GRAVITY PROBE B
PROCEDURE FOR
SCIENCE MISSION DEWAR

DISCONNECT GUARD TANK VENT LINE
FROM GAS MODULE
THIS DOCUMENT CONTAINS THE USE OF HAZARDOUS MATERIALS
ECO# 1333
January 23, 2002
PO677B

Revised by:
______________________Date_____ __________________________Date_____
Ned Calder
Cryogenic Test

Checked by:
______________________Date_____ __________________________Date_____
Dave Murray
Cryogenic Test

Approvals:
______________________Date_____ __________________________Date_____
Dorrene Ross
Quality Assurance

______________________Date_____ __________________________Date_____
Harv Moskowitz
LMMS Safety

______________________Date_____ __________________________Date_____
Sasha Buchman
Program Manager

______________________Date_____ __________________________Date_____
Mike Taber
Test Director
REVISION RECORD

<table>
<thead>
<tr>
<th>REVISION</th>
<th>ECO</th>
<th>PAGES</th>
</tr>
</thead>
</table>
| A | 1338 | Added Hazardous Materials comment to title Page.
| | | Added QA inspection points
| | | Added minor redlines
| | | Added step to verify purity of helium gas
| | | Modified sections B.2.2. and B.3.1 to reflect new
| | | location of SMD in Lockheed Martin building 205
| | | Added sections B.2.3 "Other Hazards", B.3.2
| | | "Hardware Mishap", B.3.3 "Contingency Response".
| | | Updated Qualified Personnel List
| | | Added EM SYS229
| | | Added Appendix Contingency Responses
| | | Added pre/post checklist tables
| | | Updated Figures
| | | Added Valve tables
| B | 1333 | Updated Scope
| | | Updated Figures
| | | Modified sections B.2.2. and B.3.1 to reflect
| | | location of SMV in all Lockheed Martin buildings
| | | Updated monitored channels and data to reflect
| | | installation of the flight ECU
| | | Add minor redlines
| | | 9/24/01
| | | 1/23/02

Table of Contents

A. SCOPE.. 1

B. SAFETY .. 4
 B.1. Description of Potential Hazards... 4
 B.2. Mitigation of Potential Hazards ... 4
 B.3. Injuries ... 4

C. QUALITY ASSURANCE ... 4
 C.1. QA Notification ... 4
 C.2. Red-line Authority ... 4
 C.3. Discrepancies ... 4

D. TEST PERSONNEL .. 4
 D.1. Personnel Responsibilities .. 4
 D.2. Personnel Qualifications .. 4
 D.3. Qualified Personnel .. 4

E. REQUIREMENTS .. 5
 E.1. Electrostatic Discharge Requirements .. 5
 E.2. Lifting Operation Requirements .. 5
 E.3. Hardware/Software Requirements .. 5
 E.4. Instrument Pretest Requirements ... 5
 E.5. Configuration Requirements .. 6
 E.6. Optional Non-flight Configurations ... 7

F. REFERENCE DOCUMENTS .. 8
 F.1. Drawings .. 8
 F.2. Supporting documentation ... 8
 F.3. Additional Procedures ... 8

G. OPERATIONS ... 10
 G.1. Verify Appropriate QA Notification ... 10
 G.2. Leak check Guard Tank vent cap ... 11
 G.3. Verify Configuration Requirements ... 11
 G.4. Record Initial Configuration and Conditions ... 13
 G.5. Disconnect Vent Line – Liquid in Guard Tank .. 16
 G.6. Disconnect Vent Line – Guard Tank Depleted .. 17
 G.7. Establish Final Configuration .. 18
List of Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG-x</td>
<td>Gauge x of Gas Module auxiliary section</td>
</tr>
<tr>
<td>AMI</td>
<td>American Magnetics Inc.</td>
</tr>
<tr>
<td>ATC</td>
<td>Advanced Technology Center</td>
</tr>
<tr>
<td>Aux</td>
<td>Auxiliary</td>
</tr>
<tr>
<td>AV-x</td>
<td>Valve x of Gas Module auxiliary section</td>
</tr>
<tr>
<td>Bot</td>
<td>Bottom</td>
</tr>
<tr>
<td>CN [xx]</td>
<td>Data acquisition channel number</td>
</tr>
<tr>
<td>DAS</td>
<td>Data Acquisition System</td>
</tr>
<tr>
<td>EFM</td>
<td>Exhaust gas Flow Meter</td>
</tr>
<tr>
<td>EG-x</td>
<td>Gauge x of Gas Module exhaust section</td>
</tr>
<tr>
<td>EM</td>
<td>Electrical Module</td>
</tr>
<tr>
<td>ERV-x</td>
<td>Relief valve of Gas Module exhaust section</td>
</tr>
<tr>
<td>EV-x</td>
<td>Valve number x of Gas Module exhaust section</td>
</tr>
<tr>
<td>FCV</td>
<td>Fill Cap Valve</td>
</tr>
<tr>
<td>FIST</td>
<td>Full Integrated System Test</td>
</tr>
<tr>
<td>GHe</td>
<td>Gaseous Helium</td>
</tr>
<tr>
<td>GM</td>
<td>Gas Module</td>
</tr>
<tr>
<td>GP-B</td>
<td>Gravity Probe-B</td>
</tr>
<tr>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>GT</td>
<td>Guard Tank</td>
</tr>
<tr>
<td>GTVC</td>
<td>Guard Tank Vent Cap</td>
</tr>
<tr>
<td>GTVC-G</td>
<td>Guard Tank Vent Cap pressure gauge</td>
</tr>
<tr>
<td>GTVC-RV</td>
<td>Guard Tank Vent Cap relief valve</td>
</tr>
<tr>
<td>GTVC-V</td>
<td>Guard Tank Vent Cap valve</td>
</tr>
<tr>
<td>GTV-G</td>
<td>Guard Tank vent pressure gauge</td>
</tr>
<tr>
<td>GTV-RV</td>
<td>Guard Tank vent relief valve</td>
</tr>
<tr>
<td>GTV-V</td>
<td>Guard Tank vent valve</td>
</tr>
<tr>
<td>HX-x</td>
<td>Vent line heat exchanger in Gas Module</td>
</tr>
<tr>
<td>KFxx</td>
<td>Quick connect o-ring vacuum flange (xx mm diameter)</td>
</tr>
<tr>
<td>LHe</td>
<td>Liquid Helium</td>
</tr>
<tr>
<td>LHSD</td>
<td>Liquid Helium Supply Dewar</td>
</tr>
<tr>
<td>Liq</td>
<td>Liquid</td>
</tr>
<tr>
<td>LL</td>
<td>Liquid level</td>
</tr>
<tr>
<td>LLS</td>
<td>Liquid level sensor</td>
</tr>
<tr>
<td>LMMS</td>
<td>Lockheed Martin Missiles and Space Co.</td>
</tr>
<tr>
<td>LMSC</td>
<td>Lockheed Missiles and Space Co.</td>
</tr>
<tr>
<td>MT</td>
<td>Main Tank</td>
</tr>
<tr>
<td>MTVC</td>
<td>Main Tank Vent Cap</td>
</tr>
<tr>
<td>MTVC-G</td>
<td>Main Tank Vent Cap pressure gauge</td>
</tr>
<tr>
<td>MTVC-RV</td>
<td>Main Tank Vent Cap relief valve</td>
</tr>
<tr>
<td>MTVC-V</td>
<td>Main Tank Vent Cap valve</td>
</tr>
<tr>
<td>NBP</td>
<td>Normal boiling point</td>
</tr>
<tr>
<td>ONR</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>PFCG</td>
<td>Fill Cap assembly pressure Gauge</td>
</tr>
<tr>
<td>PFM</td>
<td>Pump equipment Flow Meter</td>
</tr>
<tr>
<td>PG-x</td>
<td>Gauge x of Pump equipment</td>
</tr>
<tr>
<td>PM</td>
<td>Pump Module</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>psig</td>
<td>pounds per square inch gauge</td>
</tr>
<tr>
<td>PTD</td>
<td>Payload Test Director</td>
</tr>
<tr>
<td>PV-x</td>
<td>Valve x of the Pump equipment</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>RAV-x</td>
<td>Remote Actuated Valve-x</td>
</tr>
<tr>
<td>RGA</td>
<td>Residual Gas Analyzer</td>
</tr>
<tr>
<td>SMD</td>
<td>Science Mission Dewar</td>
</tr>
<tr>
<td>STV</td>
<td>SMD Thruster vent Valve</td>
</tr>
<tr>
<td>SU</td>
<td>Stanford University</td>
</tr>
<tr>
<td>SV-x</td>
<td>SMD Valve number x</td>
</tr>
<tr>
<td>VDC</td>
<td>Volts Direct Current</td>
</tr>
<tr>
<td>VF-x</td>
<td>Liquid helium Fill line valve</td>
</tr>
<tr>
<td>VG-x</td>
<td>Gauge x of Vacuum Module</td>
</tr>
<tr>
<td>VM</td>
<td>Vacuum Module</td>
</tr>
<tr>
<td>VV-x</td>
<td>Valve x of Vacuum Module</td>
</tr>
<tr>
<td>VW-x</td>
<td>Valve x of Dewar Adapter</td>
</tr>
<tr>
<td>VCRV-x</td>
<td>Vent cap valve</td>
</tr>
<tr>
<td>VCR-V</td>
<td>Vent cap relief valve</td>
</tr>
</tbody>
</table>

Page iii
A. **SCOPE**

This procedure provides the necessary steps to disconnect the Guard Tank vent line from the Gas Module and install a Vent Cap. The steps include:

- Close off vent line at Guard Tank Vent Valve (GTV-V)
- Leak check Guard Tank Vent Cap
- Disconnect Guard Tank short vent line
- Install vent cap at GTV-V
- Leak Check Guard Tank Vent Cap
- Open Guard Tank vent valve if not depleted.

The procedure is applicable when the Guard Tank contains liquid, as well as, when it is depleted. The Main Tank vent line may be connected to the Gas Module or disconnected from the Gas Module. The Main Tank liquid may be at normal boiling point or subatmospheric.

B. **SAFETY**

B.1. **Potential Hazards**

Personal injury and hardware damage can result during normal positioning, assembly and disassembly of hardware. Examples include: positioning Dewar in tilt stand; integrating probe with airlock; positioning airlock on Dewar; removing airlock from Dewar; removing probe from Dewar; and positioning support equipment such as pressurized gas cylinders and supply dewars.

A number of undesired events may be associated with these operations. For example, personnel or equipment can be struck when hardware is being moved (e.g. by forklift or crane load). Personnel are subject to entrapment while positioning hardware, such as hands or feet caught between objects as hardware is moved into place. Suspended hardware may be dropped. Personnel can be caught between objects such as forklifts and walls or loads and building support columns.

In addition, liquid helium used in the SMD represents a hazardous material for the personnel involved in the operations. Cryogenic burns can be caused by contact with the cold liquid or gas, high pressures can result if boiling liquid or cold gas is confined without a vent path, and asphyxiation can result if the vent gas is allowed to accumulate.

The SMD Safety Compliance Assessment, document GPB-100153C discusses the safety design, operating requirements and the hazard analysis of the SMD.

B.2. **Mitigation of Hazards**

B.2.1. Lifting hazards

There are no lifting operations in this procedure

B.2.2. Cryogenic Hazards
In LM facilities, there may be an oxygen deficiency monitor that alarms when the oxygen level is reduced to 19.5%. Additional temperature and pressure alarms, provided by the DAS, warn of potential over-pressure conditions. Emergency vent line deflectors are installed over the four burst disks on the SMD vacuum shell.

Only authorized and trained LM and SU personnel are allowed in LM facilities without escort. All personnel working at a height 30 inches or more off the floor are required to have an LM approved air tank within easy reach. In the unlikely event of a large LHe spill all employees have been instructed to evacuate the room and contact LM safety.

The following additional requirements apply to all personnel involved directly in cryogenic operations. Gloves that are impervious to liquid helium and liquid nitrogen are to be worn whenever the possibility of splashing or impingement of high-velocity cryogens exists or when handling equipment that has been cooled to cryogenic temperatures. Protective clothing and full-face shields are to be worn whenever the possibility of splashing cryogens exists.

B.2.3. Other Hazards

When appropriate, tools or other items used with the potential to damage the SMD or Probe shall be tethered.

B.3. Mishap Notification

B.3.1. Injury

In case of any injury obtain medical treatment as follows

LM Call 117

B.3.2. Hardware Mishap

In case of an accident, incident, or mishap, notification is to proceed per the procedures outlined in Lockheed Martin Engineering Memorandum EMSYS229.

B.3.3. Contingency Response

Responses to contingencies (e.g., power failure) are listed in Appendix 3.

C. QUALITY ASSURANCE

C.1. QA Notification

The NASA representative and SU QA shall be notified 24 hours prior to the start of this procedure. Upon completion of this procedure, the QE Manager will certify his/her concurrence that the effort was performed and accomplished in accordance with the prescribed instructions by signing and dating in the designated place(s) in this document.
C.2. **Red-line Authority**

Authority to red-line (make minor changes during execution) this procedure is given solely to the PTD or his designate and shall be approved by the QA Representative. Additionally, approval by the Payload Technical Manager shall be required, if in the judgement of the PTD or QA Representative, experiment functionality may be affected.

C.3. **Discrepancies**

A Quality Assurance Representative designated by D. Ross shall review any discrepancy noted during this procedure, and approve its disposition. Discrepancies will be recorded in a D-log or a DR per Quality Plan P0108. Any time a procedure calls for verification of a specific configuration and that configuration is not the current configuration, it represents a discrepancy of one of three types. These types are to be dealt with as described below.

1. If the discrepancy has minimal effect on procedure functionality (such as the state of a valve that is irrelevant to performance of the procedure) it shall be documented in the procedure, together with the resolution. Redlines to procedures are included in this category.

2. If the discrepancy is minor and affects procedure functionality but not flight hardware fit or function, it shall be recorded in the D-log. Resolution shall be in consultation with the PTD and approved by the QA representative.

3. All critical and major discrepancies, those that effect flight hardware fit or functions, shall be documented in a D-log and also in a Discrepancy Report, per P0108.

D. **TEST PERSONNEL**

D.1. **Personnel Responsibilities**

The performance of this procedure requires a minimum complement of personnel as determined by the Test Director. The Test Director is the designated signer for the “witnessed by” sign-off located at the end of each procedure. The person in charge of the operation (Test Director or Test Engineer) is to sign the “completed by” sign-off. The Test Director will perform Pre-Test and Post-Test Briefings in accordance with P0875 “GP-B Maintenance and Testing at all Facilities.” Checklists will be used as directed by P0875.

D.2. **Personnel Qualifications**

The Test Director must have a detailed understanding of all procedures and facility operations and experience in all of the SMD operations. Test Engineers must have SMD Cryogenic operations experience and an understanding of the operations and procedures used for the cryogenic servicing/maintenance of the Dewar.
D.3. **Qualified Personnel**

<table>
<thead>
<tr>
<th>Test Director</th>
<th>Test Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike Taber</td>
<td>Tom Welsh</td>
</tr>
<tr>
<td>Dave Murray</td>
<td>Ned Calder</td>
</tr>
<tr>
<td>Ned Calder</td>
<td></td>
</tr>
</tbody>
</table>

E. **REQUIREMENTS**

E.1. **Electrostatic Discharge Requirements**

This procedure does not include any equipment sensitive to electrostatic discharge.

E.2. **Lifting Operation Requirements**

There are no lifting operations in this procedure.

E.3. **Hardware/Software Requirements**

E.3.1. **Commercial Test Equipment**

No commercial test equipment is required for this operation.

E.3.2. **Ground Support Equipment**

The Ground Support Equipment includes the Gas Module, the Pump Module, the Electrical Module, and the Vacuum Module. The Gas Module provides the capability to configure vent paths, read pressures and flow rates, and pump and backfill vent lines. The Pump Module provides greater pumping capacity than the Gas Module, together with additional flow metering capabilities. The vent output of the Gas Module flows through the Pump Module. The Electrical Module contains the instruments listed in Table 1, and provides remote control of valves in the Gas Module, Pump Module, and SMD. The Vacuum Module contains a turbo pump, backed by a vane pump, and provides the capability to pump out the SMD vacuum shell.

This procedure calls for use of hardware located in the Gas Module (Figure 1), and Electrical Module (Table 1).

E.3.3. **Computers and Software**

E.3.4. The Data Acquisition System (DAS) and data acquisition software are required for this procedure. The DAS reads and displays pressures, temperatures, and flow rates and monitors critical parameters. No additional computers or software are required.
E.3.4. Additional Test Equipment

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium leak detector</td>
</tr>
<tr>
<td>S/N or Model #: ________________</td>
</tr>
<tr>
<td>Cal Due Date: ________________</td>
</tr>
</tbody>
</table>

E.3.5. Additional Hardware

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guard Tank Vent Cap – See Figure 2</td>
</tr>
</tbody>
</table>

E.3.6. Tools

No special tools are required.

E.3.7. Expendables

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Mfr./Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol AR</td>
<td>AR</td>
<td>N/A</td>
</tr>
<tr>
<td>99.99% pure gaseous helium</td>
<td>AR</td>
<td>N/A</td>
</tr>
<tr>
<td>Vacuum Grease</td>
<td>AR</td>
<td>Aperizon N Dow Corning High Vacuum Grease</td>
</tr>
</tbody>
</table>

E.4. Instrument Pretest Requirements

The GSE instruments required to perform this procedure are listed in Table 1, together with their serial numbers, where available. Instruments that are required to have current calibrations are indicated in the Cal-Required column. Instruments that do not require calibration are those not used to verify performance requirements and are not connected to flight instrumentation. The status column is to be filled in with the due date of the instrument calibration sticker and verified to be in calibration by QE or QE designee.

Table 1. Required Instrumentation and Calibration Status

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Description</th>
<th>User Name</th>
<th>Serial No.</th>
<th>Cal Required</th>
<th>Status Cal due date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DAS</td>
<td>Power Supply, H-P 6627A</td>
<td>-</td>
<td>3452A01975</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DAS</td>
<td>Power Supply, H-P 6627A</td>
<td>-</td>
<td>3452A01956</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DAS</td>
<td>Data Acquisition/Control Unit H-P 3497A</td>
<td>-</td>
<td>2936A245539</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>DAS</td>
<td>Digital Multimeter H-P 3458A</td>
<td>-</td>
<td>2823A15047</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EM</td>
<td>Vacuum Gauge Controller Granville-Phillips Model 316</td>
<td>EG-1a, -1b</td>
<td>2827</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>EM</td>
<td>Vacuum Gauge Controller Granville-Phillips Model 316</td>
<td>AG-2a, -2b</td>
<td>2826</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>EM</td>
<td>Vacuum Gauge Controller</td>
<td>EG-3</td>
<td>2828</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>
E.6. Configuration Requirements

E.6.1. Main Tank

Liquid in the Main Tank may be at its normal boiling point (NBP) or subatmospheric. When subatmospheric, the initial configuration of the Gas Module may be such that the bath is being actively pumped or is set up in a non-vented mode.
E.6.2. Guard Tank
The Guard-Tank may contain liquid, or be depleted.

The Guard Tank liquid boils away at a rate of approximately 15% per day. If the vent line is to be disconnected for a period of less than 7 days, the liquid level should be topped off before disconnection (see document no. SU/GP-B-P0211, *Internal Guard Tank Fill – Vent Lines Connected*). Note: to perform an internal fill of the Guard Tank while the vent line is disconnected requires that the Main Tank be at NBP and that the Main Tank vent line also be disconnected with a vent cap installed (see document no. SU/GP-B-P0699, *Internal Guard Tank Fill – Vent Lines Disconnected*). Otherwise, the Guard Tank must be reconnected to the Gas Module, or depleted (see document no. SU/GP-B-P0212, *Guard Tank Depletion*).

When the Guard Tank is depleted, its pressure must be independently regulated from a source of 99.99% pure helium gas and its pressure must be continuously monitored and maintained at a positive value relative to that of the atmosphere. Monitoring is accomplished by placing the relative pressure, as read at the Guard Tank Vent Valve Assembly (GTV-G), on the DAS alarm list.

E.6.3. Well
The Well is evacuated.

E.6.4. Vacuum Shell
The Vacuum Shell pressure must be less than 5*10^-5 torr.

E.6.5. Alarm System
1. The DAS alarm system must be enabled and contain the following alarm set-points:
 a. Top of lead bag temperature set (CN 28 and CN 29) at T ≤ 6.0 K.
 b. Relative Guard Tank Pressure (CN 46) set at ΔP ≥ 0.3 torr.

E.6.6. GSE and Non-flight Hardware
1. GSE cabling must be connected between the SMD and the Electrical Module (P/N 5833812) and between the SMD and the Data Acquisition System (P/N 5833811).
2. Guard Tank Vent Cap (Figure 2).

E.7. Optional Non-flight Configurations
The following modifications or non-flight arrangement of the basic SMD configuration may also be in place. They are incidental to the performance of this procedure and not required.

1. The SMD is installed in its transportation and test fixture.
2. A relief valve is installed in place of the SMD internal fill-line burst disk.

3. A foreign object and debris shield covers the upper cone of the SMD.

4. The ion-pump magnet is installed.

5. The Airlock Support Plate may be installed on the SMD. This plate supports the Airlock that is used to keep air out of the Well during probe installation and removal. It is left in place while the Probe is removed.

6. A Dewar Adapter, Shutter, and Shutter Cover are mounted to the Well of the SMD when the Probe is removed

7. The Main Tank Vent Line may be connected to the Gas Module, or it may be disconnected either at the Bayonet at the end of the short line or the Bayonet at SV-9.

8. When the Well contains liquid, it vents through the Gas Module unless Well operations are being performed (e.g., Probe insertion). Venting through the Gas module is accomplished via a pumping line attached to the Dewar Adapter interface flange at the Airlock Support Plate (Probe not installed), or via a pumping line attached to the Well vent manifold installed at the Well pump-out port (Probe installed).

9. The Vacuum shell pump out port at SV-6 may be connected to the Vacuum Module (P/N 5833816) via a 2-in valve and pumping line, with the valve in either the closed position or in the open position with the Vacuum Module actively pumping the vacuum shell.

10. The thruster vent port is flanged to a shut-off valve.

11. The Fill Cap Assembly is installed at SV-13.

F. REFERENCE DOCUMENTS

F.1. Drawings

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMMS-5833394</td>
<td>Instrumentation Installation</td>
</tr>
</tbody>
</table>

F.2. Supporting documentation

<table>
<thead>
<tr>
<th>Document No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMMC-5835031</td>
<td>GP-B Magnetic Control Plan</td>
</tr>
<tr>
<td>GPB-100153C</td>
<td>SMD Safety Compliance Assessment</td>
</tr>
<tr>
<td>SU/GP-B-P0141</td>
<td>FIST Emergency Procedures</td>
</tr>
<tr>
<td>LMSC-P088357</td>
<td>Science Mission Dewar Critical Design Review</td>
</tr>
<tr>
<td>EM SYS229</td>
<td>Accident/Incident/Mishap Notification Process</td>
</tr>
<tr>
<td>SU/GP-B-P059</td>
<td>GP-B Contamination Control Plan</td>
</tr>
<tr>
<td>SU/GP-B-P0108</td>
<td>Quality Plan</td>
</tr>
</tbody>
</table>

F.3. Additional Procedures

<table>
<thead>
<tr>
<th>Document No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SU/GP-B-P0211</td>
<td>Internal Guard Tank Fill – Vent Lines Connected</td>
</tr>
<tr>
<td>SU/GP-B-P0699</td>
<td>Internal Guard Tank Fill – Vent Lines Disconnected</td>
</tr>
<tr>
<td>SU/GP-B-P0875</td>
<td>GP-B Maintenance and Testing at all Facilities</td>
</tr>
<tr>
<td>SU/GP-B-P0212</td>
<td>Guard Tank Depletion</td>
</tr>
<tr>
<td>SU/GP-B-P0879</td>
<td>Accident/Incident/Mishap Notification Process</td>
</tr>
</tbody>
</table>
G. OPERATIONS

CAUTION
Once the Guard Tank vent line is disconnected, an internal fill of the Guard Tank requires that (1) the Main Tank be at NBP and (2) the Main Tank vent line also be disconnected with a vent cap installed. If either one of these criteria presents a problem, be prepared to regulate the Guard Tank pressure with an external source of 99.99% pure helium gas, to prevent suck back, if and when it goes dry.

G.1. Pre-Operations verifications.
 o Verify SU QA notified.
 Record: Individual notified ____________________________,
 Date/time _______/__________.
 o Verify NASA representative notified.
 Record: Individual notified ____________________________,
 Date/time _______/__________.
 o Record calibration due dates in Table 1 (Sections. E.3.4, E.4)
 o Persons actually performing this procedure should initial their names in Sec D.3 and the name of the Test Director should be circled.
 o Verify completion of the pre-operations checklist (Appendix 1).
 o Verify Guard Tank Vent Line connected to Gas Module- if not terminate procedure

G.2. Verify Purity of All Sources of Helium Gas
 G.2.1. Record serial number on helium bottle/s.
 1. _____ 2. _____ 3. _____
 4. _____ 5. _____ 6. _____

 Verify helium bottle/s have been tested for purity and record Op. No.
 Operation. Number: _______ Step Number: _______
G.3. **Leak Check Guard Tank Vent Cap.**
 1. Attach Leak Detector at GTVC-V
 2. Bag the entire assembly.
 3. Ensure all other access ports are capped off.
 4. Record Leak Detector background rate: _____scc/s
 5. Ensure background on the 1×10^{-7}scc/s range.
 6. Spray helium into bagged assembly for two minutes.
 7. Record leak rate after two minutes:________scc/s.
 8. Verify that no rise is detected.
 9. Close GTVC-V.
10. Disconnect Leak Detector at GTVC-V.

G.3.2.

G.4. **Verify Configuration Requirements**

G.4.1. Verify proper sealing of Well. Record closure (cover plate, Hole cutter, Probe etc.).__________________________

G.4.2. Ensure DAS alarm system enabled and record set points.

 1. **Top of lead bag temperature** – ensure CN [28] and CN [29] on DAS alarm list and set to alarm at $T \leq 6.0$ K. Record set point. __________K
 2. **Relative Guard Tank Pressure** – ensure CN [46] on DAS alarm list and set to alarm at $\Delta P \geq 0.3$ torr. Record set point. __________torr

G.4.3. Ensure liquid-level alarms set, as appropriate, and record set points.

 1. **Main Tank** – ensure liquid-level alarm set. Record set point. __________%
 2. **Guard Tank** – ensure liquid level alarm set (if liquid in GT). Record set point. __________%

G.4.4. Ensure GSE cabling connected between the SMD and the Electrical Module (P/N 5833812) and between the SMD and the Data Acquisition System (P/N 5833811).
Section Complete QA Witness:__________
G.5. **Record Initial Configuration and Conditions**

G.5.1. Record Main Tank Configuration.
- MT.A - Main Tank at NBP – vent line connected to Gas Module:
- MT.B - Main Tank at NBP – vent line disconnected from Gas Module:
- MT.C - Main Tank subatmospheric- vent line disconnected from Gas Module.
- MT.D. Main Tank subatmospheric and being pumped by AP-1-verify that AP-1 is running.

G.5.2. Record Guard Tank Configuration
- GT.A - Guard Tank contains liquid and is venting in Bypass mode
- GT.B - Guard Tank is depleted and regulated by APR-3 through GTV-Va.
- GT.C - Guard Tank is depleted and regulated by APR-2 through EV-23.
- GT.D - Guard Tank contains liquid and is venting in common manifold mode.

G.5.3. Verify valves are in the proper configuration as given by the following table.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>EV Valve States</th>
<th>AV Valve States</th>
<th>Other Valves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Open</td>
<td>Closed</td>
<td>Open</td>
</tr>
<tr>
<td>MT.A/GT.A</td>
<td>EV-9, EV-16, EV-20</td>
<td>All other EV valves</td>
<td>None</td>
</tr>
<tr>
<td>MT.A/GT.B</td>
<td>EV-9, EV-16, APR-3V</td>
<td>All other EV valves</td>
<td>None</td>
</tr>
<tr>
<td>MT.A/GT.C</td>
<td>EV-9, EV-16, EV-23</td>
<td>All other EV valves</td>
<td>None</td>
</tr>
<tr>
<td>MT.A/GT.D</td>
<td>EV-9, EV-13, EV-16</td>
<td>All other EV valves</td>
<td>None</td>
</tr>
<tr>
<td>MT.B/GT.A</td>
<td>EV-16, EV-20</td>
<td>All other EV valves</td>
<td>None</td>
</tr>
<tr>
<td>MT.B/GT.B</td>
<td>EV-16, APR-3V</td>
<td>All other EV valves</td>
<td>None</td>
</tr>
<tr>
<td>MT.B/GT.C</td>
<td>EV-16, EV-23</td>
<td>All other EV valves</td>
<td>None</td>
</tr>
</tbody>
</table>

Page 13
<table>
<thead>
<tr>
<th>Configuration</th>
<th>EV Valve States</th>
<th>AV Valve States</th>
<th>Other Valves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Open</td>
<td>Closed</td>
<td>Open</td>
</tr>
<tr>
<td>MT.B/GT.D</td>
<td>EV-16, EV-13</td>
<td>All other EV</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>valves</td>
<td></td>
</tr>
<tr>
<td>MT.C/GT.A</td>
<td>EV-16, EV-20,</td>
<td>All other EV</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>valves</td>
<td></td>
</tr>
<tr>
<td>MT.C/GT.B</td>
<td>EV-16, APR-3V</td>
<td>All other EV</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>valves</td>
<td></td>
</tr>
<tr>
<td>MT.C/GT.C</td>
<td>EV-16, EV-23</td>
<td>All other EV</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>valves</td>
<td></td>
</tr>
<tr>
<td>MT.C/GT.D</td>
<td>EV-16, EV-13</td>
<td>All other EV</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>valves</td>
<td></td>
</tr>
<tr>
<td>MT.D/GT.A</td>
<td>EV-7a/b, EV-17, EV-20</td>
<td>All other EV</td>
<td>AV-6,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>valves</td>
<td></td>
</tr>
<tr>
<td>MT.D/GT.B</td>
<td>EV-7a/b, EV-17, APR-3V</td>
<td>All other EV</td>
<td>AV-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>valves</td>
<td></td>
</tr>
<tr>
<td>MT.D/GT.C</td>
<td>EV-7a/b, EV-17, EV-23</td>
<td>All other EV</td>
<td>AV-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>valves</td>
<td></td>
</tr>
<tr>
<td>MT.D/GT.D</td>
<td>EV-7a/b, EV-13, EV-17</td>
<td>All other EV</td>
<td>AV-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>valves</td>
<td></td>
</tr>
</tbody>
</table>

G.5.4. Record initial liquid helium levels as appropriate.

1. Main Tank (LL-1D or LL-2D) ______%
2. Guard Tank (LL-5D or LL-6D) ______%

G.5.5. Record initial pressures, as appropriate.

3. Guard Tank – with liquid (EG-1a) __________ torr.
4. Guard Tank – depleted (GTV-G) __________ torr.

G.5.6. Branch to appropriate section of procedure

1. If in configuration GT.A or GT.D proceed to section G.6
2. If in configuration GT.B or GT.C proceed to section G.7
Section Complete QA Witness:__________
G.6. **Disconnect Vent Line – Liquid in Guard Tank**

G.6.2. Verify Guard Tank pressure positive relative to atmospheric pressure.

 Record relative pressure (GTV-G) __________ torr.

G.6.3. Close GTV-V.

G.6.4. Remove long vent line from GTV-V.

G.6.5. Inspect, clean, and lubricate (use Braycote 601 or Apeizon "N") Vent-Cap o-ring.

G.6.6. Install Guard Tank Vent Cap at GTV-V.

G.6.7. Leak Check Guard Tank Vent Cap.

 1. Attach Leak Detector at GTVC-V.

 2. Bag the entire assembly, including connection to between GTV and Guard Tank Vent Cap assembly.

 3. Ensure all other access ports are capped off.

 4. Record Leak Detector background rate: _____scc/s

 5. Ensure background on the $1 \times 10^{-7} \text{scc/s}$ range.

 6. Spray helium into bagged assembly for two minutes.

 7. Record leak rate after two minutes:________scc/s.

 8. Verify that no rise is detected.

 9. Close GTVC-V.

 10. Disconnect Leak Detector at GTVC-V.

 QA Witness:____________

G.6.8. Open GTV-V.

G.6.9. Record Guard Tank pressure (GTV-G, relative to atm.) ________ torr.

G.6.10. **(Option)** Remove Guard Tank vent line from inlet to Gas Module heat exchanger and install blankoff.

 o Guard Tank Vent Line disconnected from Gas Module

 o Guard Tank Vent Line not disconnected from Gas Module

G.6.11. Cover open ends of vent line.

Section Complete QA Witness:____________
G.7. **Disconnect Vent Line – Guard Tank Depleted**

G.7.1. Record method of Guard Tank pressure regulation:

- If in configuration GT.B skip to Section G.7.2.
- If in configuration GT.C; perform the following:
 1. Close EV-23
 2. Crack open GTV-Va and adjust for He gas outflow.
 3. Attach GHe supply line (while purging) from APR-2V to access port at GTV-Va.
 4. Open GTV-Va fully.
 5. Perform Section G.7.2

G.7.2. Ensure Guard Tank pressure positive relative to atmospheric pressure.

- Record relative pressure (GTV-G) __________ torr.

G.7.3. Close GTV-V.

G.7.4. Remove long vent line from GTV-V.

G.7.5. Inspect, clean, and lubricate (use Braycote 601 or aperizon "N") Vent-Cap o-ring.

G.7.6. Install Guard Tank Vent Cap at GTV-V.

G.7.7. Leak Check Guard Tank Vent Cap.

1. Attach Leak Detector at GTVC-V
2. Bag the entire assembly, including connection to between GTV and Guard Tank Vent Cap assembly.
3. Ensure all other access ports are capped off.
4. Record Leak Detector background rate: _____scc/s
5. Ensure background on the 1×10^{-7} scc/s range.
6. Spray helium into bagged assembly for two minutes.
7. Record leak rate after two minutes: _______scc/s.
8. Verify that no rise is detected.
9. Close GTVC-V.
10. Disconnect Leak Detector at GTVC-V.

QA Witness:_____________
G.7.8. Open GTVC-V.

G.7.9. Crack open GTV-V, observe flow and purge Vent Cap for one minute.

G.7.10. Close GTVC-V.

G.7.11. Close GTV-V

G.7.12. **(Option)** Remove Guard Tank Vent line from inlet to Gas Module heat exchanger and install blankoff.

- Guard Tank Vent Line disconnected from Gas Module
- Guard Tank Vent Line not disconnected from Gas Module

G.7.13. Cover open ends of vent line.

Section Complete QA

Witness:__________

G.8. Establish Final Configuration

G.8.2. Ensure DAS alarm enabled and record set points if changed

- Thermal conditions substantially unchanged, alarm set point for the lead bag is unchanged
- Thermal conditions substantially changed, temperature alarm points reset as follows:
 - Top of Lead Bag set point _______ K (≤ 6.0 K)

 [CN 28 and CN 29]

G.8.3. Ensure liquid level sensor alarms enabled, as appropriate, and record set points if changed.

1. Main Tank Level Set Point _______%
2. Guard Tank Level Set Point _______%

G.8.4. Ensure Guard Tank pressure on DAS alarm list and set to alarm at 0.3 torr differential.

G.8.5. Verify completion of Post-Operations Checklist. (Appendix 2)

Section Complete QA Witness:__________
H. PROCEDURE COMPLETION
Completed by:______________
Witnessed by:______________
Date: __________
Time:__________

Quality Manager__________________________ Date________________
Payload Test Director____________________ Date________________
Disconnect Guard Tank Vent Line From Gas Module

Gravity Probe B Program
P0677 B
Figure 2—Schematic representation of Main and Guard Tank vent configurations
Dashed Arrows indicate an option

Main Tank Short Vent Line

SMD

SV-9

Guard Tank Short Vent Line

GTSL-RV 4.0+0.3 psid

GTVC-Va

GTV-Va

GTVG

GTV-RV

4.0+0.3 psid

GTVVA

4.0+0.3 psid

GTV-V

Circle Seal 532B-4MP-1 (1 psid)

Circle Seal 532B-4M-.5 (0.5 psid)

MTVC-V

MTVC-V

Main Tank Long Vent Line

To Room

GTV-V

GTVG

GTV-RV a,b

GTVC-V

GTVC-G

GTVC-Fill Vent

Main Tank Vent Cap Assy

Guard Tank Vent Cap

Guard Tank Long Vent

To Gas Module

To Gas

To Room

Circle Seal 532B-4MP-1 (1 psid)

Circle Seal 532B-4M-.5 (0.5 psid)

Bayonet Fitting

Vacuum Clad Vent Line

Endevco 2 psid Gauge

Page 21
Figure 3 Schematic representation of SMD showing interfaces with Gas module.
Figure 4: Utility Turbo Pumping System

- TG-1 (cold cathode)
- TG-2 (10 torr)
- TG-3 (1000 torr)
- TG-4 (pirani)
- TV-1
- TV-2 (Foreline Valve)
- TV-3
- Turbopump
- Forepump (Vane Pump)
- TV-4
- TV-5
- RGA
- TV-6
- Filter
- Backfill Port
- RGA-V
- Leak Detector Access Port
Appendix 1

<table>
<thead>
<tr>
<th>DATE</th>
<th>CHECKLIST ITEM</th>
<th>COMPLETED</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Verify the test procedure being used is the latest revision.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Verify all critical items in the test are identified and discussed with the test team.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Verify all required materials and tools are available in the test area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Verify all hazardous materials involved in the test are identified to the test team.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Verify all hazardous steps to be performed are identified to the test team.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Verify each team member knows their individual responsibilities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Confirm that each test team member clearly understands that he/she has the authority to stop the test if an item in the procedure is not clear.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Confirm that each test team member clearly understands that he/she must stop the test if there is any anomaly or suspected anomaly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Notify management of all discrepancy reports or d-log items identified during procedure performance. In the event an incident or major discrepancy occurs during procedure performance management will be notified immediately.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Confirm that each test team member understands that there will be a post-test team meeting.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Team Lead Signature:
Appendix 2

<table>
<thead>
<tr>
<th>DATE</th>
<th>CHECKLIST ITEM</th>
<th>COMPLETED</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Verify all steps in the procedure were successfully completed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Verify all anomalies discovered during testing are properly documented.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Ensure management has been notified of all major or minor discrepancies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Ensure that all steps that were not required to be performed are properly identified.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. If applicable sign-off test completion.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Verify all RAV valve operations have been entered in log book</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Verify the as-run copy of procedure has been filed in the appropriate binder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Team Lead Signature: ___________________________
Appendix 3– Contingency Responses

<table>
<thead>
<tr>
<th>Condition</th>
<th>Circumstance</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature limits (CN 1 or 28) exceeded</td>
<td>Any time</td>
<td>Close EV-17 (if open) and open EV-9. Crack open SV-9 to allow MT to vent. Adjust SV-9 as necessary to restore temperature(s) below alarm limits. Open EV-6 and EV-18 if higher flow rate is needed.</td>
</tr>
<tr>
<td>Burst disk rupture (MT/GT)</td>
<td>Any time</td>
<td>Evacuate room</td>
</tr>
</tbody>
</table>