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Abstract

In 1960, Leonard Schiff predicted, using Einstein's General Theory of Relativity, that a
gyroscope in orbit about the Earth would experience a precession of its spin axis relative
to the "fixed stars". Two relativistic precessions are predicted: a "geodetic" precession
associated with the orbital motion of the gyro about the Earth, and a "motional" precession
due to the Earth's rotation. For a gyro in a 650 km altitude polar orbit with its spin
axis initially pointed towards an inertial reference, in this case the star Rigel, and
lying in the orbital plane, the geodetic precession is 6.6 arcsec/yr north , and the
motional precession is 0.042 arcsec/yr cast . This scenario is illustrated in Figure 1.

To detect these relativistic drifts, a gyro is currently being developed whose absolute
Newtonian drift rates are less than lO"aarcsec/yr - Even with such a "perfect" gyro, how-
ever, the question arises: Can the relativistic drifts be detected in the presence of ran-
dom measurement noise, and other error sources such as satellite attitude control system
errors, Rigel proper motion uncertainty, drifts due to gyro suspension forces, drift of
electronic parameters such as instrument scale factors due to thermal effects, etc.? This
paper describes an all-digital data flow simulation that demonstrates the Kalman Filter data
reduction process for detection of the relativistic drifts. The simulation demonstrates
successful optimal estimation of the relativity effects in the presence of the expected
measurement noise and consistent with the experiment lifetime, and the other above-mentioned
effects.

© 650 km polar orbit

© line-of-sight to Rigel ~ in orbital plane

o telescope/spacecraft pointed nominally at
Rigel and rolling about line-of-sight to
Rigel

O rotor spin axis towards Rigel

o 1 SQUID loop per gyro

Figure 1: Scenario for the Gravity Probe-B Science Mission

List of symbols

§, B, RN - Orthogonal basis for inertial axis system with § along the direction of
Rigel, E in the eastward direction and parallel to the equatorial plane

i - Initial angular velocity vector of gyro rotor

6° - Angular velocity vector of rotor at time ¢t

¢t - Roll angle of satellite, where roll is about the line-of-sight to Rigel

x(n) ~ State vector at time t_=nT, where T is the sample period

o (n) ~- State transition matrix at time t

G(n) - Input matrix at time th n

v (n) — State process noise and input vector at time tn

z(n) - Measurement vector at time tp

A(n) - Measurement matrix at time th

n(n) - Measurement noise at time th
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% (n) - State estimate at time t
P(n) - State covariance matrix at time t,
Rn(i) - Measurement noise covariance at tlme ty
Rv(i) - State process noise covariance at time t
¥(n) - Mean of process noise. Also can be a derlng input process.
J(n) - Performance function
% (0) - A priori initial state estimate
M(o) - A priori initial state covariance
yG(t) - SQUID magnetometer gyro measurements
yr (t) . - Telescope measurements
by, by, by - Orthogonal basis for axis system fixed in the satellite with Ba along the
direction of Rigel
8., 0, - Telescope pointing errors, ~30 milliarcsec
EW, NS - Inertial dev1atlons of rotor spin axis from the § direction along the
directions and K, respectively
Cq - SQUID (gyro) scale factor
Cop - Telescope scale factor
§ - Instantaneous dither angle
A - Amplitude of dithering motion
wg - Frequency of dither
Wy - Spacecraft roll frequency (10 minute roll period)
b - Measurement bias parameter
ng, np - SQUID (gyro) and telescope noise, respective
y (t) - Gyro measurement minus telescope measurement
n - Gyro noise plus telescope noise, predominantly SQUID (gyro) noise
K - Telescope scale adjusting factor
¥ (t), #¥p(t) - Filtered SQUID (gyro) and telescope measurement signals
H(xp) - Measurement function of state
parameters of EW rotor spin axis deviation:
EW, - Initial EW spin axis misalignment
EWg - Sensitivity of EW deviation with respect to geodetic relativity coefficient
A - Geodetic relativity coefficient = 6.602 arcsec/yr
EWM - Sensitivity of EW deviation with respect to motional relativity coefficient
Ay - Motional relativity coefficient = 0.04182 arcsec/yr
PMEw - Apparent EW deviation due to Rigel proper motion
EWann - Apparent EW deviation due to aberration of starlight due to Earth's motion
about Sun .
EWorb - Apparent EW deviation due to aberration of starlight due to satellite's

motion about Earth

Parameters of NS rotor spin deviation are similar to those of EW

States of the state vector x(n):
g - Low-pass pre-filter state
n - Measurement noise shaping filter state
Cg - SQUID (gyro) scale factor
) - Satellite roll angle -
Ap - Amplitude of residual dither signal
b - Measurement bias parameter
Ag - Geodetic relativity coefficient
Ay - Motional relativity coefficient
PMgyw - Proper motion of Rigel along the E direction
PMyg - Proper motion of Rigel along the N direction
EW, - Initial EW spin axis misalignment
NSo ~ Initial NS spin axis misalignment
€ - Apparent deviation due to parallax resulting from Earth's orbit about the Sun
& (t) - Filtered gyro measurement minus telescope measurement
ag, a;, by - Low-pass pre-filter recursion coefficients
w{n) - Uniformly distributed, uncorrelated random numbers (noise) at time t
Cor Cpr 4y - Measurement noise power spectrum shaping filter coefficients
Hy (x(n}) - Gradient vector of partial derivatives evaluated at state x(n), timetn
_ (an om an
aCg" 9’ ' de Xy
ga - Expected l-sigma estimation error in Ag
G = Square root of 7th diagonal element of state covariance matrix
OAM - Expected l-sigma estimation error in A
= Square root of 8th Jgiagonal element of state covariance matrix
H(s) - Low-pass pre-filter transfer function
Hg (£) - SQUID measurement noise shaping filter
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Introduction

The Stanford Relativity Gyroscope Experiment (Gravity Probe-B), will use four supercon-
ducting electrostatically suspended spherical gyros carried in a drag-free Earth satellite
with spin axes nominally aligned with Rigel. Each spin orientation with respect to the
line-of-sight to Rigel is measured using a SQUID magnetometer. This gives the direction of
the London magnetic moment (which is along the gyro spin axis) compared to the readout of a
telescope pointed nominally at Rigel. The satellite rolls about the line-of-sight to Rigel
with a period of 10 minutes. By rolling about the line-of-sight, measurement signal con-
tribution due to relativistic precessions become modulated at roll frequency, and can thus
be separated from low frequency drift errors characteristic of 1/f SQUID noise.

To reduce error, the scale factors of the gyro and telescope readouts should be matched
to about 2%. We plan to apply a low frequency, low amplitude, dithering command to the
attitude control pointing system. This introduces a signal component at dither frequency
which can be separated from the main signal and used in a feedback loop to adjust the
telescope scale factor to match the gyro scale factor.

Recently a full Kalman Pilter model was developed to handle the data reduction. Using
"true" state values, the measurement model, and the state dynamic model, simulated measure-
ment data, with added random noise was generated. This simulated data was fed into the
Kalman Filter, whose output was the state estimate {(which included the relativity effects)
and state covariance.

The results agree well with the previous work of R. Vassar, J. V. Breakwell, C. W. F.
Everitt and R. A. Van Patten.l’?

Included in the Kalman Filter model are the following:

1) A low-pass analog pre-sampling filter modéled as an equivalent discrete-time digital
filter (one state).

2) Estimation and feedback of a sinusoidal dither signal to keep the net telescope scale
factor matched to the gyro scale factor to within ~2% (one state).

3) A SQUID noise shaping filter (one state) designed to match projected power spectrum data
at both roll frequency and dither frequency (the only frequencies of interest).

4) Ten additional states as follows:
Gyro scale factor

Spacecraft roll angle

Body fixed bias

Geodetic relativity coefficient

Motional relativity coefficient

East-west proper motion of Rigel

North-south proper motion of Rigel

Initial east-west gyro spin axis misalignment
Initial north-south gyro spin axis misalignment -
Parallax of Rigel due to Earth's orbit about the Sun

® % O %k % % % X %

5) The following are treated as "known" effects and permit self-calibration of the readout
scale factor:
* Orbital aberration of starlight
* Annual aberration of starlight

6) Only time, orbital parameters and roll angle are updated during occultation of Rigel by
Earth.

Note: An alternative and slightly simpler Kalman Filter would consider the differences
[geodetic -~ northward proper motion] and [motional - eastward proper motion] rather than
four separate states. The accuracy of determination of the relativity coefficients is of
course limited by the knowledge of Rigel's proper motion.

Kalman Filter for data reduction

Given measurement data z(n), n=0,1,2,..., and a discrete-time mathematical model of a
physical process which relates some quantities of interest x(n), called states, to the
measurements according to:

x(n+l) = ¢(n) x(n) + G(n) v(n) (1)

z(n) = A(n) x(n) + n(n) , (2)
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the function of Kalman Filter data processing is to provide state estimates, ®(n), from

measurements z(n). See block diagram Figure 2.
KALMAN o
— ="
2(n) FILTER (n)

Figure 2: Data reduction by Kalman filtering

The state transition, input, and measurement matrices ¢(n), G(n), and A(n) respectively,
n=0,1,2,... are assumed known. The quantity n{(n) is measurement sensor noise and v(n)
corresponds to state process noise which is included to account for inaccuracies in state
dynamics modeling.

The statistics of the noise processes (assumed uncorrelated) are assumed known and given
by:

E (n(i) nT(3)) = { R, 1= (3)
Lo, i#]
E{(v(i)—\‘z;in(v(j)—x‘z(j))T}={RV‘i)' i=3 (4)
o, i#3 .
JE {n{n)} =0, E{v(n)} = 7(n), E{n(n)[v(n)-—%(n)] } =0 (5)

Kalman Filter data processing algorithms are derived by minimizing the weighted sum-of-
squares error performance function:
- -1 - 1 . . .y T
J(n) = (x(0) -x(O))T M(0) T (x(0) -x(0)) + 7§ {(A(i) x(i) - z(1))

R_(1)7Ha(1) x(1) - 2 (1)
i=0

.y _=(:\2T N TN
+ (VKl) v(l)) Rv(l) {v(i) V(l))}

It can be shown® that minimization of J with respect to the unknown states x(i) yields
the following recursive algorithms for the state estimate x(n)*:

£m) = £m + maT @maT+R )™ (2(n) - aR(n)) (6)
P(n) = M(n) - M(n) AT(AMAT+Rn)_l A M(n) (7)
R(n+l) = ¢ X(n) + G¥(n) (8)
M(n+l) = ¢ P(n) & +G R, G (9)

It can be shown that the matrix P(n) is the state covariance matrix defined by P(n) =

E{(x(n) -%(n)) (x(n) -%(n))T}.

The diagonal elements of P(n) correspond to a l-sigma variance of the estimate error
and thus provide a theoretical indication of estimate accuracy.

The algorithms (equations (6) to (9)) are started by assuming an a priori initial state
estimate %(o) and an initial state covariance M(o) which corresponds to the uncertainty in
the initial state estimate. The algorithms are propagated forward in time with each new
measurement z(n). For the Gravity Probe-B (GP-B) data flow simulation, the processing
algogithms (equations (6) - (9)) are implemented in the numerically accurate square root
form~.

Development of a mathematical model for the GP-B measurements

The two primary measurements for data reduction of the GP-B experiment are the SQUID mag-
netometer and telescope measurements. Shown in Figure 3(a) is the spacecraft pointed nomin-
ally towards the star Rigel (inertial reference) and rolling about the line-of-sight to
Rigel. The spacecraft is commanded to point to Rigel but due to limitations of the attitude
control system, non-negligible pointing errors are measured by the telescope as shown in
Figure 3(b). The SQUID magnetometer measurement is proportional to the angle between the
gyro spin vector bt and the SQUID loop plane, which is fixed in the spacecraft; see Figure
3(c). General relativity predicts3 that the gyro spin axis will precess 6.6 arcsec/yr in
the Northward direction due to the Geodetic Effect and 0.042 arcsec/yr in the Eastward
direc?ign due to the Motional Effect. The purpose of the experiment is to detect these
rglat1v1stic effects. The spacecraft is also made to undergo a small amplitude sinusoidal
dithering motion about satellite body axis $2. As will be shown, this dithering motion
serves to provide a signal for matching the gyro and telescope scale factors to about 2%.
The gyro (SQUID) and telescope measurements can be shown to be given by?,.
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Figure 3: Spacecraft orientation and telescope and gyro measurements
Gyro: yG(t) = CG(EW Cos ¢ + NS Sin ¢) + CG § +b
+ CG(e1 Cos ¢ + 6, Sin ¢) + N (10)
Telescope: yT(t) = C,I,(e1 Cos ¢ + 8, Sin (13) + CT § + n, (11)

- CT)(61 Cos ¢ + 6, Sin ¢) + b + n (12)

G

Note the dependence on the spacecraft roll angle ¢ and the appearance of the dithering
motion § in both the gyro and the telescope signals. The gyro spin axis deviations EW and
NS are modeled by initial misalignments EWo and NS5, relativity drift effects, and iner-
tial corrections due to the known effects of aberration of starlight, parallax, and Rigel
proper motion. In addition, though not considered in this simulation, it may be necessary
to model other effects such as polhoding of the gyro rotor, torque induced drift, bending of
starlight, and Earth oblateness effects. These effects were considered in previous error
analyses.2r® Note that the spacecraft pointing error appears in the gyro measurements,
equation (10). To recover the inertial reference, the telescope signal is subtracted from
the gyro signal.(12) Notice that the pointing errors g,, and g, and the dithering motioné
corrupt the measurement (do not drop out) unless the scale factors are matched; Cg=Crp. As
will be shown later, the residual dither signal (CG—CT)G can be used in a feedback scheme
to adjust the telescope scale factor.

y({t) = CG(EW Cos ¢ + NS Sin ¢) + (CG - CT) § + (C

Data flow instrumentation and data reduction simulation

The data reduction simulation considered the configuration depicted in Figure 4, wh‘ich is

W, WHITE NOISE ng,NOISE
Hs(f)

LOW-PASS A/D
PRE-FILTER T
Yot | 7/[;(') 10 sec VG(nT)
From [GTRO Ceo > M) o ) TRANSMIT
TRUTH 0
MODEL yrin L 450 > Vo ferouno
TELESCOPE H(S) ey —»
nT
ﬂDATA GENERATION (SATELLITE)
DATA REDUCTION (GROUND COMPUTER)
X=(Cqr A0, Ag Ay, PMe v PMys , EWg NS €)1
%(n) } ’ O-A(;
KALMAN FILTER MODEL Pa —>a,,
Xn+l ¢>'; "n)*’ GnVn o ——DEG
=H ~
Yn Xpt+ np n } A,

IKT(nH): Kt (n)+KaAp(n)

L

Figure 4: Data flow simulation and data reduction
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representative of the most basic set-up. Both gyro and telescope signals are passed through
low-pass filters before sampling to decrease the effect of aliasing of high frequency noise.
After sampling, the gyro and telescope data are transmitted to ground where the data pro-
cessing occurs. A scale adjusting factor Kp is introduced to the telescope data on ground,.
The Kalman Filter thus -sees a residual @ither signal contribution of (Cg - KpCqp) A Cos(wgt) =
Ap Cos{wgt). Separating the dither signal from the other frequencies, a feedback law is
implemented, based on the estimate Ap, to match the scale factors, i.e., Ky ~+Cg/Cr. The
actual study consisted of an all-digital simulation. Truth model measurement data was gen-
erated digitally using an assumed "true" state value x and measurement equations (10) and
(11). The low-pass analog filtering process H(s): y>v was simulated by an equivalent
discrete-time digital filter. A noise shaping filter? was added to approximate SQUID noise
power spectrum data projected from previous experimental work.® The generated data, v (n)
and vp(n), was thus submitted to the Kalman Filter algorithms. The objective of the data
processing is to extract, as accurately as possible, the assumed true state x. The state
estimate X and covariance P serve as actual and theoretical, respectively, indicators of
data reduction performance.

Manipulation of the mathematical model into a form compatible for Kalman filtering

Before data processing can be applied, the measurement equations (10) and (1ll) must be
manipulated into the general form of equations (1)-(5). The mathematical model consists of
the following:

y(n) & yG(n) -yT(n) = H(x(n)) +n(n) (13)
where H(xn) = CG(EW Cos ¢ + NS Sin ¢) +AD Cos (wgt)+b
and EW = EWO +EWG AG+EWM AM+PMEwt+ EWann+ Eworb

NS = NSO +NSG AG+NSM AM+ PMNS t+ NSann +Nsorb
x(n+l) = ¢'(n) x(n) +G'v'(n) (14)
where &' = Illxll for state x defined as

A

T
x 2 (Cgr ¢, Bps by Ay, Ay, PMp, PMo, EW NS_, €)

#(n) & ¥5(n) - %,(n) (15)
= -b, ¢(n-1) +a,y(n) +a1y(n—l)

Low-pass pre-filter with cut-off at W, = 0.10 rad/sec

with b, =-1/3, a ,=a, =1/3

n(n) = -4, n(n-1) +c w(n) +c w(n-1) o (16)

Noise power spectrum shaping filter
With d,=-0.71915, ¢ = c, =0.14042

0
First, linearize equation (13) by Taylor's series expansion:
y(n) = H(?{(n))+HX(§(n)) (x(n) =x%x(n)) +... +n(n) (13)"

Equations (15) and (16) can be realized in state space form as:

E(n+l) = -a /a £&(n) +l/a0 #(n) (15) '
#(n) = (a, -a b)) g(n) +a,y(n)
n{n+l) = -d, n(n) +w(n) (16) '
n(n) = (¢, -c 4 ) n(n) +c, win)

Substituting (16)' into (13)' and then (13)' into (15)°:

=> #(n) = (a, -a,b,) &(n) +a, {H(x(n)) +HX(>—<(n)) (x(n) - x(n))
Hec, -c,d,) n(n) +c, win)}

=> #(n) - a [H(x(n)) = H (X(n)) x(n)]=

n{n)
=la,(c, - cod;) i(a; —a,b,) ia H (X(n))] L%—Eg;—] + a c w(n) (17)
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Equation (17), which will become the new measurement equation, contains the noise term
a,c, w(n) which is correlated with the process noise term in equation (16)'. This violates
the uncorrelated assumption of equation (5). To remove the correlation, subtact al x (17)

from (16)' : 0Co
c
- - - __1 _ 1 z . "
nintl) = - =% (a, -a,b;) £(n) c: ln(n) g, Hy (x(n) x(n) (16)
* g oy L¥n) -a (H(x(n) -H (x(n) X(n))]
Equations (15)' and (16)" can be augmented to (14):
<, ! 1
n (n+1) e N (a, ~a b)) C T, H_(x(n)) n (n)
|
£(n+l) | = 0 -2 ! 0 £ (n) (18)
0 |
__________________________________ e _——
x(n+l) 0 0 : I1x11 x(n)
¢, L#n) -a, (H(x(n)- H_(X(n)) -X(n))]
1 .
+ a #{n)
G' v'(n)
Equations (17) and (18) are now in the general form of equations (1)~-(5), with:
c, 1 _
- - - - !
3, 3,0, (a, ~ayb,) o c, Hx\x(n))
a
o(n) = 0 -5 0 , and , (19)
0
0 0 T11x11
Ty [vn) - a, (H(x(n)) - H_(X(n)) -x(n))]J
Gv(n) = L #(n) (20)
a, .
G'v'(n)
A(n) = [ao(cl--codl)g(al--aobl)ga0 HX(Q(n))] (21)
z(n) = #(n) -a, [H(x(n)) -H_(X(n))-X(n)] (22)
n(n) = a c, wn) (23)

The Kalman Filter data processing algorithms, equations (6)-(9) are applied using the
above defined elements. The a priori state estimate at time th, X(n), as given by equation
(8), is used in equations (19) +to (22) to evaluate the measurement function, H(x(n)), and-

the measurement gradient vector, Hx(i(n)).

Results

Simulated measurement data was generated using equations (10) and (11) and an assumed
"true" state, x. Figure 5 shows the simulated gyro-telescope signal. The sinusoidal nature
of the signal due to spacecraft roll and the modulation due to orbital aberration of star-
light are readily apparent. As illustrated in Figure 4, random measurement noise was added
to the signal prior to data processing. Shown in Figure 6 is a time recording of the mea-~
surement noise. The noise was generated by passing uniformly distributed, uncorrelated ran-
dom numbers through a third-order digital recursion. The recursion was designed to approxi-
mate experimental power spectrum and noise amplitude data of an advanced D C SQUID magneto-
meter of the N.B.S. type. The measurement data was passed through a low-pass filter, as
shown in Figure 4, before being submitted to the Kalman Filter. The outputs of the Kalman
Filter are the state estimates. 1In particular, we are interested in how well the relativity
effects can be extracted from the measurement data. Shown in Figure 7 is a time history of
the geodetic coefficient estimate. The truth model value was taken at 6.602 arc sec/yr.,
and the estimate error is seen to fall to 5.7 marcsec/yr (0.086%) after 6 months of data
processing. The motional coefficient estimate appears in Figure 8. The true value is
0.04182 arcsec/yr. For this run,zero proper motion for Rigel was assumed. The estimate
error after 6 months is seen to be 2.59 marcsec/yr. These results compare well with prev-
ious error analyses. Figure 9 and Figure 10 show the estimated covariance time histories,
for June and September launches, respectively, for the relativity effects as determined by
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MEASUREMENT DATA, y(n) SIMULATED MEASUREMENT NOISE (1/f)
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Figure 5: Gyro minus telescope Figure 6: Simulated measurement noise
simulated measurement data
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Figure 7: Time history of geodetic Figure 8: Time history of motional
coefficient estimate coefficient estimate

R. Vassar2 in 1982. Based on Vassar's results,we decided to run a September launch case
because the motional coefficient error after one year is seen to be less for a September
versus a June launch. 1In an earlier one year run which assumed a June launch and a some-
what higher noise level (3.7 to 1 noise equivalent angle), the geodetic estimate error was
approximately 1 marcsec (0.015%) after a 12 month simulation. The motional estimate error
was 2.2 marcsec/yr after 12 months. The results of the earlier run also compare well with

Vassar's covariance analyses.
Y

Conclusion

Successful extraction of the geodetic effect and the motional effect was demonstrated
after separate Six and twelve month simulation runs. Extension of the current run from 6
to 12 months (48 hours of CPU time on a VAX 11-780) should yield further improvement in the
estimate accuracy. The extended run was in progress at the time of this publication dead-
line.
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Future studies will include fine tuning the Kalman Filter, and Monte Carlo type
simulations that evaluate the effects of parameter variation. We also plan to selectively
insert critical hardware elements into the simulation.

We have recently obtained access to the Cray XMP 48 Super Comouter at NASA Ames
Research Center for a trial run. With the speed advantage of the Cray one year simulations
are obtainable over niaht rather than the two to four weeks required on the VAX.
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