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This paper explores the extent to which the three “crucial tests’”” support the full structure of
the general theory of relativity, and do not merely verify the equivalence principle and the
special theory of relativity, which are well established by other experimental evidence. It is
shown how the first-order changes in the periods of identically constructed clocks and the
lengths of identically constructed measuring rods can be found without using general relativity,
and how the red shift and the deflection of light can be computed from them. Only the planetary
orbit precession provides a real test of general relativity. Terrestrial or satellite experiments
that would go beyond supplying corroborative evidence for the equivalence principle and special
relativity would be extremely difficult to perform, and would, for example, require a frequency

standard with an accuracy somewhat better than one part in 10,

I. INTRODUCTION

HE general theory of relativity is now ac-

cepted as the most satisfactory theory of
gravitation. This acceptance rests partly on its
conceptual and structural elegance, and partly on
its agreement with experimental observation.
Three “crucial tests’’ are usually cited as experi-
mental verifications of the theory: the red shift of
spectral lines emitted by atoms in a region of
strong gravitational potential, the deflection of
light rays that pass close to the sun, and the
precession of the perihelion of the orbit of the
planet Mercury. The main purpose of the present
paper is to examine to what extent the full
formalism of general relativity theory is called
upon in the calculation of these three effects, and
to what extent they may be correctly inferred
from weaker assumptions that are well estab-
lished by other experimental evidence.

It was recognized by Einstein,! four years
before the advent of general relativity, that the
red shift can be computed on the basis of the
equivalence principle. In the same paper he also
attempted to calculate the deflection of light, but
obtained half the correct value. In spite of this,
it is actually possible to obtain the light deflec-
tion, as well as the red shift, in a valid manner
without using the full theory. Although such a
derivation is probably well known, there does not
seem to be a publication that describes it.

The availability of satellites and of extremely
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accurate frequency standards has in recent times
stimulated interest in broadening the experi-
mental basis of general relativity theory. When
such experiments are being considered, it is
important to understand the extent to which
they support the full structure of general rela-
tivity theory, and do not merely verify the
equivalence principle and the special theory of
relativity; these latter are already established
with adequate accuracy by the Edtvos experi-
ments? and a great deal of work with high-energy
particles. To this end, we first use the equivalence
principle and special relativity to relate time
measures and length measures at different places
in a gravitational field, and compute the red shift
from the time relation (Sec. II). Then from both
the time and length relations thé correct value
for the deflection of light is obtained (Sec. III).
In Sec. IV, several implications of these results
are mentioned.

II. COMPARISON OF TIME AND LENGTH
MEASURES; THE RED SHIFT

Two identically constructed clocks are placed
at rest, a distance % apart along the lines of force
in a uniform or nearly uniform gravitational field
of acceleration g, as in Fig. 1(a). In accordance
with the equivalence principle, any comparison
of the periods of these clocks can be made as well
in a gravitation-free region, in which they are
accelerated upward with the acceleration g, as
in Fig. 1(b). We accomplish this by comparing

2 R, v. E6tvos, D, Pekér, and E. Fekete, Ann. Physik 68,
11 (1922).
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clocks 4 and B in turn with a third identically
constructed clock C, which is permanently at
rest, as they sweep by in near coincidence. We
assume that the fact that A and B are under-
going acceleration as they pass C does not
affect this comparison. Since C is at rest in a
gravitation-free region, it is part of an inertial
coordinate system, and makes a suitable stand-
ard for comparing 4 and B with each other.

Suppose that clock 4 has upward speed v4
when it passes C. Then if the period of Cis T,
the period of A that is seen by an observer on C
is, according to special relativity,

TA == T(l ”2’42/62)_% = T(1+2’A2/252): <1>

where the approximation assumes that the speed
of light ¢ is much greater than v4. Similarly, when
clock B passes C with speed vp a second com-
parison shows that the period of B observed
by Cis

Tpe=T(1~vg2/A) =T (14v52/2¢). (2)

On eliminating T between Egs. (1) and (2), we
find to the same approximation that

Tpm~Tall+ wsl—va?) /2 =Ta(l+gh/c®), (3)

since vg? =v,42-+2gk. Thus the inertial observer on
C can inform both A4 and B that the period of
clock B exceeds that of clock 4 by the fractional
amount (gh/c?).

We now argue that in a nonuniform gravita-
tional field we can replace the quantity gk in
Eq. (3) by the difference in gravitational poten-
tial between the positions of clocks 4 and B.
This implies that we make a series of inter-
comparisons between a number of clocks so
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FiG. 1. {2) Two identically-constructed clocks, 4 and B,
are at rest in a gravitational field. (b) The gravitating body
is replaced by an upward acceleration g of clocks 4 and B,
and a stationary clock C is introduced to compare their
periods.
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Fic. 2. A light .
pulse at B passes
close to the limb of
the sun, moving in
the positive x direc-
tion.

arranged that the field is nearly uniform from one

- to the next. Then if the field arises from a

spherically symmetric mass M, Eq. (3) becomes
T Ta[1+(GM/rs)— (GM/c*r4)]), (4)

where G is the universal constant of gravitation,
and r4 and rp are the distances of clocks 4 and B
from the center of the gravitating mass.

The gravitational red shift is easily obtained
from Eq. (4). Let B be a clock, or more realisti-
cally an atom, at the surface of a star, and 4 an
identical atom at the surface of the earth
(ra= ») where the velocity and gravitational
potential can be neglected. Then Eq. (4) tells us
that the stellar atom vibrates more slowly than
the terrestrial atom. Furthermore, the entire
system is stationary in time, so that no vibrations
are gained or lost in transit from star to earth.
Thus the spectral lines that reach the earth are
shifted toward the red by the fractional amount
(GM/R), where R is the radius of the star.

The same kind of comparison can be made for
measuring rods. If we compare two identically
constructed rods that are laid along the field
lines (radial direction), we find in place of Eq. (4)
that the lengths of rods 4 and B are related by

Lp=Lao[1—(GM/crp)+(GM/crs)]. (5)

The sign differences between Egs. (4) and (5)
occur because the Lorentz time dilation used in
the first derivation is replaced by the Lorentz
length contraction in the second derivation.

Finally, it is easily seen that a comparison of
two identically constructed rods that are laid
perpendicular to the field lines (tangential direc-
tion) leads to the relation

Lp=1La. (6)

III. DEFLECTION OF LIGHT

Alight pulse, instantaneously at B (see Fig. 2),
passes close to the limb of the sun while moving
in the positive x direction. An observer 4 on the
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earth, whose velocity and gravitational potential
can be neglected, wishes to plot the path of this
light pulse. He can do this by using Huygens’
principle if he knows how the plotted speed of
the pulse depends on its position and its direction
of motion. This in turn can be expressed in terms
of the local speed measured by a stationary
observer at the instantaneous position of the
light pulse, by using Egs. (4)—(6) to convert the
units of time and length that define the local
speed into those that define the plotted speed.

We call the stationary observer B, and set up
two other observers B’ and B” in the following
way. At the instant under consideration B’ and
B" are at the same point in space, away from
gravitational fields, and all three have zero rela-
tive velocity. B’ is accelerated with the value
of the acceleration of gravity at B, and B" is
permanently at rest. Because of the equivalence
principle B and B’ agree on all measurements
made at this instant. Also, in accordance with
the assumption made at the beginning of Sec. 11,
the acceleration of B’ with respect to B does
not affect their comparison of time and length
intervals at this same instant. Thus the three
observers agree on their measurements of first-
order infinitesimal time and length intervals;
in higher order the first-order changes in relative
position and velocity will in some cases destroy
the agreement. Since speed can be expressed as
the ratio of first-order infinitesimal length and
time intervals, all three observers will measure
the same speed for the light pulse. But B" is
part of an inertial coordinate system and so,
according to special relativity, finds that the
speed of light is ¢ in all directions. We conclude
that B also observes the speed ¢ for the light
pulse.

We now convert the local speed ¢, observed by
B, to the plotted speed ¢’ from which 4 will
compute the path of the light pulse. B finds that
the light pulse travels dx units of length during
df=dx/c units of time. But 4 knows, having
been informed by C, that B’s unit of time is
longer than A’s in the ratio T5/T4 given by
Eq. (4). Thus the time interval that 4 must use
in plotting the path of the light pulse is

' =dt(Te/Ts)=di[1+(GM/*)]. (T)

We can express dx as the resultant of radial and
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tangential components, dr and dz, as shown in
Fig. 2. Then 4 knows that B’s unit of radial
distance is shorter than A’s, so that, in accord-
ance with Eq. (5), 4 must use the radial interval

dr'=dr[1—(GM/c*r)].

In similar fashion it follows from Eq. (6) that
dz’ =dz. Thus the interval dx’ that 4 must use in
plotting the path of the light pulse is

&' = (-4 da) = [ (1 —2GM /') 4o
=dx[1— QGM/c*) (dr/dx)* ]

~dx[1— (GMx2/c2r®)];  (8)

we have made use here of the relations dx®
= (dr*4dz*) and (dr/dx)= (x/r). Combination
of Egs. (7) and (8) then gives

¢ = (dx'/dt)
= (dx/d)[1— (GMx2/®) )/ [1+(GM/c*r) ]

~c[1—(GMx*/r®)— (GM /)] (9)

Note that as determined by A the speed of light
is anisotropic since it depends on the angle
between the radial line and the direction of
propagation.

Equation (9) may be used to the order given,
since deviations of the position or direction of
the light pulse from the straight-line path
parallel to the x axis produce higher-order
changes in ¢’. Then from Huygens' principle, if
we express ¢ as a function of ¥ and ¥ instead of
x and 7, the curvature of the light path is given by

(1/¢")(9¢'/dy)
~ (GM /[ Bx*y/r")+(y/r) ).

Since ¢’ increases with increasing ¥, the curvature
is such that the ray is concave toward the sun.
Again to lowest order, v can be replaced by R,
the distance of closest approach to the sun, and
the total angular deflection is

(10)

0=fw [(1/¢")(0¢"/8y) Jy=nd. (11)

Substitution of (10) into (11) gives
6= (4GM/R),

which is approximately edual to 1.7 when R is
the radius of the sun.
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IV. CONCLUDING REMARKS

1. The first term on the right side of Eq. (10)
arises from the difference in the lengths of
standard measuring rods at 4 and B, and the
second term from the difference in the periods of
standard clocks. Since these iwo terms contribute
equally to the deflection of light, Einstein* ob-
tained half the correct value when he considered
.only the difference in clock periods.

2. The precession of the perihelion of the orbit
of Mercury cannot be calculated by an extension
of the methods of this paper for two reasons.
First, we require in addition an equation of
‘motion for a particle of finite rest mass, to replace
the argument used above that the speed of light
measured by B is ¢. Second, it turns out that
when a suitable equation of motion (the geodesic
equation) is introduced, the change in the clock
period of order (GM/c%)? cannot be neglected,
and this cannot be found by the methods of this
paper.

3. The first correct calculation of the deflection
.of light and the orbit precession was made by
Einstein,® using a method of successive approxi-
‘mations. He realized that the red shift is deter-
mined only by the time change of order (GM/c%),
that the deflection of light requires in addition
the distance change of the same order, and that
the orbit precession requires these together with
the equation of motion and the time change of
order (GM/c*r)% These points have also been
made with particular force by Eddington.*

4. Since the first two of the three ‘“crucial
tests” can be derived from the equivalence
principle and special relativity without reference
to the geodesic equation or the field equations of
general relativity, it follows that only the orbit

3 A. Einstein, Sitzber. kgl. preuss. Akad. Wiss. 831

(1915).
41 A. S. Eddington, The Mathematical Theory of Relativity
{Cambridge University Press, New York, 1924), p. 105.
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precession really provides a test of general
relativity. Moreover, any discrepancy between
theory and experiment with regard to the red
shift and the deflection of light would not only
cast doubt on general relativity, but would have
to be reconciled with the experimentally well-
established validity of the equivalence principle
and special relativity.

5. By the same token, it will be extremely
difficult to design a terrestrial or satellite experi-
ment that really tests general relativity, and does
not merely supply corroborative evidence for
the equivalence principle and special relativity.
To accomplish this it will be necessary either to
use particles of finite rest mass so that the
geodesic equation may be confirmed beyond the
Newtonian approximation, or to verify the ex-
ceedingly small time or distance changes of
order (GM/c%):. For the latter the required
accuracy of a clock is somewhat better than one
part in 10,

Note added in proof. Most of the accompanying paper by
Professor Dicke [Am. J. Phys. 28, 344 (1960), this issue ]
has no bearing on this paper. However, two points he raises
are worthy of comment. (1) I did not mean my paper to
constitute an indictment of the satellite clock experiments.
Terrestrial, balloon, or satellite experiments on the gravi-
tational red shift had not been accomplished when this
paper was submitted for publication (although there has
been much progress since then), and the astronomical
measurements are of limited accuracy. Thus I believe that
such experiments are well worthwhile. (2) The E&tvos
experiments show with considerable accuracy that the
gravitational and inertial masses of normal matter are
equal. This means that the ground state eigenvalue of the
Hamiltonian for this matter appears equally in the inertial
mass and in the interaction of this mass with a gravitational
field. It would be quite remarkable if this could occur with-
out the entire Hamiltonian being involved in the same way,
in which case a clock composed of atoms whose motions are
determined by this Hamiltonian would have itsrate affected
in the expected manner by a gravitational field. Neverthe-
less, as stated in the foregoing, I believe that a direct
demonstration that the equivalence principle is valid for
clocks would be useful. On the other hand, it is evident
that experiments of this type could not verify any features
of general relativity theory other than the first-order change
in the time scale.



