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On eddy currents from moving point
sources of magnetic field in the
Gravity Probe B experiment

1. Introduction

In the Gravity Probe B experiment [1], a superconducting rotating ball will be or-
biting the Earth for over a year, and the drift of its axis resulting from two General
Relativity effects will be measured. The drift is expected to be very small (0.042 arc-
sec/year and 6.6 arc-sec/year in the East-West and North-South directions, respec-
tively) and the measurement accuracy should be very high, so the classical (non-
relativistic) torques causing the drift must be either eliminated or carefully accounted
for. In particular, there will be quantum-size sources of magnetic field (fluxons) on
the surface of the superconducting rotor which induce eddy currents and thus en-
ergy dissipation in surrounding normal metals. Consequently, differential damping
torques are produced which must be estimated.

In this paper we give such estimates by solving explicitly two corresponding
model boundary value problems in plane geometry (they may also be of interest
for other applications). We are able to avoid complications of the spherical case,

imminent for the GP-B experiment, since the gap between the rotor surface and .

normal metals around it is extremely small compared to the rotor’s radius.

2. The problem for a conducting half-space

Suppose that a metal with electrical conductivity o and magnetic constant u = pg
occupies the half-space 2’ > d of a Cartesian coordinate system {z', ¥, 2'}. The
plane z = 0 is a superconductor’s surface in which a fluxon and antifluxon move
with a constant velocity vLc along the z'-axis; the layer 0 < z' < d is a dielectric
gap. According to (2, 10.00], the set of governing equations and boundary conditions
for the quasi-stationary magnetic induction B in the dimensionless coordinates z =
(2 —2%(t)/d, y = (v - y;)/d, z = 2'/d co-moving with the sources is

V-B=0, VxB=0, 0<z<1, |z, |yl < oo, (1)
]
B;li=0 = 320- [8(2)8(y) = 8(= — 0)é(y — wo)], (2)
0B
VBZO, AB = —I‘ca—m, z>1, 'IEI, lyl < 00, B|z=1+0=B|z:1_o. (3)

Here ®q is the flux of a point source (for GP-B, &, = h/2¢ is the magnetic flux
quantum), £ ,(t) = % , + vt and y} , are the coordinates of the fluxon/antifluxon,
zo = (za — z5)/d, yo = (ya — ys)/d, the rest of the notations are standard, and
we have omitted the obvious decay conditions at infinity. The only dimensionless
parameter of the problem is k = ouguvd.
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Problem (1) (3) may be solved by means of the Fourier integral transform in
the & and y variables, which leads to rather cumbersome double Fourier integrals
preventing further analytic calculations and hiding the physical meaning of the result,
Instead, we look for a perturbative solution as a power series in the small parameter
K, k 2 0.02, for the GP-B conditions, that is,

B(z,y,2) = BO(z,y,2) + kBM(2,y,2) + k?B® (2, y,2) + - - -, (4)

where the B&*) | k= (, 1,2,..., arc to be determined successively from the sequence
of problems implied by (1)-(4), namely

V-BY =0, vxB®=y0, <1,

B .m0 = 2 5()5(4) ~ 8z — 20)6y — 30)] v, (5

OEB(k_l)

V-B® =0, AB® = —(1 - §4) 0 —
Oz

y 2> 1, B(k)lz:1+0 = B(k)lz=1—0~ (6)

The corresponding eddy current density in the conductor is (12, 10.00])

j= —VxB= (RO 4 k5D 4y 02 gy B® > 1, (n
NOd pod
where we have taken into account the fact that ¥V x B(® = 0 in the whole half-
space z > 0. Naturally, the current density is of the first order in K, since without a
conductor (x = 0) there is no current at all. Our aim is to determine i and then

to calculate the dissipated power to the first non-vanishing order.

The ‘unperturbed’ field B(®) js that of the two point sources in a half-space

without a conductor. It satisfies the Laplace equation in the whole half-space z > 0
with the boundary condition (2) and therefore is given by

B = vy, w%a%a=—f}<%“%>’z>m )
w 0

where R = /22 + y2 + 22 and Ry = /(2 — 20)2 + (y — y0)% + (z — 20)2.

To find 1) using (7), we do not need B itself (from (6) with & = 1), but
rather its curl in the conductor. Surprisingly, the latter may be determined without
completely solving the boundary value problem: from (5) and (6) we can derive a
representation of the form

B = v () - SH©) +V x AW 4y, 51, (9)

where 1) and A®) are harmonic functions in z > 1, and A® is divergenceless
there. Therefore, the first two terms in (9) are curl-less, so that we have (see (7))

VxBW = vy©® xe, = BOxe, j= ki +0(k?) = ov B x e, +0(x2). (10)
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The last result has a clear physical meaning: when a conductor moves with velocity
v(® in an external magnetic field B(®) the induced current density in it is given
by the Lorentz formula j = ov(® x B(®, In our case v(® — —ve,, and, as the
conductivity is small, the induced magnetic field may be neglected compared to the
‘external’ field B(®) which amounts exactly to (10).

We now evaluate the power dissipated by a fluxon-antifluxon pair as

d3 ) d3 . 2 2
Pjy = — / 72dV < 4P = . / ]? dV ~ gv?d® / {(B}O;) + (B.(foz) ] av,
251 z>1 2>1

where Py is the power dissipated by a single fluxon, B(fo) ~ V(1/R) (see (8)), and

> means that we calculate to the first non-vanishing order in . By (8), this leads
to the simplified and rather conservative estimate

3 ovid?
Pro < 4Py = - ——. (11)

Typically, the value of Py, is at least twice smaller than this upper bound.

3. The problem for a strongly conducting thin layer

We now turn to the second problem, in which the conducting half-space is replaced
by a conducting layer of thickness dy in the domain d < 2/ < d + dg. The layer is
relatively thin, doLd, and its conductivity is high, so that « is no longer small (for
the GP-B, dp ~ 0.1d and & ~ 30).

Consequently, outside the layer the magnetic field satisfies (1) with the boundary
condition (2), while in the layer equations (3) are valid; the appropriate matching
conditions are imposed at both surfaces of the layer (from here on we again use
the unprimed dimensionless co-moving coordinates). The solution of this problem is
very complicated, so another physically sound simplification of the model is required.
The proper one is to replace the thin highly conducting layer of a finite thickness by
an infinitely thin sheet carrying current of some surface density j* = j*(z,y), and to
formulate the matching conditions for the magnetic field at z = 1. The latter are
known to be ([2], 7.21)

Bz|z=l+0 - lez:l—-O) e, X (Blz=1+0 - B'z:lA—O) = Hojs; (12)

thus, to solve the problem, we only need to relate J° to B. For this we introduce the
vector potential A defined by B=V x A, V.A = 0, and note that the induction
equation, which is valid in a real three-dimensional layer, implies that j = ov O0A /dz.
Hence, for a surface current density we can write

., oA
P(e,y) = ovdo | ()

z=1

The verification of the matching condition (12) and (13) is provided by the asymp-
totic integration of the complete three-dimensional problem from the asymptotic
theory of ‘thin’ bodies (plates, shells; cf. [3]).
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In terms of A we still have a very cumbersome vector boundary value problem
which we simplify by setting A, = 0 so that V. A = 0A; [0z + 0A, /0y =0, 2 ~ 0
The latter is satisfied if A, = —0I/0y and A, = Oll/0z, where Il = M(z,y,2) is o
new function to be determined. By this and (13),

o1 oM

)y = —ovd , 1Y = ovd
Jx 0 amay‘z:l ]y 0 01‘2

(14)

z=1

Now it is not difficult to check that all the relevant equations are valid provided that
I(x,y, z) solves the problem

0%l dg
All =0, 2> 0,z #1, -= = [6(1)(5(y) —8(z — z0)d(y - yo)], (15)
022, _, d?
oIl on
<H> z:l‘ 0, <5‘Z—> z=] o 5:; z:l’

where the angle brackets stand for the Jump of the quantity inside them at » — 1,
and ko = rkdo/d = oupvdy. With the exception of the second derivative in the
boundary condition at z = 0, this scalar problem is a standard one; its solution for

z 2 1 by means of the Fourier integral transform in z and yis (f(/\,u, ...), which
denotes the corresponding Fourier image of f(z,y,...)):

(A v,2) = D(A,v)e ™, (), v) = VA% 402 >0, (16)
— e~ Azotryo)
D\ v) = %o 1—e¢ z>1.

&y v~ i(ro/2A(1 = e=7)’
From (16) and (14) we obtain

o8 A 75 /\,
23 V) _ /\VD()\,I/)E-’Y, ]y( v) _ _,\ZD(/\,I/)e_V- (17)
ovdy ovdy

To compute the dissipation rate Ps,, we use the Parseval identity and (17), which
yield
2 T
Pp=
f Udo /
—o0

= ovidyd®

\8

[(32(A,V))2 + (73, V))Z}d,\dl,

~—g 8

/ Ay2e 2 D(A, v) 2 dAdv.

8

Substituting (16) into this and using the inequality |1 — exp(—zQ)[2 = 4sin*(0.5Q)
< 4 for simplification, we arrive at the desired estimate (cf. (11))

4ov?dy®2
Pra 4Py = =—2200(xy), (18)
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where

= e 2 2
Cla) / / 72 + (ko /2)ZNE(1 — e-27)2 dAdv, (A v) = VX412 > 0.

—0o0 —0co

The double integral representing the coefficient C (ko) may be calculated explicitly

as a combination of elementary functions, and also allows for a universal estimate

C(ko) < C(0) = /4, which, being introduced into (18), provides a final bound on

Py, given by

7r0"02 do ‘I’g
ez

For the GP-B conditions, numerical estimates of the corresponding torques and drift

rates based on (11) and (19) show the latter to be smaller than those from some other
differential damping torques [4], and thus do not endanger the experiment accuracy.

Pra <4P5 < (19)
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