Gravity Probe B Program
Procedure No. P0776 Rev. -
Operation Order No. ________

GRAVITY PROBE B
PROCEDURE FOR
PAYLOAD VERIFICATION

CONFIGURE PAYLOAD FOR TRANSPORT TO ACOUSTIC TEST
P0776 Rev. -
1/5/01

Prepared by: M. Taber

Approvals:

<table>
<thead>
<tr>
<th>Program Responsibility</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Murray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryo. Test Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Taber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload Test Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Ross</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-B Quality Assurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Muhlfelder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload Technical Manager</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
Level of QA required during performance of this procedure:
X Stanford QA Representative
___ Government QA Representative

All redlines must be approved by QA
Revision Record:

<table>
<thead>
<tr>
<th>Rev</th>
<th>Rev Date</th>
<th>ECO #</th>
<th>Summary Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acronyms and Abbreviations:

<table>
<thead>
<tr>
<th>Acronym / Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAS</td>
<td>SMD Data Acquisition System</td>
</tr>
<tr>
<td>FDAS</td>
<td>Facility Data Acquisition System (used to monitor the Probe)</td>
</tr>
<tr>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>GT</td>
<td>Guard Tank</td>
</tr>
<tr>
<td>LGS</td>
<td>Leakange Gas System</td>
</tr>
<tr>
<td>MT</td>
<td>Main Tank</td>
</tr>
<tr>
<td>NBP</td>
<td>Normal boiling point</td>
</tr>
<tr>
<td>PPMS</td>
<td>Probe Pressure Measurement System</td>
</tr>
<tr>
<td>RGA</td>
<td>Residual Gas Analyzer</td>
</tr>
<tr>
<td>SMD</td>
<td>Science Mission Dewar</td>
</tr>
</tbody>
</table>
Table of Contents

A Scope... 4
B Requirements Verification: .. 4
C Configuration Requirements .. 4
D Hardware Required ... 4
E Software Required: ... 5
F Procedures Required ... 5
G Equipment Pretest Requirements: ... 5
H Personnel Requirements .. 5
I Safety Requirements ... 6
J General Instructions ... 6
K References and Applicable Documents: ... 6
L Operations ... 7
A **Scope**
This procedure effects the preparation of the Payload (Probe-C integrated with the SMD) for shipment to the Payload Acoustic Test. The shipping configuration is specific to this test and is not necessarily appropriate for other transport situations.

B **Requirements Verification:**
N/A

C **Configuration Requirements**
Probe-C is integrated into the SMD per drawing 65113-1C34292 and oriented with the +Z axis vertical in the Assembly and Test Stand. The Main Tank is at NBP and venting through the Gas Module valves EV-9 and ERV-1. The Guard Tank is either empty of liquid and being maintained at a pressure slightly above atmospheric by an external source of helium gas, or is at least 15% full of liquid helium. The Well and Probe are both evacuated, and the Probe Pressure Measurement System (PPMS) is installed and functional. The Probe He partial pressure as measured by the RGA at the PPMS should be $<5 \times 10^{-6}$ torr. The fill line burst disk port has special double relief valve and pressure transducer GSE installed, and the thruster vent port likewise has special GSE consisting of an adapter flange, pressure transducer and shutoff valve. The Fill Bayonet (B3, see Fig. 1) has a standard GSE Fill Cap Assembly installed.

D **Hardware Required**

D.1 Flight hardware required

<table>
<thead>
<tr>
<th>Description</th>
<th>No. Req’d</th>
</tr>
</thead>
<tbody>
<tr>
<td>65113-1C34292 Probe-C / Science Mission Dewar Assembly</td>
<td>1</td>
</tr>
</tbody>
</table>

D.2 Commercial test equipment:

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Serial Number</th>
<th>Calibr. Exp. Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varian He Leak Detector</td>
<td>960</td>
<td>DRAD6002</td>
<td>N/A</td>
</tr>
<tr>
<td>Varian Calibrated He leak for LD</td>
<td>K3264302</td>
<td>LLF0059</td>
<td>5/30/01</td>
</tr>
</tbody>
</table>

D.3 Mechanical/Electrical special test equipment: N/A

D.4 GSE / hardware:
Note: Items in parentheses are for reference, their use being described in a called procedure.

<table>
<thead>
<tr>
<th>Description</th>
<th>No. Req’d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circle Seal relief valve, 532T1-4MP-5</td>
<td>1</td>
</tr>
<tr>
<td>Circle Seal relief valve, 532T1-4M-5</td>
<td>1</td>
</tr>
<tr>
<td>Endevco piezoresistive pressure transducer, 8510C-50</td>
<td>1</td>
</tr>
<tr>
<td>Rubber stopper, size TBD</td>
<td>1</td>
</tr>
<tr>
<td>VCR Tee</td>
<td>1</td>
</tr>
<tr>
<td>4’ x 4’ HEPA filter downflow unit</td>
<td>1</td>
</tr>
<tr>
<td>Main Tank vent cap GSE (bayonet cap with Circle Seal 532B-4MP- 2 and 532B-4M-.5 relief valves in series; see Fig. 3)</td>
<td>1</td>
</tr>
<tr>
<td>(Utility Turbopump System, UTS)</td>
<td>1</td>
</tr>
</tbody>
</table>
D.5 Tools

<table>
<thead>
<tr>
<th>Description</th>
<th>No. Req’d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dewar Protective Cover, 06887-8A02673GSE-101</td>
<td>1</td>
</tr>
</tbody>
</table>

D.6 Expendables

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol or isopropanol</td>
<td>A/R</td>
</tr>
<tr>
<td>Lint-free wipes</td>
<td>A/R</td>
</tr>
</tbody>
</table>

E Software Required:

N/A

F Procedures Required

(Note: All the following should be available; however, depending on circumstances, not all will be needed.)

- P0213, SMD Connection of High Vacuum Module
- P0214, Stop Pumping SMD Vacuum Shell / Disconnect Vacuum Module
- P0442, Main Tank Fill with Guard Tank Precool – Main Tank at NBP
- P0564, Pump Out Probe-C with UTS
- P0566, Discontinue Pump-Out of Probe C with UTS
- P0595, Reduce Level in MT (Liquid at NBP)
- P0613, Repump Well with Probe Installed
- P0645, Fwd. Rev. C SRE and ECU Engineering Unit Removal
- P0648, Main Tank Fill After Uprighting – Guard Tank Initially Empty
- P0649, Probe Pressure Measurement System Removal
- P0675, Disconnect MT Vent Line from Gas Module – MT at NBP
- P0677, Disconnect GT Vent Line from GM
- P0788, Disconnect Electrical GSE from SMD
- P0789, Connect TM&A to SMD
- P0794, Drain GT into MT
- P0795, Install Fill Line Burst Disk on SMD
- P0797, Pressurize the Guard Tank
- P0799, Prepare and Verify Probe Configuration for Shipment to Acoustic Test

G Equipment Pretest Requirements:

N/A

H Personnel Requirements

This procedure is to be conducted only by certified personnel. Persons certified to perform this procedure are Mike Taber, Dave Murray, Jim Maddocks, and Tom Welsh. Persons authorized to be Test Director for this procedure are Mike Taber, Dave Murray or Jim Maddocks.
I Safety Requirements
These operations are to be performed in the vicinity of and on flight equipment. All heavy tools or other objects that could drop onto flight equipment and cause damage shall be tethered. Safety requirements in procedures called by this procedure shall be observed.

J General Instructions
J.1 QA Notification: The ONR representative and SU QA program office shall be notified 24 hours prior to the start of this procedure. Upon completion of this procedure, the QE Manager will certify her concurrence that the effort was performed and accomplished in accordance with the prescribed instructions by signing and dating in the designated place(s) in this document.

J.2 Redlines can be initiated by Mike Taber and must be approved by QA.

J.3 A Quality Assurance Representative designated by D. Ross shall review any discrepancy noted during this procedure, and approve its disposition. Discrepancies will be recorded in a D-log or a DR per Quality Plan P0108.

J.4 Workers inside the HEPA filter downflow unit should use proper clean room garb consistent with Class 1000 conditions.

K References and Applicable Documents:
N/A
L. Operations

L.1 Verify Appropriate QA Notification
 o Verify SU QA program office notified.
 Record: Individual notified __________________,
 Date/time ________/_______.
 o Verify ONR representative notified.
 Record: Individual notified __________________,
 Date/time ________/_______.

L.2 Install the scaffold and scaffold platform if not already installed.

L.3 Remove / verify removed any test forward electronics still mounted on the SMD.
 For example, if the SRE electronics are still installed, perform the relevant part of
 P0645, Fwd. Rev. C SRE and ECU Engineering Unit Removal. Record
 Op(s). No(s):________________________.

L.4 Remove, verify removed, non-flight forward electronics brackets (excepting any
 bracket supporting caging GSE) per engineering instruction.

L.5 Perform Procedure P0799, Prepare and Verify Probe Configuration for
 Shipment to Acoustic Test. Record Op. No.:____________. Note: Do not
 disconnect the FDAS instrumentation cables from the Probe at this time. This
 will be done at the same time the SMD instrumentation cables are disconnected
 (L.23).

L.6 Verify that the He partial pressure as measured by the RGA on the PPMS is <5
 x 10^{-6} torr and record: _______________torr If the He partial pressure does
 not meet this requirement, Perform P0564, Pump Out Probe-C with UTS.
 Record Op. No.:____________

L.7 Check pressure in the SMD vacuum jacket:

L.7.1 Turn on the Ion Pump and record time /
 date:________________________

L.7.2 Initiate [Monitor Data] on the DAS using channel no. 99.

L.7.3 Wait until the pressure stabilizes and record vacuum jacket pressure
 (IP):________________________torr.
L.7.4 Exit [Monitor Data] and collect data with [Set Data Interval] (use existing data interval).

L.7.5 After the data cycle is complete, turn off the Ion Pump.

L.8 If the pressure measured by the Ion Pump is >8 x 10^{-6} torr, or it has been over a month since the SMD vacuum shell has been pumped on, or the Test Director determines that it is necessary, pump on the on SMD vacuum jacket using P0213, Connect Vacuum Module / Pump on SMD Vacuum Shell. Record the Op No.:____________.

L.9 Record the liquid levels in the Main Tank and Guard Tank:
Main Tank:__________%
Guard Tank:__________%

L.10 If the Main Tank is <40% full, fill Main Tank to 50 –52%:
 o Guard Tank empty: Perform P0648, Main Tank Fill After Uprighting – Guard Tank Initially Empty. Record Op. No.:____________.
 o Guard Tank >15% full: Perform P0442, Main Tank Fill with Guard Tank Precool – Main Tank at NBP. Record Op. No.:____________

Note: Guard Tank should not be filled more than necessary.

L.11 Prepare the Guard Tank for transport:
 o Guard Tank not more than 15% full: Perform P0797, Pressurize Guard Tank. Record Op. No.:____________
 o Guard Tank >15% full: Perform P0794, Drain Guard Tank into Main Tank, leaving Guard Tank in a regged up condition. Record Op. No.:____________. Note: The pressurization line used to reg up the Guard Tank should be long and flexible enough to allow the Payload to be lifted and translated to the Tilt Dolly when it is stationed on the west side of the FIST Lab.

L.12 If Main Tank is >52% full, perform P0595, Reduce Level in MT (Liquid at NBP) to achieve 50 – 52%. Record Op. No.:____________.

L.13 Perform P0795, Install Fill Line Burst Disk on SMD. Record Op. No.:____________.

L.14 If the Probe is being pumped by the UTS, wait until the He partial pressure indicated by the RGA on the PPMS meets the requirement specified in L.6, and then perform P0566, Discontinue Pump-Out of Probe C with UTS. Record Op. No.:____________
L.15 If the Well has not been pumped on since the last MT/GT transfer or since any other operation known to introduce He gas into the Well (such as caging Gyro 2), perform P0613, \textit{Repump the Well with the Probe Installed}, through section G.4 (Pump on Well).

L.16 If the Well does not need to be pumped but the Well Vent Manifold is still installed, perform P0613, skipping sections G.4 and G.6, to remove the Well Vent Manifold.

Record Op. No.:_____________.

L.17 Verify that the Well Relief Valve (RV2, 5833420-101) is capped per 5833500.

L.18 Verify that the Well Orbit Vent (pyrovalve) Assembly (PV3, 5833903-101, Rev. A) is mounted on the SMD per 5833500, Rev. C with all openings covered with plastic caps. (Note: The bracket depicted in these drawings is obsolete flight hardware which is acceptable for Payload Acoustic Test but not for flight.) Tape the caps securely in place.

L.19 Install new Thruster Vent GSE:

L.19.1 Initiate [Monitor Data] on the DAS using channel no. 49 (Endevco on the Thruster Vent). Verify that the raw output voltage is at least 1.45 V, corresponding to a differential pressure of at least 15 torr above atmospheric. If this is not the case, close EV-9 to achieve this pressure.

L.19.2 Terminate the [Monitor Data] and disconnect the Endevco transducer from the readout electronics.

L.19.3 Remove the thruster vent GSE assembly from the thruster vent port and immediately install a rubber stopper of appropriate size in the port.

L.19.4 Using the VCR tee, assemble two 5 psid relief valves (Circle Seal 532T1-4MP-5, and 532T1-4M-5) together with a 50 psia Endevco pressure transducer (see Fig. 3) on the flange which was removed from the thruster vent port.

L.19.5 Start up the leak checker and confirm calibration.

L.19.6 Spray leak check the new thruster vent assembly. Leak rate should not exceed 10^{-6} sccs, He.

\begin{align*}
\text{Record background:} & \quad \underline{\text{sccs}} \\
\text{Record leak rate:} & \quad \underline{\text{sccs}}
\end{align*}

L.19.7 Remove the rubber stopper from the vent port and immediately install the new GSE manifold. Allow the overpressure from the Main Tank to purge the manifold briefly before sealing the flange to the thruster port.

L.19.8 Connect the new Endevco pressure transducer to the readout electronics. Modify the readout electronics and DAS setups as necessary to read out this transducer, and verify proper operation.
L.19.9 Reopen EV-9 if was closed in step L.19.1.

L.20 Prepare Guard Tank vent line for transport:

L.20.1 If the Guard Tank vent line is connected to the Gas Module, perform P0677, *Disconnect Guard Tank Vent Line from Gas Module*. This will leave the short GT vent line installed along with GTV-V and the Guard Tank Vent Cap Assemblies. Record Op. No. of the last performance of P0677 (or of this performance if it is needed): ____________.

L.20.2 Provide temporary support for the GTV-V assembly.

L.21 Prepare Main Tank Vent (B1):

L.21.1 Perform P0675, *Disconnect Main Tank Vent Line From Gas Module – Main Tank at NBP*, with the following exceptions and options:

L.21.1.1 Record P0675 Op. No.: ____________;

L.21.1.2 At G.6.2 of the procedure, select the option of disconnecting at the bayonet B1 (at SV-9);

L.21.1.3 Install the Main Tank vent cap specified in D.4 (Fig. 3) at SV-9 instead of the MTVC specified in P0675;

L.21.1.4 Skip the GT/MT manifold option at G.6.8.

L.21.1.5 Record the initial MT pressure as by the Thruster Vent Endevco (CN 49): ____________ torr. Date/time: ________________

L.21.2 Observe the SMD temperatures (particularly at STA 200 and at the top of the lead bag) and pressures (particularly the GT pressure) until the MT is venting through the MT vent cap relief valves at ~2.5 psid. Record the venting MT pressure as measured by the Thruster Vent Endevco (CN 49): ____________ torr. Date/time: ________________

L.22 If the Well is being pumped on and at least 24 hrs. have elapsed since actual pumping was initiated (or since the last event which introduced helium into the Well, whichever was later), complete P0613 (initiated at L.15), *Repump the Well with the Probe Installed*, starting at section G.5 and selecting option G.7, which provides for the removal of the Well Vent Manifold.

L.24 Perform P0788, *Disconnect Electrical GSE from SMD*. Record Op. No.: ____________.
L.25 Make a comment in the FDAS that the FDAS is being shut down in preparation for shipment to the payload acoustic test, and disconnect the cables from the FDAS to the Probe instrumentation connectors per P0799, *Prepare and Verify Probe Configuration for Shipment to Acoustic Test*. (See step L.5, above)

L.27 Visually inspect the Probe Cross Flange and Top Hat regions as well as the SMD Top Plate region to ensure that no transport preparation issues involving the forward part of the Payload were overlooked.

L.28 Using ethanol or isopropanol and lint-free wipes, wipe down all accessible surfaces of the SMD (down to the top of the scaffold platform) and Probe.

L.29 Install the forward portions of the Payload Protective Cover (parts 8A02673GSE-106, -105, -104) and external bagging that require access to the forward part of the Payload per drawing 8A02673GSE, Rev A and engineering instruction.

L.30 Remove the scaffold platform and the remaining portions of the scaffold per engineering instruction.

L.31 Remove the flooring and stanchions around the SMD.

L.32 Install / verify installed 90-deg. elbows with plastic dust covers on burst disks BD5A&B and BD7A&B. The elbows should be pointed in the aft direction while the SMD is still mounted in the Assembly and Test Stand.

L.33 Inspect the vacuum jacket pyrovalve (PV1) to verify that all openings are covered with dust caps. Tape the dust caps securely in place.

L.34 If the Vacuum Module pumping line is connected to the SMD vacuum shell pumpout port (PO), perform P0214, *Stop Pumping SMD Vacuum Shell / Disconnect Vacuum Module*. Record Op. No.:_____________.

L.35 Inspect the Ion Pump (IP) to verify that the high voltage cable has been removed and that the shield and magnet are securely installed.

L.36 Inspect the SMD fill bayonet (B3) to verify that the standard fill cap assembly (ref., e.g., Figure 3 of P0442) is installed. Disconnect the pumping line, if connected, and install a KF cap where the pumping line connects.

L.37 Using ethanol or isopropanol and lint-free wipes, wipe down all accessible surfaces of the SMD down to the aft dome.

L.38 Install the three lower side panels of the Payload Protective Cover (part 8A02673GSE-103) and external bagging per drawing 8A02673GSE, Rev A and engineering instruction.
L.39 During Lockheed Martin procedure PAT-001, when the Payload is being lifted clear of the Test and Assembly Stand, install the bottom enclosure of the Payload Protective Cover (part 8A02673GSE-102) per engineering instruction.

Operation completed.
Completed by: ______________________

QA witness: ______________________

Date: ______________________

Time: ______________________

QA Program Engineer ______________________ Date ______________________

Payload Test Director ______________________ Date ______________________
Figure 1 (Note: SMD valve references in the text have an "S" prefix.)

RAV 1 External fill of Main Tank
2 External fill of Guard Tank, Vent of fill line
3 Porous Plug bypass, Main Tank vent
4A&B Main tank vent to thrusters
5 External fill of Well
6A Well fill with FEP
6B Redundant shut-off for 6A&7
7 Internal fill of well
B1 Bayonet valve for MT vent
B2 Bayonet valve for GT vent
B3 Bayonet valve for fill line
PV1 Pyro valve for VS
PV3 Pyro valve for well
PO Pump out port
IP Ion pump
EVL1 Emergency Vent Line 1
EVL2 Emergency Vent Line 2

V8 Manual valve for bayonet tank fill
V9 Internal manual for MT bayonet vent
V10 Manual for MT bayonet vent
V12 Manual for MT vent to thrusters
V13 Internal manual for tank fill line
RV1 Relief valve for fill line
RV2 Relief valve for well
BD1A&B Burst discs (cold) on MT
BD7A&B Burst discs (warm) on MT
BD5A&B Burst discs (warm) on VS
B2 Burst disc (cold) on GT
BD3 Burst disc (warm) on fill line
F1 Well fill line filter
F2 Tank fill line filter
F3 Well pyrovale filter
F4 (3) Axial lok tube filter - top
F5 (15) Axial lok tube filter - bottom

△ Installed only if the well will contain He II during launch.
Figure 2. Cap assembly for Main Tank Thruster Vent.

Figure 3. Cap assembly for Main Tank Vent Bayonet, B1.