, are the components of the orientation of the
gyroscope spin axis at time t = t, in the North-South and East-West directions, Rys and
Rgw are gyroscope drift rate in these same directions, and ans and agw are the time
dependent components of the optical effects which cause the apparent direction of the
guide star to differ from the true direction to the guide star. These effects include the
optical aberration signal due to the orbital motion of the satellite about the earth and the
motion of the earth about the sun, parallax, and the gravitational deflection of light by the
sun. The parameter b represents an arbitrary bias in the combined gyroscope and
telescope signals. The parameters Cg, 8¢, NSy, EWy, Rns, Rgw, and b are a minimum set

of parameters that will be determined from the data analysis. The time and roll phase are
measured.

To determine the scale factor and the roll phase offset, both the magnitude and
direction of at least one of the optical effects, which has a unique time signature, must be
known with high precision. These optical effects include the aberration of light from the
guide star due to the orbital motion of the satellite about the earth and the annual motion
of the earth about the sun, the gravitational deflection of light by the sun, the parallax due
to the earth’s motion about the sun, and, possibly, the orbital motion of the guide star, HR.
8703, about its unseen companion at a 24.6 day period. Since the orbital and annual
aberration signals are the largest effects (having amplitudes of 5 arc sec and 20 arc sec
respectively) and may be measured precisely, these signals serve as known calibration
signals which may be used to determine the scale factor and roll phase offset. The
magnitude of the other optical effects may either be determined from the data analysis or
from other methods. Here, these other optical effects are assumed to be known.

Considerable insight into the measurements may be gained by examining the data
over short intervals from several orbits to several days. In this case, all of the optical
effects, with the exception of the orbital aberration, are slowly varying functions of time,
and are indistinguishable from the average misalignment and drift rate of the gyroscopes.
Defining the short term misalignment and drift rate as

NS,'= NS, +a,

EW,'= EW, +a,,

oa
R L R NS N
NS NS o - (A.2)
Oa
R, '=R,, +—¥
EW EW o

1=ty

the basic measurement equation over a short time interval may be rewritten as
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c (NSO "+R '(t -1, )+ A, cosg, )cos(¢, + o) + A3)
=% +(EW,"+R,,, "t —1,))sin(d, +56) + b (A
Here, A, is the amplitude of the orbital aberration and ¢, is the phase of the orbital
motion measured from the closest point to the guide star. Note that this equation is an
approximation since the orbital aberration is assumed to depend only on the phase of the
orbital motion. While this circular orbit approximation is useful for estimating potential
errors, for the actual data analysis the orbital aberration will be determined from the
measured position and velocity of the satellite. The other long term optical effects have
been absorbed into the parameters NSO’, EW0’, RNS’, and REW’. These parameters
NS0’, EWO0’, RNS’, and REW’ may be considered fixed over any one day interval, but
will vary from day to day. This model will not be used for determining the relativistic
drift rate. However, it may well be used for the short term data analysis since it should fit
the data to within the limits imposed by the gyroscope and telescope readout noise.

Unmodeled Errors

The Gravity Probe B data reduction model is nonlinear. As shown in S0351,
“Analytic Solution for the Gravity Probe B Covariance Matrix” [4] and S0354, "Gravity
Probe B Data Reduction: Analysis of Unmodeled Error”, [3] it may be treated as a two-
step data reduction problem where the first step is linear and yields an intermediate set of
states, y:

z=H y+v (A4)
The noise, v, is assumed to be Gaussian with a standard deviation, . The least squares
determination of these intermediate states is given by

Hz
y=Ph—; (A.S5)
o
where these first-step states have the corresponding information and covariance matrices:
I = H'H
oot (A.6)
P=1 1_]

The interesting physical parameters, X, are nonlinear functions of the intermediate
states:

y=fx» (A7)
A nonlinear least squares fit may be used to determine the optimum value of the
parameters:
T
x=P, (a—fj I, y (A8)
Ox

where the information and covariance matrices of these second-step states are
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_(2£Y (21
IZ_(ax] I'(axj (A.9)

The covariance matrices, P; and P,, have been calculated analytically. [4].

With this approach for any assumed disturbance in the measurement, Az, the
corresponding unmodeled error in the second step states may be calculated:

T T T
Ax =P, a—f I, Ay=P, Q-f— H 2AZ (A.10)
oy Oy o
where Az, Ay, and Ax are the unmodeled errors in the data, the first-step states, and the
second-step states, respectively.

B. Short Term Data Analysis

For the short term data analysis, the basic model is given by equation (A.3). This

equation may be rewritten in the form given by equation ( A.4), where the measurement
matrix is

H =[cosg,, (;t—) cosg,, cosg, cosg,, sing,, (?t—) sing,, cosg, sing,] (B.11)
A A
and the first step states are

[C, (NS cos 3¢ + EW sin 5p)

C, (Ryst, cos 8¢ + Ryt , sin 5¢)
C, (A, cos 54)

C, (~ NSsin6¢ + EW cos 5¢)
C, (- Ryst, sin 8¢ + R, t, cos5p)
| C, (- A,sinsp)

The second step states are the scale factor, C,, the roll phase offset, ¢, the misalignments
at t = tg, NSp and EW,, and the change in the gyroscope angular orientation due to its drift
rate in a one year period in each of the two orthogonal directions, Rysta and Rewta.

B.1)

For any assumed unmodeled error in the measurements, Az, the unmodeled errors
in the first step and second step states may be calculated using equation (A.10). These
calculations may be done numerically, but more insight into the nature of the unmodeled
errors may be gained using an analytical solution. Such an analytical solution may be
obtained by the straightforward application of equation (A.10) for any assumed
unmodeled disturbance in the measurement, Az. Since the calculation of such an
analytical solution is very tedious, the Matlab symbolic math toolbox was employed to
calculate the unmodeled first and second step errors for a variety of unmodeled inputs. A
copy of this symbolic math program is included in Appendix B.
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Fortunately, these calculations may be considerably simplified in the case of the
unmodeled errors since they are small perturbations about the basic solution. From
equation (B.1), it can be seen that the scale factor, C,, and roll phase offset, 8¢, are
determined entirely by the first step states, y; and Ye. Small perturbations of these first
step states give the following perturbations in the scale factor and the roll phase offset:

Ay,] [(aC, ), cossp—(asp)C, A, sin 5
l:AyJ |- (ACg )Ao sin o¢g — (A5¢)Cg A, cos @

This equation, which is linear in ACg and Ad¢, may be solved to find the change in the
scale factor and roll phase offset for any given change in the first step states, y3 and y:

AC, 1 [(cos 3¢)Ay, —(sin 56)Ay,
AdSp - A, —(sin§¢/Cg )Ay3 - (0055¢/Cg )Ay6

Similarly, from equation (A.12) changes in the first step states yi, y2, Y4, and ys may be

found in terms of changes in the second step states. These linear equations may then be

solved to find the changes in the second step states in terms of changes in the scale factor,
roll phase offset, and these first step states. The result is

(B.2)

(B.3)

ANS [~ (AC, /C,)NS — (3$)EW +(Ay, /C,)cosdp—(Ay,/C,)sin5p

AEW | | =(AC /C)EW +(34)NS +(Ay, /C,)sin 8¢ + (Ay, / C, ) cos 5¢ B4
AR, t, ~(AC, /C)Ryst, ~ (8)Rgyt, +(Ay, / C,)cos 8 — (Ays / C, )sin 6
ARpyty ] | =(AC, IC )Ryt + (8P)R st , +(Ay, /Cy)sindp+(Ays / C,)cos 8¢

Here, the symbols NS, EW, Rysta, Rewta, Cg, and 8¢ refer to the true values for the
second step states while the same symbols preceded by a A refer to the perturbed
solutions. Equations (A.14) and (A.15) may be combined, of course, to give a single
solution to the perturbed positions and drift rates in terms of the perturbations of the first
step states. However, keeping the equations separate gives considerably more physical
insight into the solution since it explicitly shows which changes in the second step states
are due to the changes in the scale factor and the roll phase offset. It also considerably
simplifies the expressions for the unmodeled errors. It will be shown in the section on the

long term data analysis that equation (A.15) applies to the long term data analysis
although equation (A.14) does not.

Bias Variations

Bias Variations at the Satellite Roll Frequency

From equation (A.3), it can be seen that a constant amplitude sinusoidal variation
in the bias will be indistinguishable from a misalignment of the gyroscope readout axis
relative to the direction to the guide star. This straightforward conclusion is confirmed by
the analytical solution of the unmodeled errors for the second step states. The phase of
this roll frequency bias variation may coincide the phase due to a misalignment in the
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north-south direction or in an east-west direction. For a bias variation corresponding to a
north-south misalignment,

2, = ey COS(@, + Op) (B.S)
The errors in the second-step states are as expected:
[AC, 1 [0 ]
Adgp 0
ANS ]| ens (B.6)
AEW 0
ARt , 0
|ARpyt, | [0 _
Similarly, a bias variation corresponding to a misali gnment in the east-west direction
Z, = egy sin(@, + 69) B.7)
gives the expected results in the second-step states:
AC, ] [o ]
ASp 0
ANS _ 0 (B.8)
AEW €rw
ARt, 0
| ARpyt, | |0

These results are the expected results and confirm that the symbolic math program is
working as expected. Although these bias variations at the satellite roll frequency will
have no direct impact on the determination of the gyroscope drift rate, any variation in
the amplitude or phase of these roll frequency variations will produce a systematic error
in the measured drift rate. There are no direct requirements on a constant bias variation,
but any roll frequency variation is of concern.

Roll Frequency Bias Variations which vary linearly with time

Any bias variation at the satellite roll frequency where the amplitude varies
linearly with time will be indistinguishable from the relativistic drift rate of the
gyroscope. Therefore, tight requirements are placed on these quantities in the System

Design and Performance Requirements, TO03. An unmodeled bias variation having the
form

t .
2, = epysta —COS(@ + O¢p) (B.9)
tA
produces the expected errors in the second step states
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AC, ] Jo ]
ASH 0
0
ANS | _ (B.10)
AEW 0
ARt €rnsla
_AREW t AJ _0 J

where egns is the angular drift in a period ts, which is taken to be one year. Similarly, an
unmodeled bias variation with the form

2y = €newt t—t-sin(¢, +54) (B.11)
A
produces the corresponding errors in the second step states
FACg 1 To _
Adg 0
ANS 0
= (B.12)
AEW 0
AR, t, 0
_AREWIA_ | €rewla |

Unmodeled errors having this temporal dependence may not be reduced by adding
additional states to the basic model since the time dependence is exactly the same as the
time dependence of the signal due to the gyroscope drift rate.

Roll Frequency Bias Variation Modulated at the Orbital Frequency

For the short term analysis, the scale factor of the gyroscope readout system and
the roll phase offset are determined by from the orbital aberration signal. This signal lies
at the satellite roll frequency but its amplitude and phase are modulated at the orbital
period. Over longer intervals, calibration of the gyroscope scale factor using this orbital
aberration signal is less accurate than the calibration using the annual aberration signal.
However, it is nevertheless useful to place constraints on bias variations at this frequency
which would limit the accuracy of the scale factor determined from these measurements.
An unmodeled error in the combined gyroscope and telescope signals having the same
phase as the orbital aberration signal

2, = ey, €OS @, cos(g, + 5p) (B.13)
produces the error in the second step states
_ACg i r-(eNSO /Ao)Cg
AS¢ 0
—(AC,/C,)NS,
ANS vl (B.14)
AEW —-(AC, /C,)EW,
ARysty | |=(AC,/C )R,
ARy 2, | _—(ACg/Cg)REWtAJ
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In this case, an unmodeled error having the same time dependence as the orbital
aberration signal, which produces an error in the scale factor of the gyroscope readout.
This error in the scale factor, in turn, causes the expected errors in the average gyroscope
misalignments and drift rates.

A roll frequency bias variation modulated at the orbital frequency may be 90° out
of phase with the orbital aberration but have the same dependence on the orbital phase. In
this case, the unmodeled error is

Z, = €gyo COS P, sin(g, + 5p) (B.15)
with the corresponding errors in the second step states:
AC, ] [o |
Ad¢ —emo ! A,
ANS |- ASPEW, (B.16)
AEW ASg NS,
ARNStA —A5¢REWtA
_AREWtA i _A5¢ RNStA

Here, the unmodeled error produces an error in the roll phase offset, which, in turn,
causes errors in the estimated values for the average gyroscope misalignments and drift
rates. Neither of these two unmodeled errors may be reduced by augmenting the basic
model since the time dependence is identical to the time dependence of the signal.

Unmodeled errors may also occur at the satellite roll frequency modulated at the
orbital frequency but where the modulation at the orbital frequency may be out of phase
with the orbital aberration signal. These signals have a dependence on the orbital and roll

- phase given by
2, = eygp Sing, cos(g, + op)
2, = €gyp Sing_ sin(g, + ¢)
where ensp and egwp are the amplitudes of an unmodeled signal. As long as the data is

collected symmetrically about the point in the orbit closest to the guide star, error sources

with these time signatures produce no unmodeled errors in the basic six second-step
states.

B.17)

Roll Modulated by Twice Orbital

Some sources of systematic errors in the gyroscope readout, such as leakage of
external magnetic field into the gyroscope readout pickup loop, have the potential to
produce bias variations at the roll frequency modulated at twice the orbital frequency.
Although this time dependence is different than that of the orbital aberration signal, it
may nevertheless produce an error in the short term data analysis because data may be
taken only during slightly more than half of each orbit. The phase of such a signal will
have a significant effect on the unmodeled errors. If the unmodeled signal has the form

Z, = €,,,c08(2¢ )cos(g, + 59), (B.18)
then there will be unmodeled error in the scale factor

10
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(AC, ] |esn,(7/34,)1(x* -8)
AS¢ 0
ANS —(AC, /C,)(NS, +2A, /) (B.19
= 19)
AEW —-(AC, /C,)EW,
AR, t, —(AC, /C,) Ry
| ARy 2, | —(AC, /C,) Ry, |
However, if the unmodeled signal has the form
2, = e€,,,Co8(24,)sin(g, + 5¢), (B.20)
there will be an unmodeled error in the roll phase offset
—Acg ] FO .
AP ~(e,5, /1 C, )47 13A,) [ - 8)
ANS | _| —AGPEW, B.21)
AEW ASg (NS, +24A,/7x)
ARNSIA - A5¢ REWtA
_AREWtA_ L~ Ad¢ Ryst,

As long as the data collected is symmetric about the point in the orbit closest to the guide
star, unmodeled signals having the forms

Z, = €,,,81n(2¢,)cos(¢. + 5¢)

2, = €,,,8in(2¢,)sin(@, + 5¢)
produce no unmodeled errors. Note that these unmodeled errors may be reduced by
augmenting the data analysis model to include terms having this time dependence.

(B.22)

Scale Factor Variations

Linear Variation in the Scale Factor

A linear variation in the gyroscope scale factor with time produces and
unmodeled error with the form

[NS0 + Ryt 4 tL +A, cos¢oJcos(¢, +0¢) +
Zy = €neyts (L} A > (B.23)
t
A + (Ew0 + R 1, i) sin(g, + o)
t, )
where ercyg is the magnitude of the scale factor variation in the period ta, which is usually
taken to be one year. In a one year period, assuming data is collected for half of each
orbit, the errors in the second step states are

11
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[AC, ] [0 |
Adg 0
ANS _ €rcela | Rysty /12 (B.24)
AEW C. |Ruyt,/12
AR, 1, NS, +2A,/x
ARt | EW,

These results indicate that the unmodeled errors in the gyroscope drift rates due to a
linear variation in the scale factor may be reduced by decreasing the average
misalignment. The quantity, NS, + 2Aq/, is the average misalignment in the north-south
direction during guide star valid, while EW, is the average misalignment in the east-west
direction. The present GP-B requirements call for an average misalignment of less than 1
arc second. With this misalignment, a linear drift in the scale factor of 10 of the nominal
value in one year will produce an error in the measured drift rate of 0.01 mas in one year.
These results are modified slightly in the case of the long term analysis, but the
conclusion is the same — decreasing the average misalignment decreases the unmodeled
error in the gyroscope drift rate due to a linear drift in the scale factor. In this case, the
unmodeled error may also be reduced by including additional terms in the data analysis
model to account for the linear drift in the scale factor.

Scale Factor Variations at the Orbital Frequency

A scale factor variation at the orbital frequency will produce the following
unmodeled error in the combined gyroscope and telescope outputs

t
(NSO +Ryst,—+A, cos¢ojcos(¢, +0¢) +
t
Z, =€y, COSY,; g > (B.25)
t .
+ (EWO +Rppt, -] sin(g, + 5¢)
tA
\ J
From the form of this unmodeled error, it mi ght be expected that this type of error would
produce errors in the scale factor and roll phase offset which are proportional to the
misalignment. Then, these scale factor and roll phase offset errors, in turn, would produce
errors in the estimated misalignments and drift rates. In fact, the analytical expression for
the unmodeled errors in the second step states show that this outcome is exactly as
expected. The errors in the second step states are

AC, | [ (NS, +274, 13 -8))/ 4, ]
ASp ~ec, EW, [(C, Ay)

ANS | _|-(aC, 1C, NS, —(ASPEW, + (e, /C,)Ag((Br” —32) (61 ~8))
AEW | |-(AC, /C,)EW, +(AGH)NS,

ARysta | | =(AC, /C,)Rygt, — (ASP)R 1, + (ecpo / C, 2Ryt , I 70)

ARgwtal | ~(ACIC,)Rpyt, +(AS4)R 1, + (eceo ! C )Ryt 1 7)

(B.26)

12
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Variations in the Roll Phase Offset

The roll phase offset is the difference between the roll phase as measured by the
star trackers on the each of the attitude platforms and the normal to the pickup loop for
each of the four gyroscopes. In the basic data analysis model, this roll phase offset is
considered to be constant with time. The accuracy with which this constant roll phase
offset may be determined as a function of time has been discussed in [4]. Variations in
this roll phase offset may arise from thermally induced mechanical variations in this
angle, errors in the measurement star trackers of the roll phase, of variations in the phase
shift of the telescope or gyroscope readout signal at the satellite roll frequency. Early
studies [5] pointed out the importance of the stability of this roll phase offset but modeled
the variation in the roll phase offset as a random walk. Since the variation is much more
likely to be thermally driven, the cases considered here are a linear variation in the roll
phase offset and a variation at the orbital frequency.

Linear Variation in the Roll Phase Offset

A small variation in the roll phase offset which is linear in time will produce an
unmodeled error in the combined gyroscope and telescope signal having the form

Z, = exyt, ticg KNS +R 1, ;’— + A, cosg, J(—-sin(qﬁ, +89)) + [EWO +R,1, tijcos(qﬁ, + 5¢)]

A A A

This unmodeled error produces the following errors in the second-step states: (B.27)
[AC, ] [0 7
ASg 0
| | P 2 (B.28)
AEW | C, |Ry /12
AR\ NS, +24, /7
(AR, | | EW, |

Variations in the Roll Phase Offset at the Orbital Frequency

A small variation in the roll phase offset at the orbital frequency will produce an
unmodeled error having the form

z, =e,4,co8¢9,C, [(NSO +R,t, tL + A, cos g, ](—— sin(g, + d¢p)) + [EW0 +Rgt, ILJ cos(¢. + §¢)}

A A

(B.29)
which will produce the following unmodeled errors in the second step states:

13
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‘ac, ] [e,,C.EW, /A, ]
ey e INS, 1 4, + 27 /B(z? -8)]
ans | |-lac, i, s, - (asp)EW, 5.30)
AEW —(AC, /C)EW, +(ASPINS, +e, A,(32~37*)/(6(z" -8))
ARysts | |=(AC,1C,)Ryst, —(ASP)R,, 1, + €, 2Rpyt, I
ARpvta | | - (ACIC,)Rpyt, + AGHR 1, - ey 2Ryst, I 7 |

C. Long Term Data Analysis

For the long term data analysis, the basic model is given by equation (A.1) with
both the orbital and annual aberration signals included. Approximating the orbital motion
of the satellite about the earth and the annual motion of the earth about the sun as circular
orbits, this model for the combined gyroscope and telescope signals becomes

c (NS, +Rys (t—1,) + A, cos@, +1, cosw,t +1, sin 1) cos(p, + O¢p) + C.n
= , ) .

§ +(EW, + Ry (1 —15) + 1 cosw,t +1, sin @, 1) sin(d, + 5¢)

Here, 1, 15, 15, and 1, are the components of the annual aberration signal, which depend on
the right ascension and declination of the guide star, the time at the midpoint of the data
collection, and the inclination of the earth’s orbit relative to the ecliptic. This equation
assumes a circular orbit and is, of course, an approximation, but it is sufficient for
estimating the unmodeled errors. With this model the problem may again be broken up
into a linear first-step part and a nonlinear second step. The 1 x 10 measurement matrix is

t .
H= [cosq},, t—cos¢,, cosg, cosg,,sing, cosd,, cosg, cos g,
A

(C.2)

. t . . . . .
sin r,t—sm¢,,cos¢A sing,, sing, sing,, cosg, s1n¢,:|
A

and the corresponding first step states may be written in terms of the second step states as

T C, (NS, cos ¢ + EW, sin 5¢)
y: C, (Ryst, cos 8@ + R, t, sin 5p)
v, C, (I, cosS¢ + 1, sin 5¢)

Y4 C, (I, cos ¢ +1, sin 5¢)
C A, cosd

y= i: B Ci ?jNSO an o¢ + EW, cos 5¢) (C3)

Y1 | | Co(=Ryst,sin 8¢ + Ryt , cOs 5¢)

Vs C, (=1, sin 8¢ +1, cos 5p)

Yo | | C, (<L, sin 4 +1, cos 5p)

Lol -, A, singp ]

14
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The unmodeled errors for any assumed error in the combined gyroscope and
telescope measurement may be calculated here in the same manner as was done for the
short term data analysis. Measurement errors will produce errors in the 10 first step states
and these errors in turn will produce errors in the 6 second step states. One significant
difference between this problem and the short term data analysis problem is that the
second step states are over determined. The least squares solution is a weighted average
of the scale factor and roll phase offset determined from the various components of the
aberration signals. Over short time intervals, these quantities are almost entirely
determined from the orbital aberration, while over longer time intervals the annual
aberration signal predominates. The appropriate wei ghting coefficients may be found for
any given duration, fraction of the orbit over which the data is collected, and start date.
Assuming that the duration is one year and that the data is collected over half of each
orbit, the weighting coefficients were calculated with a Matlab symbolic math program.
Under these conditions, the errors in the scale factor and roll phase offset are

(7 —8)A, (Ay; cos 8¢ — Ay,, sin 5¢) +
AC, = % +7x’ [(l1 08 ¢ + Ly sin 5p) Ay, — (I, sin 8¢ — 1, cos 5¢) Ay, ] +
+(r? - 6)[(12 cos 8¢ +1, sin 8¢)Ay, — (I, sin 5¢ — l,cos 5¢)Ay9]
(r* —8)A, (~Ay; sin 8p — Ay,, cos 5p) +
ASp = % +7°[(~1, sin 84 +1, cos ) Ay, — (I, cos 5 + I, sin 5¢)Ay, |+
+(x* = 6)|(=L, sin 5 + 1, cos 5¢)Ay, — (I, cos 84 + I, sin ) Ay, |

(C4)
where
D=(z"-8)A," +7°( +1,") +(z? = 6)(1,> +1,7) (C.5)
These equations clearly show the relative weighting of the various components of the
aberration signal in determining the errors in the scale factor and roll phase offset.

While the errors in the scale factor and roll phase offset are entirely determined
from the ys, y4, ys, and ys, Yo, and yjo, the errors in the average misalignment and drift
rate are entirely determined from the other four first step states. In this case, the same
equations apply as those for the short term analysis:

ANS [~ (AC, /C,)NS - (S$)EW +(Ay, / C,)cos 54 — (Ay, /C,)sindp ]
AEW ~(AC, /C)EW +(8P)NS +(Ay, / C, )sin 8p +(Ayy / C, ) cos 5p
ARysta | | =(AC,/C )R, —(8f)Rpyt, +(Ay, / C,)cos 8¢ — (Ay, /C,)sin 5¢
ARpyt, | | =(AC,IC )Ryt + (SR st, +(Ay, /C,)sindp+(Ay, /C,)cosdp

(C.6)
From these sets of equations the errors in the second step states may be calculated from
the errors in the first step states.
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Bias Variations

Bias Variations at the Satellite Roll Frequency

Bias Variations which have a constant amplitude and phase are indistinguishable
from an average misalignment of the gyroscope spin axis. In this case for the long-term
data analysis, the unmodeled error is exactly the same as that for the short-term data
analysis. The unmodeled signal corresponding to an average misalignment in the NS
direction is given by equation (B.5), and the only nonzero unmodeled error is the error in
the average misalignment in the north-south direction, ANS=eys, as shown in
equation (B.6). Similarly, the unmodeled signal corresponding to an average
misalignment in the EW direction is given by equation (B.7), and the only nonzero
unmodeled error is the error in the average misalignment in the east-west direction,
ANS=ens, as shown in equation (B.8). It would be surprising if the result was anything
other than this expected result.

Roll Frequency Bias Variations Which Vary Linearly with Time

Roll Frequency Bias Variations where the amplitude varies linearly with time
have exactly the same time signature as a gyroscope drift rate. The unmodeled errors are
exactly the same as in the case of the short term data analysis. The unmodeled
components of the combined gyroscope and telescope signal are given by equations (B.9)
and (B.11), and the only nonzero unmodeled errors are those for the gyroscope drift rate
in the north-south and east-west directions as shown in equations (B.10) and (B.12).

Roll Frequency Bias Variations Modulated at the Orbital Frequency

For a roll frequency bias variation which is modulated at the orbital frequency,
where the phase of the roll frequency variation corresponds to the expected phase of the
orbital aberration signal, the unmodeled signal is

Z, = e€y5o COS P, cos(g, + 39) (C.7
and the corresponding unmodeled errors in the second step states are (assuming a 1 year
duration)

FACg 1 [ enso ! 4, )Cgf ]

ASp 0

ANs | |-(AC,1C NS +24,17)+2ey, I 7 |
AEW |~ |-(ac, /¢, Ew, (8
ARy | |-(ac,/C, YRy +6l, /1)

ARy | |~(AC,/C, XRyy +61,/7)

where f is the weighting function for the orbital aberration in determining the scale factor
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_ A’ (r? -8)
AN =8+ (1 + L)+ (x? = 6)(1,° +1,0)
Since the orbital aberration signal is considerably smaller than the annual aberration
signal, the relative error in the scale factor is significantly smaller than the relative error

in the orbital aberration signal. Therefore, for the long term analysis these changes are not
significant.

(C.9)

For a roll frequency bias variation which is modulated at the orbital frequency,
where the phase of the roll frequency variation is out of phase with the orbital aberration
signal, the unmodeled signal is

2, = €gyo 08P, sin(g, +5¢) (C.10)
and the corresponding unmodeled errors in the second step states are (assuming a 1 year
duration)

AC, 0
AS¢ - (eEWO /4, )f
ans | _|-asp (ew,) c1n
AEW | | AS$ (NS, +24, /%)= 2epy, I T
ARys | | —ASP(Rys +6l, /1)
| ARy, | | AGH(R,,, +6lL,/7) |

where f is the same weighting function as given above. Since fis considerably smaller
than one, the effects of a bias variation at the orbital frequency would be considerable
reduced for data taken over a one year period. However, if the scale factor and roll phase
offset were determined from the orbital aberration and annual aberration data separately,
then these results would not agree to within their standard deviations.

Roll Frequency Bias Variations Modulated at the Annual Frequency

The annual aberration signal produces a shift in the measured position of the
gyroscopes relative to the guide star which varies in the both of the inertially fixed
directions at an annual frequency. A plot of the annual aberration signal projected onto a
plane perpendicular to the direction to the guide star is an ellipse. For roll frequency bias
variations modulated at the annual frequency there are four possible cases:

(1) If the roll phase and annual modulation corresponds to the annual aberration
signal, then this modulation will produce an error in the scale factor with the
corresponding errors in the position and drift rate.

(2) If the roll phase is shifted by 90°, but the annual modulation corresponds to
the annual aberration signal, there will be an error in the roll phase offset with
corresponding errors in the position and drift rates of the gyroscopes.

(3) If the roll phase corresponds to the annual modulation, but the annual
modulation is shifted by 90°, then there will be an error in parallax signal.
Since parallax signal is assumed to be known for the basic measurement
model, there is not net error is the second step states.

(4) For the case where the roll phase and the annual modulation are both shifted
by 90°, there is no net experimental error.
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Each of these four cases are treated separately below

If the annual modulation of the roll frequency bias variation has the same time
signature as the annual aberration signal then the unmodeled signal has the form
Az = e, [(L; cos g, +1,sing,)cos(g, +5¢)+ (I, cosg, +1, sin g, )sin(g, + 5¢)] (C.12)
With this unmodeled error the corresponding error in the second step states is

ac, 1 [em@-1)
AS 0
ans | [-(ac, 1¢c,)(Ns, +24, 17) .
AEW |~ |-(ac, ¢, )(Ew,) (C.13)
AR s —AC, /Cg (RNS)+(ebA1 /Cg )f(RNS +612/71')
[ARgy | |~AC, /C(Rpy )+ (€4 / C,) f(Rps +61, / 7))

Here, f is the weighting factor for the orbital aberration signal defined above. For a data
set of one year or more, this function f is much less than one. In this case, the error in the
scale factor is approximately equal to eya;, and the fractional error in the drift rates is
approximately equal to fractional error in the scale factor.

If the roll phase of the unmodeled signal is shifted by 90°, the unmodeled signal
becomes

Az = e,5[- (U cos@, +1, sin g, )sin(g, +64) + (I, cos g, +1, sin g, )cos(d, + 59)|(C.14)
the corresponding error in the second step states is

AC, 0 ]
Ad¢g 2 (1= 1)
ans | _|-(asp) (ew,) C.15)
AEW | | +(A8p) (NS, +24, /1) o
AR ¢ _(A5¢)(REW)+(ebA1 /Cg )f(REW +6l, /”)

[ ARy, | | +(A68)Rys)— (e /C,) f (Rys +6l, I 7) |

In this case the annual modulation of the roll frequency variation in the bias produces an
error in the roll phase offset but no error in the scale factor.

The other two errors in the annual modulation of the roll frequency bias variation
occur if the phase of the annual modulation is shifted by 90°. If the unmodeled signal lies
in the same plane as the annual aberration, it is

Az = e,,[(-1, sing, +1, cosg,)cos(, +4) +(~I, sing, +1, cosg, )sin(g, + 39)).
In this case the errors in the second step states are
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[AC, ] [6e,,,(I,1, +1,1,)/ D ]
ASH ems 2(r* =3)(,1, —1,1,) (C, D)
ANS | _|=(AC,/C)NS, +24, /) ~(Ad9) (EW,) C.16)
AEW | | -(AC, /C,YEW,)+(ASp) (NS, +24A, /)
ARys | |=(AC, 1C ) Rys +6l, 1 7) = (ASHNRyy +61,/ 1)+ 6l (e,0,/ C,) I 7
[ARew | |~ (AC, 1C )Ry +6l, / )+ (ASPXRys +6l, /) +6L, (e, / C, )/ 7|

where
D=7’ +1,")+(z* —=6)1," +1,)) + (x> -8)A,)

If the unmodeled signal is 90° out of phase with the annual aberration but in a
plane perpendicular to the annual aberration then the unmodeled signal is
Az = e[~ (-1, sing, +1,cos g, )sin(g, + 5¢) + (—I, sin g, +1, cosg,)cos(d, + 6¢)](C.17)
and the errors in the second step states are

AC, | [ems2® =301, - 1,1)/D ]

ASs | |Bemsllil, +1,1)/(C,D)

ANS | _|=(AC,/C,)(NS +24, /%)~ (AS$)EW 18
AEW | | =(AC, /C,)EW +(AS#)(NS + 24, / )

ARys | | =(AC, ICy)(Rys +6l,17) = (ASP)(Rpy + 61, 17)+6L, (e /C,) I 7

[ARew || = (AC, 1 C )Ry +6L,17)+(ASP)(Rys +6L, /)~ 6l,(e,4s / C, )/ 7 |

Scale Factor Variations
Modulation of the Scale Factor at the Orbital Frequency

If the scale factor in modulated at the orbital frequency, the unmodeled signal is
(NS + Ryt +1,cosg, +1,sing, + A, cosd,)cos(d, + 5p) +] ©.19)
+(EW + Ryt +1 cosg, +1,sing, )sin(g, + 5¢)
This unmodeled errors in the second step states are

Zu = eOCg €os ¢o|:

[AC, T [ eoc, [2/7: +(ANS(* -16) +(4/3m)A,* (12~ ﬂ2))/D] ]
AS$ —eoc, A, EW (2* —16)/(C,D)
ANS | | =(AC /C,)(NS +2A,1 %) = (ASH)EW + (e, / C,)ANS I+ A, 12)
AEW || —(AC,/C,)EW +(ASH)(NS +24,17) + (eoce / C,)AEW I )
ARys || = (AC, 1C,)(Rys + 61,1 )~ (ASH)(Ryyy +6l,17) + 2eoe, / C, ) Rys + 6L,/ 7)1 7
[ ARy | |~ (AC T C )Ry + 61,1 7) + (ASP) Ry + 6L,/ )+ 2egc,  Co )Ry + 61,/ ) 7

(C.20)
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Modulation of the Scale Factor at the Annual Frequency
If the scale factor is modulated as the cosine of the annual frequency, the
unmodeled signal is
NS+ Ryt +1 cosg, +1,sing, + A cosg )cos(d, + 5d) +
Zu — ngA cos ¢a ( NS 1 ¢a 2 ¢a ‘o ¢a.) (¢r ¢) (C21)
+(EW + Ryt +1,cosg, +1,sing,)sin(g, + 6¢p)
and the corresponding errors in the second step states are
[ac, 7 |€cu (> (1 (NS + (21 )A,) + LEW)+ 6/~ 7/ )1, Rys + 1Ry ) + B3/ 2)(1,> + 1°)/D
ASp ecen (* (L, (NS +(2/)A,) —|,EW) — (6/ 7 ~ 7/ 4),Rey —1,Rys))I(C, D)
ANS —(AC, /C, NS +2A,/7) - (ASP)EW + (€cea /C I 12
AEW | |- (AC, /C,)EW +(AS@)(NS +2A, I ) + (€cea /C 512
AR v —(AC, /C X(Rys +6l,/ 1) — (ASP) Ry, +6l, 1 70) - 6(eces /C)Rys +7l, 14)/ 7
ARy | |~ (AC, 1 C )Ry +6l,/7) +(ASP)(Rys +6l, / 7r) —6(eces /C )Ry, +7l, 18)/ n?
(C.22)

These unmodeled errors in the gyroscope drift rates are shown in the figure below:

Error in Drift Rate for an Annual Variation in Scale Factor of 1e-5 (cosine)
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If the scale factor is modulated as the sine of the annual frequency, the unmodeled
signal is

_ (NS +Ryst+1,cosg, +1,sing, + A cosg,)cos(p, +Ip) +
2y =€y SiN ¢{ ) : ] (C.23)
+(EW + Ryt +1,cos g, +1,sing, ) sin(d, + 5¢p)

and the corresponding error in the second step states are
_ACg T —ngA ((z* = 6)(I, (NS + 2/mA)+LEW) /4L Rys + LR, )+ (312)(U1L, +1,1,))/ D

ASg ecen ((* —6)(1, (NS + (2/m)A,) - LEW) + 7/ 4L Ry, — LR\ ) +(3/2)(1 1, = 1,1,)) I(C,D)

ANS | |=(AC,/C )(NS +2A,/7)—(ASP)EW + (ecea I C)(Rys 127) +1,12)

AEW | |- (AC, /C,)EW + (ASP)(NS +2A, I ) + (€cea ! C, )Ry 12m) +1,12)

AR —(AC, /C )(Rys +6l, 1 7) - (ASP) Ry, +6l, /7) + 6(eces /CHNS +2A, /7 +1, 14/ 7
| ARpy | |~ (AC, /C )Ry +6l, /1) +(ASP)(Ry + 61,/ 1) +6(ecy /CHEW +1,/4)/ 7

(C.24)

The unmodeled errors in the gyroscope drift rates are shown in the figure below

Error in Drift Rate for an Annual Variation in Scale Factor of 1e-5 (sine)

0.08 T T T ; T T T
N
7N . yah
0.06 - / \  Errorin East-West 7
/ \ Drift Rate
/ \
0.04 - / \ / Errorin b
/ \ North-South
/ Drift Rate
— 0.02+ { \\ -
3 / \
© / \
E / \
o 0}/ N -
[g / AN
ot N TN e /
5-0.02} \ / .
£ /
o] \ /
i-0.04} | / .
\ /
\ \\ //.'
0.06 [ \/ \\\ // -
\\ /'
\ J
0.08 - % —
01 t I L L 1 i 1
50 100 150 200 250 300 350 400

Start Date, Jan. 1 =1

21




S0895
6/12/03

Linear Drift in Scale Factor
For the case of a linear drift in the scale factor, the unmodeled signal is given by

t | (NS+Ryst+1 cosg, +1,sing, + A, cos@,)cos(d, + 5p) + (C.25)
=e —_— 2D
T e +(EW + Ryt +1, cosg, +1, sing, )sin(g, +59)
Two different Matlab symbolic math programs were used to calculate the unmodeled
errors due to this unmodeled signal. The first program calculated the quantity H'z,,
which involves finding the integrals over the annual period. This calculation resulted in
numberous terms in harmonics of the orbital period. These terms were negected and only
the d.c. terms were used in a second Matlab symbolic math program. Using this program
the unmodeled errors in the second step states were found to be. The results are

AC, [~ ence [Rewtaly + Ryst b, + (212 -6/ 7)1, +1,1,)]/ D

AGS (€rce ! COIRpwt o, = Ryst by +(6/ )AL, — L,1)]/ D

ANS —(AC, /C, NS +24,/ ) = (ASP)EW + (ege, I C,)(Ryst, +61,/7)112

AEW | | =(AC,/C)EW +(ASH)NS +24A, I x) + (erce ! C )Ryt + 61,1 7)112

ARpsty | | =(AC, /C ) (Rysty +6l, 1 7) = (ASH) Ryt +6l, 1 7) + (e, 1 C,YNS +2A, I w61, /)
[ARewts] | ~(AC, 1C,)Ryyt, +61,17)+ (ASP)(Ryst + 6L,/ ) + (e, | C,NEW — 61,/ %)

) (C.26)

where

D=n2( +1,2 +1,7 12 )- 60,2 +1,7 )+ (22 8 )4,

The unmodeled error due to the linear drift in the scale factor is shown in the figure
below:
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Error in Drift Rate for Linear Drift in Scale Factor of 1e-5/year
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These results agree with the results for the short term data analysis if the
components of the annual aberration signal, 1;, are set equal to zero. In that case there was
no unmodeled error in the scale factor or the roll phase offset. However, here there is a
significant unmodeled error in the scale factor and the roll phase offset. These errors, in
turn, contribute to the unmodeled errors in the average misalignment and the gyroscope
drift rate. The dominant contribution to the unmodeled error in the gyroscope drift rate is
the last term in each expression. A plot of the unmodeled error various start dates is
shown in the figure below. The magnitude of this last term, and hence the unmodeled
error in the drift rate may be significantly reduced by adjusting the initial misalignment.

Effects of Temporal Variation in the Roll Phase Offset

The roll phase offset is azimuthal angle between the star tracker and the normal to
each of the four pickup loops around the gyroscopes. Errors in the determination of this
angle will shift the orientation of the measured drift rate so that some of the drift rate in
the north-south direction will appear in the east-west direction and vice versa. To meet
the top level GP-B requirement of 0.5 mas/year this angle must be known to an accuracy
of better than 7.5 x 10 radians (15 arc seconds). This angle may be determined from the
orbital and annual aberration signals because the direction of these effects are known
from the measured velocity and position of the spacecraft.
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Early covariance analyses [5] identified temporal variations in this angle as an
important contribution to the overall experiment error. In this study the temporal
variation was assumed to be a random walk and a Kalman filter was used to model this
temporal variation. In fact, variations in this angle are likely to be thermally driven and
have significant components at the orbital and annual frequencies. Here, the effects of
temporal variations in this angle on the parameters determined from the basic data
analysis are calculated. Note that these errors are worst case numbers since they assume
that the basic data analysis model is not augmented to include these effects. The analysis
of data from the GP-B satellite will, of course, investigate the possibility of these effects.

Phase Shift Variations at the Satellite Roll Frequency

Variations in the roll phase offset at the satellite roll frequency unmodeled signals
having the form

cos g, — (NS, + Rys (t—1) + ay,)sin(@, + @) + ,
za=e,d  ric, (C27)
sing, +(EW, + Ry, (1 —1y) +agy, )cos(d, + 6)
The product of the two terms at the satellite roll phase leads to a rectified dc signal and an
component at twice the satellite roll rate. Since neither of these frequencies are important

to the GP-B data reduction, they produce no si gnificant errors in either the measured
misalignments or drift rates.

Phase Shift Variations at the Orbital Frequency

Phase shifts at the satellite orbital frequency may contribute small errors in the
long term data analysis. This temporal variation in the angle between the star tracker and
the normal to the pickup loop leads to unmodeled signals having the form

cos —(NS,+ R\, (t—1t,)+a,.)sin(¢ +58)+
Zu — e¢o . ¢o Cg ( 0 NS( 0) NS) (¢r ¢) (C28)
sing, +(EW, + Ry, (t —t,) + a,y, ) cos(d, + 5¢)
Here, ans and agw include the usual orbital and annual aberration terms. Terms which
vary at the sine of the orbital phase produce no significant errors in the second-step states.

However, those terms which vary as the cosine of the orbital phase produce the following
errors in the second step states:

ac, 7 [, [4,EW(z* -8)) D ]
86p | |ewl!m+(ANSG? ~8)+ 413714, 6~ 1))/ D]

ANS | _|=(AC, I C,)NS +24,/7)~ (ASPEW +2e, EW Iz

AEW || = (AC, /C,)EW +(ASP)(NS +2A, /)~ 2e, (NS + 1A, 14)/ 7

ARys | | =(AC, 1C,)(Rys + 6L, 170) ~ (ASP)(Rpyy +61, 1)+ 2e, (Ryy +61, /7)1 7
AR ] = (AC, 1€, ) Ry +61,17) + (ASBY Ry + 61, 17) = 26, (Rys +61, 1) 7 |

(C.29)
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Phase Shift Variations at the Annual Frequency

If the roll phase offset varies at an annual frequency, the unmodeled signal is
—(NS, + R\ (t—1t,)+ i +0¢) +
2, =e, C.Os¢a C (NS, + Rys (t = 1,) + ays )sin(g, + 5¢) (C.30)
sing, | ¢ +(EW, + Rpy, (1~ 1)) + agy, ) cos(g, + 6p)

In the first case, where the roll phase offset is modulated as the cosine of the annual
frequency, the unmodeled errors in the second step states are

(C31)
The unmodeled error in the gyroscope drift rate due to a variation in the roll phase
reference at he cosine of the annual period is shown in the figure below.

Error in Drift Rate for a 2 arc sed Annual Variation in Roll Phase Reference (cosine)
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'aC, ] €0 C, (2% (~1,(NS + 2/ 7)A,) + 1, EW) + (6/ 7 — 71 4Y Ry —1,Rys))/ D
AS €u (T* (LEW +1,(NS +(2/ 1)A,) +(6/ 7 — 21 4)(1,Rys +1,Rpy ) + G/, +1,*) /D
ANS —(AC, IC, )(NS +24A, 1 7) ~ (ASP)EW +e,,1,12
AEW || = (AC, /C,)EW +(ASHNS +24, i) —e, 1, 12
ARys | | =(AC, 1C)(Rys +6,17) - (ASP)(R,, +61, 1 7) 6e,4(Rey +7l, 14)/ 7
(AR gy | |~ (AC, /C )Ry +61, /) + (ASP) Ry + 61,/ ) +6e,,(Rys + 7l 14) [ 72
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In the second case, where the roll phase offset is modulated as the sine of the
annual frequency, the unmodeled errors in the second step states are

AC, T €44C (T =) LEW ~1,(NS +2A, 1))+ 7/ 40, Rys ~ Ry ) + 31 )Ly ~11,)) / D]
ASp | | €sal(T® ~O),(NS +24,17) +L,EW) = /4Ry + LRy ) + (31 2)(U,L, +1,1,))/ D
ANS | | =(AC,/C)(NS+24,17)~(ASH)EW +e,,(Ryy /7 +1,)12
AEW || =(AC,/C,)EW +(ASH)(NS +24, IT)=e;,(Rys I +1,)12
ARys | | =(AC, /C)(Rys +6L, 1 7) ~ (ASP) Ry, +6l, /1) +6e, o (EW —1,/8)/

[ARew || ~(AC, 1C, )Ry +61,17)+(ASH) (R, +61, 1 7) —6e, (NS+24,/z-1,14)/x |

(C.33)

These unmodeled errors in the gyroscope drift rates are shown in the figure below
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Linear Drift in the Phase Shift

A linear drift in the measured roll phase will produce an unmodeled error in the
output of the combined gyroscope and telescope signals given by

—— {— (NS, + Ry (t —t,) + a, ) sin(g, + 5p) + } (©.34)
+(EW, + Ry, (£ —1,) + ay, )cos(d, + 6¢)
and the corresponding errors in the second step states are i
rac, 1 [enC [~ Rewtaly + Ryst o1y + 6/ 21,1, —L1,) + 2- 7)1, A, ]/ D
ASP eonl= Rewtuly — Rygt,l, +(6/ =21 2)(U1, +1,0,) - (2 -mLA, /D
ANS —(AC, /C,)(NS +24,/ 7) ~ (ASH)EW + e, (Rpt, +6l, /7)/12
AEW | |~(AC,IC,)EW +(ASH)(NS + 24,/ 7) —eyq (Ryst, + 6L, / 7)/12
ARysty | | =(AC, IC ) Ryst, +6l,17) = (ASB) Ryt + 61, 1 70) + e;n(EW —6l, /%)
| ARy, | |~ (AC, /C )Ryt + 61,/ ) + (ASP)Ryst , + 61,/ ) — e, (NS + 24y | 7 — 6, [ 7 )|
(C.35)

The calculated unmodeled errors in the gyroscope drift rates are shown in the figure
below:

Error in Drift Rate for a 2 arc sec/year Linear Drift in Roll Phase Reference
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D. Conclusion

These results give explicit expressions for unmodeled errors due to variations in
the bias, scale factor, and roll phase offset at the critical frequencies. They may be used to
evaluate the unmodeled errors and as a criteria for when the data analysis model needs to
be augmented to include additional observable effects.
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