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1. INTRODUCTION 

In 1968 D. C. Wilkins [l] and R. F. O’Connell[2] independently found that 
the oblateness of the earth modifies the geodetic precession of a gyroscope 
by an amount of order 52 times R e ,  where RG is the 6.9 arc-sec/yr geodetic 
precession calculated by L. 1. Schiff. This correction, being of order several 
milliarc-sec/yr, has to be taken into account in analyzing the data from 
the experiment. 

The original investigations gave the magnitude ( 0 2 ~ ) ~ ~  of the precession 
rate due to JZ at a point r in space. For comparison with experiment, what 
is needed is not the precession rate a t  a point but its time integral over 
an orbit. Now the oblateness modifies not only the relativity effect but 
also the shape of the orbit (which deviates from an exact Keplerian ellipse 
by distances up to several miles). It also makes the orbit-plane regress. 
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Hence instead of simply integrating the original expression of Wilkins and 
O’Connell around a circular or elliptic orbit it is necessary to  integrate 
a complicated vector function of the velocity and gravitational field over 
time. 

The problem was solved for nearly circular orbits by Wilkins [3] in 1970 
and by Barker and O’Connell [4] in 1972 using very different methods. 
More recently, F. R. Hoots and P. M. Fitzpatrick [5] have extended the 
investigation to highly elliptic orbits. All of these investigations depend on 
rather elaborate analytical procedures. Here I offer a simple treatment of 
the effect in a near-circular orbit based on a treatment of such orbits due 
originally to Laplace, and revived in the 1950’s by R. E. Roberson [6] and 
by C. M. Petty and myself [7]. 

2. DERIVATION OF THE TOTAL PRECESSION 
IN A NEAR-CIRCULAR ORBIT 

Schiff’s formula for the geodetic precession of a gyroscope moving with ve- 
locity v at a distance r from a spherical earth (equation (1) of paper (A) in 
this series) may be rewritten in terms of the local gravitational acceleration 
g at  the location of the gyroscope as follows: 

3 
2c2 RG=-(gXv) . 

To calculate the total geodetic precession (z.e.,  the main Schiff term plus 
the oblateness correction), we compute g x v for an actual orbit around 
the oblate earth. 

Neglecting terms of second order in J2 ant1 thr itleiin eccentricity e ,  thr 
simplest description of a near-circular orhit aroiind t,lie oblate earth is as 
follows. 

(1) The “mean position” describes a circle of  radius 5; in a precessing 
plane with constant inclination i, the circle Ix-iiig ticscribed at ti constaiit 
rate 

and the precession rate about the North Pole being 

2 -3 
2 

i~ = -52 (p) 6 cos i , 

where M is the mms arid Re the mean equatorial radius of the earth. 
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(2) 
b ~ ,  08 i n  the prcwssirig plane orily, as follows: 

The actual position is tlisplaccti frotii tlic rrit’an position I)y aiiioiitits 
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\ 

EQUATORIAL 
PLANE 

FIGURE 1. System of coordinates for a regressing orbit. 

Adopting unit vectors 2 ,  3 ,  k illustrated in figure 1, with E vertically 
upward, 3 forward and k perpendicular to the precessing plane, the actual 
position (to first order) is 

r = (i + & ) 2  + r 6 8 j  . (6) 
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The angular velocity of the unit vector frame is 

W F  zz ek + X A G  (7) 

where N = i sini sin8 + 3 sini cos0 + 6 cosi is a unit vector directed 
northward along the earth’s polar axis (see figure 1). The actual velocity 
relative to the earth’s center is 

v = 6 + 4 + d j + w F  x r , ( 8 )  

which gives to first order 

(‘3) 

v = ( 6 i - & 6 ) i  + { 8 [ l - $ J 2 ( % )  

+ f { 52 ( + 1 2  F B  sir1 2i cos8 

The local gravity is 

which gives to first order 

It is easy tro vcrify that, equatiou (1 I )  is, to  first, orclor, thc t , i r i i c  d(!rivative 
ir of the velocity vector, arid hence tm jrist,if.y the tlcscript,ioii o f  the orl)it. 
by the four equations (2 )  throrigh (5) in ( 1 )  i lI l t l  (2). Ncglec:tliiig t.c?rrris of 
second order, we havc from cquat ion (‘3) 

and this yields, with appropriattr siilxit,it,iit.ion froin t . k  tlciriv;it.ivc,s of  t!(qi~ii- 

tioris (4)  and (5), the expression for g.  
Equations (9) and (1 1) art! t,litr c.xprt!ssioils for v and g that, have t,o \)e 

substitritetl in cquation (1) to gct. t,lw total gtwtletic tirift, of t l ic  gyroscopc 
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Now 2i sin 0 + j (:os H = $ B  - $ B  (:OS 20 + $ A  sin28, whtrrci, its sltowti 

in figure 1, A is tliti itnil vcw:tor atlorig the upward vertical at tlic itscetid- 
iiig iiodc a~itl B tlic uriit vwtor aloitg a dircctioii (30” alictatl of A i l l  ttic 
precessing plan(:. 

Clearly the m m a p ! ~  pw o d d  of J 2 B  (:os 20, . 1 2 A  siii 20, . 1 2 k  cos 28, k h 8  
arid k6r are ofsc!corid order. To first ortlcr, this leavcs as our final expression 

h - ,-. 

h 

for O G  
3 (GM)”/’ ( 0 G ) A V  = p +//2 

h 

where tlie expressions ~ A V  and B)AV serve to remind us that k and B each 
change by a srnall ainount over the course of an orbit because of the nodal 
regression. 

3. CONCLUDING OBSERVATIONS 

It may seem strange that the eccentricity does not appear in equation (14). 
The reason is that the lowest order a t  which terms in e enter ( Q C ) A V  is 
the second, the formula for the average geodetic precession in an elliptic 
orbit around the nonoblate earth being just 

3 ( G M ) 3 / 2  
= S a 5 / 2 ( 1  - e 2 )  ’ 

where a is the semimajor axis; so with an eccentricity of the correc- 
tions are of order 6.9 x milliarc-sec/yr, and hence negligible. 

The corrections for J2, on the other hand, are not negligible. In an  
equatorial orbit the correction is a precession in the plane of the orbit of 
magnitude i J 2  (%) AG = +14 milliarc-sec/yr. In a polar orbit it is a 

~ 

2 
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precession again in the plane of the orbit of magnitude -7 milliarc-sec/yr. 
In inclined orbits the corrections are a mixture of a linear term in the 
east-west plane and terms singly periodic in the regression rate in both the 
east-west and north-south planes. The question of separating the effects in 
various orbits has already been discussed in the first paper in this series. 

Another point that may seem strange is that the numerical values for 
the oblateness correction given here differ from those given by Barker and 
O’Connell 143. Both sets of values are correct; the discrepancy comes about 
from a difference in definition of the orbit parameters. Here the orbit is 
defined in terms of a mean radius and the nodal period, i.e., the period 
between ascending nodes. Barker and O’Connell calculated precessions 
with respect to a radial distance not exactly equal to the mean radius and 
used a period not in general equal to the nodal period. The small difference 
in radius modifies the calculated value of the principal terms in the geodetic 
precession (i.e., the terms for a spherical earth), arid the correction for it 
needs to be taken into account in computing the total theoretical precession 
to be compared with experiment. 

In highly elliptic orbits e is no longer comparable with 5 2  and more 
complex terms make their appearance. Hoots and Fitzpatrick [5] have 
shown that components of S ~ G  appear along A, B and k proportional to 
.12rze2 sin 20p, to 52e2 cos 20,, and to (.13/.12)e times sin 6, and cos op.  Since 
the oblateness makes the perigee of the ellipse advance around the earth 
with a period which is about 15 wceks for a polar orbit, these effects will 
be modulated with periods different from those of any other terms, and 
can be determined absolutely in data analysis. However, our current view 
is that the disadvantages of going into a highly elliptic orhit outweigh the 
pot>cntial advantage of separating thc: t,errns by this mctt,hotl. 

A -  
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