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1. INTRODUCTION

In 1968 D. C. Wilkins {1} and R. F. O’Connell [2] independently found that
the oblateness of the earth modifies the geodetic precession of a gyroscope
by an amount of order J, times §2¢, where Q¢ is the 6.9 arc-sec/yr geodetic
precession calculated by L. I. Schiff. This correction, being of order several
milliarc-sec/yr, has to be taken into account in analyzing the data from
the experiment.

The original investigations gave the magnitude (§2¢)s, of the precession
rate due to J; at a point r in space. For comparison with experiment, what
is needed is not the precession rate at a point but its time integral over
an orbit. Now the oblateness modifies not only the relativity effect but
also the shape of the orbit (which deviates from an exact Keplerian ellipse
by distances up to several miles). It also makes the orbit-plane regress.
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Hence instead of simply integrating the original expression of Wilkins and
O’Connell around a circular or elliptic orbit it is necessary to integrate
a complicated vector function of the velocity and gravitational field over
time.

The problem was solved for nearly circular orbits by Wilkins [3] in 1970
and by Barker and O'Connell [4] in 1972 using very different methods.
More recently, F. R. Hoots and P. M. Fitzpatrick [5] have extended the
investigation to highly elliptic orbits. All of these investigations depend on
rather elaborate analytical procedures. Here I offer a simple treatment of
the effect in a near-circular orbit based on a treatment of such orbits due
originally to Laplace, and revived in the 1950’s by R. E. Roberson [6] and
by C. M. Petty and myself {7].

2. DERIVATION OF THE TOTAL PRECESSION
IN A NEAR-CIRCULAR ORBIT

Schiff’s formula for the geodetic precession of a gyroscope moving with ve-
locity v at a distance r from a spherical earth (equation (1) of paper (A) in
this series) may be rewritten in terms of the local gravitational acceleration
g at the location of the gyroscope as follows:

6 = -5 (8 X V) (1)

To calculate the total geodetic precession (i.e., the main Schiff term plus
the oblateness correction), we compute g X v for an actual orbit around
the oblate earth.

Neglecting terms of second order in Jy and the mean eccentricity e, the
simplest description of a near-circular orbit around the oblate earth is as
follows.

(1) The “mean position” describes a circle of radius 7 in a precessing
plane with constant inclination 7, the circle being described at a constant

rate
. [GM R\*[9 21 .
0= ?—{1+']2<_F—> L—l——gsmzm}} ) (2)

and the precession rate about the North Pole being

. - R\?.
Ag = ——§J2 (T> 0 cost (3)
2 T

where M is the mass and R, the mean equatorial radius of the earth.
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(2) The actual position is displaced from the mean position by amounts
ér, 60 in the precessing plane only, as follows:

1 (R
or=r {Z.]g (—_—) sin?i cos 26 — ¢ cos (0 — 9,,)} (4)
T

. 1 RAN\® . 5. .
ot = ~J, (:—) sin ¢ sin 20 + 2¢ sin (6 — 0,) (5)

# being measured from the equator, and f, being the phase angle defining
the direction of perigee of the Keplerian ellipse on which the perturbations
from Jy are superimposed.
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FIGURE 1. System of coordinates for a regressing orbit.

-~

Adopting unit vectors 3, j, k illustrated in figure 1, with % vertically
upward, j forward and k perpendicular to the precessing plane, the actual
position (to first order) is

r=(F+6r)i+7603 . (6)
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The angular velocity of the unit vector frame is
wr = 0k + AsN (7)

where N = 7 sini sinf + 2sini cos@ + k cosi is a unit vector directed
northward along the earth’s polar axis (see figure 1). The actual velocity
relative to the earth’s center is

vV=§ii+780)+wp X1 (8)
which gives to first order

v = (67 — 7080)i + {é [1 ~ 3, (Be)? cos? z] (7 + 6r) + 7*5(9}3
(9)
+ 3 {Jz (&)2 70 sin 2 (:()59} k

The local gravity is

g=—CMpm+ BE

2
r o [GMIR?
2 2 jr)?

1-&&&]} —

which gives to first order

g= - 9;:1}4_{1—25—;-+%.12(%ﬁ)2[1~%Sin%(l— (:0829)]}%
— {0+ 3, (%) sin?isin26} 7 (11)

|
wlee
.

G {«]2 (%‘)2 sin 27 sin()} k

It is easy to verify that equation (11) is, to first order, the time derivative
v of the velocity vector, and hence to justify the description of the orbit
by the four equations (2) through (5) in (1) and (2). Neglecting terms of
second order, we have from equation (9)

v o= (67 — 7060)1 + (967 + 760)3
: 2 . (12)
-3 {r‘(ﬂ,lg (%‘) sin 21 sin()}k P XV

and this yields, with appropriate substitution fromn the derivatives of equa-
tions (4) and (5), the expression for g.

Equations (9) and (11) are the expressions for v and g that have to be
substituted in equation (1) to get the total geodetic drift of the gyroscope
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including the effects of the earth’s oblateness coefficient J, and the eccen-
tricity € of the orbit. The result to first order is

_ 3 (GM)ZS/.’
Qe = so G/

{k

_ %,/2 (_[%.L)z (2% sinf + j cos 8) sin?i}

2

—

L+ 7 (%) (- %

v sin?i + %’ sin? ¢ (:032()) + éé() - %61"] (13)

Now 2% sinf + j cosf = %B — %B cos 260 + %A sin 26, where, as shown
in figure 1, A is the unit vector along the upward vertical at the ascend-
ing node and B the unit vector along a direction 90° ahead of A in the
precessing plane. N R ‘

Clearly the averages per orbit of J,B cos26, Jo A sin 260, Jok cos 20, ké6
and kér are of second order. To first order, this leaves as our final expression
for QG

{av [14 2 (2)7 (3 - 2 sin? )] (14

where the expressions k 4 and B 4v serve to remind us that k and B each
change by a small amount over the course of an orbit because of the nodal
regression.

3. CONCLUDING OBSERVATIONS

It may seem strange that the eccentricity does not appear in equation (14).
The reason is that the lowest order at which terms in e enter (Qg)av is
the second, the formula for the average geodetic precession in an elliptic
orbit around the nonoblate earth being just

3 (GM)¥?
T 2c?a%/2(1—e2)

(Q6)e (15)

where a is the semimajor axis; so with an eccentricity of 1073 the correc-
tions are of order 6.9 x 10~3 milliarc-sec/yr, and hence negligible.

The corrections for J2, on the other hand, are not negligible. In an
equatorial orbit the correction is a precession in the plane of the orbit of

magnitude 2J, (&= 2AG = +14 milliarc-sec/yr. In a polar orbit it is a
4 T
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precession again in the plane of the orbit of magnitude —7 milliarc-sec/yr.
In inclined orbits the corrections are a mixture of a linear term in the
east-west plane and terms singly periodic in the regression rate in both the
east-west and north-south planes. The question of separating the effects in
various orbits has already been discussed in the first paper in this series.

Another point that may seem strange is that the numerical values for
the oblateness correction given here differ from those given by Barker and
O’Connell [4]. Both sets of values are correct; the discrepancy comes about
from a difference in definition of the orbit parameters. Here the orbit is
defined in terms of a mean radius and the nodal period, i.e., the period
between ascending nodes. Barker and O’Connell calculated precessions
with respect to a radial distance not exactly equal to the mean radius and
used a period not in general equal to the nodal period. The small difference
in radius modifies the calculated value of the principal terms in the geodetic
precession (i.e., the terms for a spherical earth), and the correction for it
needs to be taken into account in computing the total theoretical precession
to be compared with experiment.

In highly elliptic orbits e is no longer comparable with J, and more
complex terms make their appearance. Hoots and Fitzpatrick [5] have
shown that components of {2g appear along 11, B and k proportional to
Joe? sin 26, to Joe? cos 20,, and to (J3/.Jz)e times siné, and cosf,. Since
the oblateness makes the perigee of the ellipse advance around the earth
with a period which is about 15 weeks for a polar orbit, these effects will
be modulated with periods different from those of any other terms, and
can be determined absolutely in data analysis. However, our current view
is that the disadvantages of going into a highly elliptic orbit outweigh the
potential advantage of separating the terms by this method.
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