

W. W. Hansen Experimental Physics Laboratory STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 - 4085

Gravity Probe B Relativity Mission

Verification of Gas Flow Requirements in Payload Specification

S0545, Rev. -

October 16, 2001

Approved by: B. Crarke Approved by: 16 16 0 1 Date	·
Approved by: R. Brumley Date	Approved by: R. Whelan Date
Approved by: Lu/3/0 M. Keiser Date	Appreyed by: B. Muhlfelder Date
ITAR Assessment Performed Tom Langenstein	/ 31 0 → TAR Control Req'd? □ Yes ☑ No

Purpose:

This document provides the supporting analysis in verification of the following PLSE-12 requirements.

paragraph #		Requirement	Method	Lower Level Compliance data
3.7.1.4.8.2	Spin-Up Exhaust Line Gas Conduction	The pressure drop along the spin-up exhaust plumbing line assembly from its interface with the gyroscope to its interface with the probe shall be <= 40 Pa assuming the pressure of 60 Pa at the SIA/probe interface (Section 3.7.2.3.6), the flow rate given in Section 3.2.1.7.1 of He-4 or He-3, and a temperature of <= 7 K.	A	compliance data
3.7.2.3.3	Gas Flow Rate	The flow rate of the spin-up gas at the interface shall be as per 3.2.1.7.1.	A,T,S	Probe C AR, GPB- 100269 v3, 15 May 98 (N/A)

Results:

PLSE-12 3.7.1.4.8.2

The pressure drop along the spin-up exhaust plumbing line between the gyro interface and the SIA/probe interface assuming the conditions of paragraph 3.7.1.4.8.2 above is calculated to be less than **4.43 Pa** which is less than 40 Pa, thus **PLSE-12 3.7.1.4.8.2** is verified by analysis. The spin-up/exhaust plumbing from the gyro to the SIA/probe interface is identical in design for all four gyros in the SIA (see drawings 22879 and 23184).

PLSE-12 3.7.2.3.3

PLSE-12 3.2.1.7.1 specifies the gas flow rate necessary to spin a gyroscope to 80 –180 Hz must be <= 950 scc/m. Gyro #3 (FQH44/96FH09) was spun in Probe C per P0522 (Op # 1655) to 174 Hz asymptotic using a helium flow rate of 725 scc/m. S0579 estimates the on-flight spin speed for gyro #3 to be 131 Hz. 131 Hz is in the range 80 – 180 Hz and 725 scc/m is less than 950 scc/m thus PLSE-12 3.7.2.3.3 is verified for Gyro #3 by test and analysis.

Gas flow data collected during Payload Verification II per P0519 (Op #1644, 1647, 1751 and 1754) shows that all science gyros in Probe C will support a flow rate of 725 scc/m. Furthermore, the spin-up gas / SIA interfaces for Gyros #1, 2 and 4 are identical in design to those of Gyro #3 (see drawings 22886 and 23183). S0579 argues by similarity that Gyros #1, 2 and 4 will also spin to 80 – 100 Hz on-flight using a flow rate of 725 scc/m. PLSE-12 3.7.2.3.3 is verified for Gyros #1, 2 and 4 by test, analysis and similarity.

Analysis:

PLSE-12 3.7.1.4.8.2

The spin-up exhaust plumbing line running from the gyro to the SIA/probe interface is effectively a 0.218" diameter titanium tube 3.329" in length with a 48.5-degree bend on each end. See drawings 22879 and 23184 for details. Viscous flow through this tube is given approximately by the Poiseuille equation:

$$Q = \frac{\pi d^4}{256l\eta} (P_1^2 - P_2^2)$$

(equation I)

Q = flow rate d = diameter of the tube I = length of tube $P_1 = inlet$ pressure $P_2 = outlet$ pressure $\eta = viscosity$ of the gas From the kinetic theory of gasses, the viscosity of a gas in this tube near the outlet pressure specified in PLSE-12 3.7.1.4.8.2 (viscous flow regime) is given as:

$$\eta = \frac{0.499(4mkT)^{\frac{1}{2}}}{\pi^{\frac{3}{2}}d_0^2}$$

(equation II)

 η = viscosity

d₀ = molecular diameter

m = molecular mass

T = temperature

k = Boltzman's constant

Solving for $\Delta P=P_1-P_2$ gives:

$$\Delta P = \sqrt{Q \frac{256 l \eta}{\pi d^4} + P_2^2} - P_2$$

(equation III)

Using equations II and III and the ideal gas law to convert helium gas flow at STP to helium gas flow at temperature T gives ΔP (T=5K) = 2.71 Pa and ΔP (T=7K) = 4.43 Pa, where ΔP = P_1 - P_2 . Also note that given all other parameters, P_1 can be written as a monotonically increasing function of T, so ΔP (T=7K) sets the upper limit of ΔP in the range T=5 to 7 K. Note: expansion of gas (out of the spin-up channel) cools the gas so the 7 K estimates are worst case.

Shown below are spreadsheet entries calculating ΔP at T=7 K for helium-4. If helium-3 is used, the only parameter that will change significantly is the mass, which enters into equation III for ΔP through the viscosity. Namely, $\eta_{\text{He-3}} \approx \sqrt{3}/4$ $\eta_{\text{He-4}}$, thus $\Delta P_{\text{He-4}}$ (T=7K) still sets the upper limit.

k m T d0 1 atm max_flow flow Q L d	4.114E-02 Pa-m/3/s 8.456E-02 m 5.540E-03 m	Boltzman's constant mass of helium-4 atom temperature diameter of helium atom (Van der Waal's equivalent) atmospheric pressure in Pa maximum flow at STP flow equivalent to 950 scc/m in SI units flow equivalent to 950 scc/m at temperature T in SI units length of tube diameter of tube pressure at tube outlet
---	--	---

Page 3 of 4

PLSE-12 3.7.2.3.3

Gas flow data with the rotor delevitated and resting on the spin-up channel (R-half up) was collected for each gyroscope during Payload Verification II per P0519 (Op #1644, 1647, 1751 and 1754) and is summarized below. The gyroscope spin-up gas interfaces were shown to support up to 750 scc/m at the anticipated on-flight spin-up gyroscope temperature of 6.5 +/- 0.5 K. This is a more aggressive flow rate than the anticipated on-flight 725 scc/m. The spin-up pressure data (pressure head) and exhaust pressure data are very similar between gyros 1 and 2 and between gyros 3 and 4. The difference in the helium bath temperature accounts for the slight difference in pressures between the between the gyro 1 and 2 data and gyro 3 and 4 data. The spin-up gas interfaces for all the science gyros behave similarly at flight-like flow rates and temperatures with the rotors delevitated.

The gas flow data from the asymptotic spin speed test done during Payload Verification II on gyro #3 per P0522 (Op #1655) is shown on the last line. This pressure data (at 725 scc/m with the rotor levitated) is very similar to the previous 'rotor delevitated' data taken at 750 scc/m. The spin-up gas interfaces for gyro #3 behave similarly whether the rotor is delevitated or is levitated and placed in the spin-up position in the housing (off center toward the spin-up channel).

<u>Gyro</u> 1 2 3 4	Flow (scc/m) 750 750 750 750 750	Gyro temp (K) 6.82 6.53 6.24 6.70	Filter temp (K) 12.92 12.38 8.88 7.49	P _{SPIN-UP} (torr) 49.11 48.88 45.96 45.66	P _{EXHAUST} (torr) 0.1613 0.1602 0.1564 0.1559	~ Bath temp (K) 1.8 1.8 4.2 4.2
3	725	6.58	10.47	45.53	0.1543	4.2