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Abstract

Magnetic fluxons trapped on the superconducting gyroscopes used in the Gravity Probe B (GP-B)
experiment produce an additional flux measured by the superconducting quantum interference device
(SQUID). A better understanding of the signal caused by the trapped flux can lead to improvements
in the quality of the GP-B data analysis. In this thesis, a spectral representation of the trapped flux
signal is determined and exact expressions for the amplitudes of the spin minus roll harmonics are

obtained. Some applications of these results to data analysis are discussed.



1 Introduction

Gravity Probe B (GP-B) is an experimental test of Einstein’s general theory of relativity. The GP-B
satellite, which will be launched late in 2001, will contain four gyroscopes. According to the predictions
of general relativity, the angular momentum vectors of these gyroscopes should precess over the course
of a year by 6.6 arcseconds in the plane of the orbit and by 42 milliarcseconds perpendicular to the plane
of the circular orbit of 650 km altitude. In order to determine the direction of angular momentum of a
gyroscope, its surface will be covered with a niobium coating, so that at the experimental temperatures
(2.5K) the rotors will be superconducting and will thus develop a London moment [1]. The magnitude
of this London moment is proportional to the rotor spin frequency and its direction coincides with that
of the instantaneous angular velo¢ity. The magnetic flux due to the London moment can be measured
by the pick-up loop of the superconducting quantum interference device (SQUID) and is proportional
to the small angle between the London moment vector and the pick-up loop plane, making it possible
to measure this angle, i.e. providing the needed readout.

Since niobium is a type II superconductor [2], besides the desired London moment the supercon-
ducting rotor surface will also be pierced by lines of trapped magnetic flux (fluxons), creating paired
quantum-sized sources of magnetic field of opposite sign (half—ﬁuxbns) attached to the surface. Mag-
netic fields caused by these fluxons will contribute to the total flux through the SQUID pick-up loop
and will, therefore, affect the GP-B measurements. Thus it is rather important to accurately analyze

the trapped flux contribution to the high frequency (HF) SQUID signal in order to minimize the



impact of trapped flux on the GP-B result‘s.

Along with some difficulties in the data analysis, the trapped flux signal brings in some useful and
potentially useful information. For instance, the spin and polhode frequencies are determined from
it in the baseline GP-B analysis. Also, the variation of the even HF harmonics amplitudes can be
used in principle as a back up for the London moment readout. This is another reason for trying to
investigate the trapped flux more thoroughly.

The analysis of the trapped flux carried out so far [3, 4, 5] made possible the generation of a realistic
trapped flux signal for the GP-B data reduction simulations [6]. The complicated time behavior of the
signal depends, along with the rotor spin and polhode frequencies and satellite roll frequency, on the
angle vp between the rotor symmetry axis and the angular momentum vector, the total number N of
fluxons present, and the position of each half-fluxon on the rotor surface. Were all these parameters
known for a given GP-B gyro, one could, in principle, calculate the trapped flux contribution and
remove its low frequency (LF) part from the LF SQUID signal, thereby improving the accuracy of the
experimental result. So far, in the baseline GP-B data analysis the spin and polhode frequency are
determined from the HF telemetry data (the 6 lowest FFT harmonics of spin minus roll).

The aim of this thesis is to try to improve the analytical representation of the slowly varying
amplitudes of HF harmonics. By doing this, we hope to provide new means for advanced trapped
flux signal analysis, allowing one to determine some and, with luck, perhaps even all the parameters
mentioned above.

Section 2 of the thesis contains a synopsis of earlier results on the trapped flux due to a stationary



half-fluxon and the half-fluxon kinematics due to gyroscope motion along with some elaborations.
Section 3 presents a spectral analysis of the trapped flux signal. In particular, explicit expressions
for the amplitudes of the harmonics of spin minus roll frequency are obtained in the limits valid for
GP-B. In section 4 these amplitudes are related to the high frequency harmonics data that will be

present in the GP-B telemetry. Methods of analysis of these data are discussed, and some preliminary

results are given.

2 Expression for Trapped Flux through the Pick-up Loop

2.1 Trapped Flux of a Point Magnetic Charge
as a Function of its Position

According to papers [4, 5], in which most of the' results of this section are obtained, the magnetic field
fluxons in the GP-B experiment may be considered as static and non-interacting ones. Therefore,
the magnetostatic approach to calculating the flux can be used and, moreover, the total flux through
the SQUID pick-up loop is the sum of the fluxes due to the individual fluxons. We may treat each
half-fluxon as the point source of the magnetic field with coordinate angles J¢, ¢s on the surface
T = rg of the rotor, since the fluxon’s size (1075 cm ([2], p. 184)) is much less than the size of the
gyroscope (1.91 c¢m radius). Here, (7,9, ) describe the sperical coordinate system in which the origin

coincides with the pick-up loop center and the z axis is perpendicular to the pick-up loop plane. The



dependence of the half-luxon position angles ¥¢, ¢ £ on time due to the rotation of the gyroscope will

be discussed in section 2.2.

In these settings, the following formula for the magnetic flux of a, single half-fluxon is obtained (3, 4):

Ds(cosdy) = —Fg(cos JIr);
00
Fs(s) = Ig (1~ 6)** Pyy1(s) [Por(0) — Por12(0)]

Z< (k — 1), FTC+172) (1= 0%+ Py, (o (1)

Here 4 is the dimensionless gap between the pick-up loop and the rotor, 0 < § = (R—rg)/R < 1, where
R is the pick-up loop radius and Tg is the gyroscope radius. The function Fj(s) can be viewed as a
transfer function that converts the ”input” fluxon position signal Sin(t) = cosIf(t) into the “output”
trapped flux signal S,;(t) = 0.5%0F5(Sin(t)) that is present in the GP-B readout. It is physically
obvious that Fj(s) is an odd function of 8; in particular, F5(0) is zero since there is no flux through
| the pick-up loop due to a half-fluxon located exactly in the plane of the loop. If the loop is located
immediately on the surface of the gyroscope, the flux is obtained by setting 6 = 0 in (1), which then

reduces to (3, 4, 5):

1 f0<s<1;

k+3/4

FO(S)—_Z( (]C-f—l)'

k-O

——=I'(k + 1/2)P2k+1(3) 0 if s=0; (2)

-1 if —-1<s<0.

The physical interpretation of this formula is that, with the pick-up loop located on the gyroscope’s

surface, the flux remains constant while the half-luxon stays in the same hemisphere of the rotor and
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abruptly changes its sign when the half-Auxon crosses the plane of the loop. Expressions (1) and (2)
are the main results of the Honors Thesis by L. Wai [3].

At the same time, equation (2) points out the problem with using formula (1) for the GP-B
conditions, where § = 0.025 is rather close to zero. Although for any § > 0 the series (1) has an
absolutely converging majorant, and, therefore, F;(s) is an analytical function of s, there is a jump
discontinuity in the function at s = 0 when § = 0. Consequently, the convergence of series (1)
deteriorates for small 4, thereby making this series useléss for numerical calculations at small §. As

6 approaches zero, the transfer function approaches the Heavyside step function with a step at the

origin (see fig. 1).
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Fig. 1. Universal Curve Fs(s) and Its Approximation.

One way to deal with the difficulties in the numerical calculation of F(s) from expression (1) is



to use the integral representation of the trapped flux [5]:

\/-/ﬂf dy exp (i /2) A V14X 1

— 3
Fy(cosdy) = \/cosy — cos ¥y VIFXZ  2) +2/\ ’ (3)

= (1 - 6)exp (iy)

Expression (3) may be conveniently used for computation because its integrand is algebraic and it is
fairly easy to deal with the weak singularity at the upper limit.
Because of the described "kink” profile, the significant parameters of Fj(s) for small § are the value

of its gradient at s = 0 and the ”saturation” value F3(1). These quantities are calculated in [4, 5] to

be:
— 1 26 — 62 B '
o= = 15 [1- 2] < 1- (2 i 0 @
s _ N2

where K(k), E(k) are complete elliptic integrals [8] of the first and second kind, respectively. A good

approximation that has the correct slope at s = 0 and the correct value at s = 1 is the function

Ag arctan B _ fs, 6 — +0 (6)

Fs(s) =~ Aj arctan @, yy

As

The error of this approximation does not exceed 0.4% for § = 0.025. Moreover, equation (6) provides
a very good approximation of the derivative: the error in the derivative does not exceed 1% in the
region of interest (s = O(8)). The plots of both the exact expression (3) and its approximation (6) are

given in fig. 1, and their respective derivatives are shown in fig. 2. For § = 0.025, we have A5 ~ 0.637.
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Fig. 2. Derivative F§(s) and Its Apbroximation.

Although we have discussed the flux due to a single magnetic charge, our results can be easily
applied to the GP-B situation in which N = 100 fluxons will be present on the gyroscope’s surface
after it is cooled below the transition temperature. By the principle of superposition, the total flux is
simply the sum of the fluxes due to the individual half-Auxons. Therefore, if we denote the coordinate
angles of half-fluxon 7 by (9%, % ), where '+’ and -’ correspond to positive and negative half-fluxons,

respectively, and 7 ranges from 1 to N, the total flux is:

N N
(1) = 3|0 (t) + 2L ()] = % >~ [Fs(cosd?, (£) = Fs(cos o (1))] (7)
=0 =0



2.2 Kinematics of a Point Magnetic Charge

Before we can analyze the trapped flux signal we must determine the motion of the half-fluxon in
space; in particular, we are interested in the behavior of ¥¢(t), which is the angle between the vector
in the direction of the half-fluxon on the rotor’s surface and the normal to the pick-up loop.

First, note that the roll axis of the satellite can be regarded as fixed in inertial space since, besides
a small poiniting error, the satellite always points at the Guide Star. Similarly, if we disregard torques
(which are very small in the GP-B experiment) and the slow general relativistic drift, the angular
momentum of the gyroscope, L, must remain fixed in inertial space. The roll axis lies almost exactly
in the plane of the pick-up loop with a small misalignment o < 1075 (see fig. 3) and L makes an
angle 8 < 10~ %rad with the satellite’s roll axis (see fig. 4). Let us use the inertially fixed Cartesian
coordinate system in which the z axis points along L and the x axis is perpendicular to both L and

the satellite’s roll axis. Then the normal to the pick-up loop can be written as:
n(t) = cos a cos(6r)x + (cos asin Oy cos B — sinasin B)y + (sina cos 8 + cos asin 6, sin B8)z, (8)

where 6, is the roll phase given by 6,(t) = wyt.
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Fig. 4. Orientation of angular momentum with respect to the roll axis.

Next, we must determine the motion of the unit vector in the direction of the half-fluxon in the
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same coordinate system. The GP-B rotors can be very accurately modeled by a symmetric top with
the moments of inertia equal to I + I along the body symmetry axis and I along the other two
principal axes. (A GP-B requirement states that |6I|/I < 107%.) The dynamics of the force-free
motion of a symmetric top are well-known (see, for example, [9]). In particular, the spinning fop’s
angular velocity is approximately ws = L/I, while the angular velocity vector itself precesses around

the body symmetry axis with angular frequency ([9], section 9)

L 1611 |61

L2~ e cos s, 9
ST ISV N WscosYB (9)

(.Up=

where vp is the angle between the body symmetry axis and z. If 6,(t) = w,t + 6 and Op(t) =
wpt + 6° denote the spin and polhode phases, respectively, we can transform the half-fluxon vector e,

corresponding to a half-fluxon located at (r,,£,7) to our coordinates as follows:
ex(t) = sin€ [cos 5 cos 8, (t) sin (6p(t) + ) + sinG,(t) cos (Bp(t) + 1)] + cos £ sinyp cos b, ()

ey(t) = sin [cos yp sin B5(t) sin (65 (t) + 1) — cos Os(t) cos (8,(t) + 1)] + cos & sin g sin 4, t (10)
e-(t) = —sinésinygsin (Op(t)‘ + 1) + cos€ cosyp

We can now compute the scalar product of n(t) and e to obtain the desired cos £(t). Making this

computation to the first order in misalignments § and a we obtain, by means of equations (9) and
(10) [5]:

cos ¥f(t) = vsin© + e(Bsin b, + a)

O(t) = (ws —wp)t +q; 6-(t) = wrt + 62 (11)

11



If the rotor is perfectly sl;herical, ie. 6I = 0, the ampltudes and initial phase v = sin £, ¢ =mnand
€ = cos¢ are all true constants. If, however, 41 # 0, they vary slowly in time at the polhode frequency
(9): |

V(wpt) = Va2 + 82, tan g(wpt) = g

€(wpt) = cosyp cos & — sinyg sin & sin (wpt + 1), (12)
where

a = a(wpt) = cosyp cos ¢ + sin & cos (wpt + 1)
b = b(wyt) = cosyp sin € sin (wyt + 1)

The input to the the trapped flux tranfer function can therefore be described as a single harmonics of

the spin minus roll frequency modulated in both phase and amplitude at the polhode frequency, with

much smaller roll frequency and D.C. components that are also modulated at the polhode frequency.
A further study of the behavior of v(wpt) is necessary for the subsequent investigation. By defini-

tion, v > 0, but it is important to understand under what conditions it can actually turn to zero, and

what its minimum value is when it does not. One should consider the following cases:

L. If cosyp = 0, then v(wyt) = 0 whenever cos(wpt + 1) = 0. (If we were very lucky in the position of

the half-fluxon, so that cos¢ = 0, then v is always zero and does not contribute to the signal at all.)

2. If cosyg # 0, but tané = +cosvg, then v(wpt) = 0 whenever sin(w,t +7) = 0.

3. Finally, if the half-fluxon position and the angle yp are such that neither of these conditions hold,

as will almost always be the case, v(wpt) can not equal zero. In fact, some trigonometric manipulation

12



shows that v is bounded by:
max v = max [| cosyp cos € + siné|, | cos yg cos £ — sin €]

min v = min {| cosyp cos § + siné|, | cos yp cos € — sin €|

These expressions are relevant to the discussion in section 3.3.

3 Spectral Representation of the Trapped Flux Signal

3.1 General Expression for the Amplitudes of Harmonics
of Spin + Roll

Let us now turn to the spectral analysis of the trapped flux signal transfer function, Fs(cos 95(t)).
"This is not entirely straightforward because cosd £(t) is not a periodic function of time. However, by
~ formula (11), it has the structure

vsin@ + p

with v, 6 and p specified as functions of time by (11) and (12). Therefore cos 9¢(t) and, with it,

Fs(cos94(t)), is a periodic function of 6, allowing for a Fourier expansion:

[ o}
Fs(vsing + p) = Z(.An sinnf + By, cosnh), (13)
n=0
where
1 ™ . . 1 T
Ap = - /_7r Fs(vsin 6 + p)sin ndde, B, = m /_7r Fs(vsin 6 4 p) cos nddé (14)

13



Denoting the derivative of Fs(s) in s by F}(s) and integratng by parts in the expression (14) for A,

we obtain, using the fact that Fs(s) is odd:

T
Ap = 1 [F5(vsin® + p) + Fj(vsin@ — p)] v cos 6 cos ndde,
nm Jo
B, = 1((1—41_5’10—)/0 [F5(vsin® + p) — Fs(vsinf — p)] cos nfdo (15)

Recall that in our analysis both the amplitude and the period vary slowly at the polhode frequency.

3.2 The Amplitudes of Harmonics in the Limit of Small y

The smallness of the misalignments in GP-B guarantees that the second term of Eq. (11) is about 10°
times smaller than the first. This allows us to consider cos¥(t) = vsinf + p in the limit |u| < |v|.

Then, to the lowest order, equations (15) become:
A, = 2 —/7r F;(vsin6)v cos § cos nfdd + O (#2)
nmw ’

B, = )/ F3(vsin@) cosn0d0+0( ) (16)

7r(1 + 6n0
Since Fj(s) is an odd function, Fj(s) is an even one. Therefore, the Taylor expansion of Fj(vsin8)

contains only even powers of vsin 6;

00
Fi(vsin6) =) K% sin% ¢
=0

Substituting this into equations (16) and changing the order of summation and integration, we

find:

Ap = [K 2 / (sinzj G cos b cos nedﬂ)] ,
0

14



B, = 1 n 5n0) Z [K v / (sian 0 cos nadﬁ)} (17)
Note that

™ .
/ sin® 0 cos nfdf = 0 for odd n,
0

SO

T . ™ . .
/ sin? @ cos 0 cos nfdf = / [sinzj 6 cos (n + 1)8 + sin?*1 gsin n0d0] df =0 for even n
0 0

(see (8], eq. 858.506). Hence the only nonvanishing B, are those with even n and the only nonvanishing

An are those with odd n. This allows us to rewrite equation (13) as follows:

Fs(vsin® + u) = Z [Ax sin (2k + 1)8 + By, cos (2k6)] (18)
k=0

where

—_ — 2V 4 / .
A = Aoy = m/o F(vsin @) cos 8 cos (2k + 1)6d9,

By = By, = Fj(v sin ) cos 2k0d6 (19)

2u /
(1 + 6ro) Jo
The same result was obtained in [4] by means of a different approach, which ensures the structure of

(18) rather than (13) for the case of arbitary u/v.

3.3 Explicit Expression for the Harmonics Amplitudes

As mentioned previously, the transfer function F;(s) approaches a step function for small values of & ,

which is the case in GP-B. Hence its derivative Fy(s) is proprotional to the Dirac delta function in

15



this limit. To determine the proportionality coefficient, we note that

/_ 11 Fj(s)ds = 2F5(1)
Then,
Fi(s) ~ 2F5(1)8(s), 6 — 40 (20)

Now, by introducing Fj(s) from (20) into equations (19) for the harmonics amplitudes we obtain:

2v 4 .
Ap ~ m/() 2F5(1)d(v sin 6) cos 8 cos (2k + 1)0d6 =

4vFs(1) (™ §(sinf) 4F5(1)
= 0\ 2
@+ O Jo ” cos @ cos nfdf @kt )n (21)

N 2u 4 . _ AuFs(1) [T é(sin6) _ 4uFs(1)
B, ~ m/o 2F5(1)6(v sin @) cos 2k6d8 = @+ 007 Jo ——cos 2k0do = m

The last step in the evaluation of both of the above integrals is based on the fact that the argument

of the d-function, sin @, is equal to zero twice on the interval, at zero and 7. However, since these two

zeros are the two endpoints of the interval, the contribution due to each is half of the value of the

integrand at that point.

In the integration above, we used the fact that for a non-zero m, §(mz) = 6(z)/m. Unfortunately,

as noted at the end of section 2.2, v may come close to zero. Assuming that v stays greater than the

small parameter ¢ = 2F5(1)/mks, we can write down a more precise approximation, which at least

gives a finite value for B whenever v = 0:

4F5(1)

~ 0\ 2 d 2
k= (2k+1)7r7rar0tans +OE)
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4uFs(1) 2 v 2
kN 0+ om)r arctan S + O(e*) (22)

To do this, one needs to use the technique of asymptotic evaluation of integrals with so-called é-like
kernels [[11], [12]]. Note that depending on the fluxon position angle ¢ and on B, V(wpt) could in
some cases become smaller that € and even turn to zero (see discussion at the end of section 2.2).
Whenever this happens, both (21) and (22) become invalid; however, that happens, if at all, only
over relatively small intervals of time ~ €Ty, = 0.025T), where T, = 2m /wy is the polhode period. In
addition, with a realistic number of fluxons for GP-B (N = 100), the probability that v goes to zero
simultaneously for more than one half-fluxon is extremely small, and an individual contribution of a
single half-fluxon is almost negligible.

One may be surprised to see that in equations (22), A, falls rather slowly with increasing k, while
By, is independent of k altogether, suggesting that the corresponding series may not converge at all.
However, one should bear in mind that the above expressions are valid only for a bounded set of n,
i.e., only for the first several harmonics. This approximation is sufficient in the case of GP-B, where
only the first three odd harmonics (k = 0,1,2) and the first three even harmonics (k =0,1,2) will
be considered. In general, it can be shown via integration by parts that Ay < Ch/(2k + 1)? for an
arbitrary power h; however, C}, grows exponentially with A. On the other hand, if we use (22) for
larger and larger k, the difference between the exact and approximate values will also grow.

We are now finally in a position to obtain the desrired spectral representation for the total trapped

flux. We begin by computing the amplitudes of the harmonics of flux due to a single half-fluxon by
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susbtituting eq. (21) into eq. (18). The first odd harmonics of ®(t) (in particular, £ = 1,2,3) are:

)
[@(B)]ok+1 = ?OAk sin (2k + 1)©

= *(2220?1()2 {sin [(2k + 1)(ws — wr)t] cos (2k + 1)g + cos [(2k + 1)(ws — w,)e] sin (2k + 1)g}  (23)

The first even harmonics of ®(t) (in particular, k = 0,1, 2) are:

[@(O)lk = <2 By sin (2%8)

= m {cos [2k(w,s — wr)t] cos 2kg — sin [2k(w, — wr)t] sin 2kq} (24)

Now, we can generalize this to the case of N fluxon pairs by means of equation (7):

[Dr(t)]2k+1 = (E;;Cof_sl()l?)rx
N
> { sin [(2k + 1)(ws — w;)t] cos (2k + 1)g}, — sin [(2k + 1)(ws — wy)t] cos (2k + 1)g +
i=1

+cos [(2k + 1)(ws — wy)t] sin (2k + 1)g’. — cos [(2k + 1)(ws — wy)t] sin (2k + l)qi_} (25)

_ 2BoFy(1) & { copi M i
[ (2)]2k = At o) o) 2 Z cos [2k(ws — wy )t] cos 2kg’, 7 C08 [2k(ws — wy)t] cos 2kqt.
_5—1' sin [2k(ws — w,)t] sin 2kg’, + 'l:—: sin [2k(ws — wy)t] sin 2kq* }, (26)
+ —

where v%, pf, and ¢’ are functions of wpt and the coordinate angles £, 7% of the 7’th half-fluxon given

by eq. (11) and (12).
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4 Signal Analysis

4.1 GP-B High Frequency Signal Description

For the purposes of signal modeling and analysis it is more convenient to express the total trapped
flux in terms of harmonics of (ws — w,) whose amplitudes are modulated by the polhode frequency.

Therefore, we will rewrite equations (25) and (26) as

Sr(t)r & . _
_2<I>§F,s(1) - kz:% [Di(wpt) sin (2% + 1)(ws — wr)t + E(wpt) cos (2k + 1)(ws — w,)t]+

o0
(Bsinw,t + a) Z [Uk(wpt) cos 2k(ws — wr )t — Vi(wpt) sin 2k(ws — wy)t], (27)
k=0
with
1
2k +1 ¢

7

Dy (wpt) =

oos (2 + 1) (wpt) — cos (2% + 1)g(wpt)]

M=

= [

Er(wpt) = ﬁ z; [sin (2k + 1)¢% (wpt) — sin (2k + l)qi_(wpt)];

1 X (€ (wpt) - € (wpt) .
Ur(wyt) = > |2 2kq’ (wpt) — ——L 2kq* (wyt)|;
k(wpt) 1+ 6o i lui(wpt) cos 2kg (wpt) vt (wpt) cos 2kq” (wpt)
1 X [é (wpt) ; € (wpt) . ,
Vi = |2 b (wpt) — 2 : :
k(wpt) T+ Gro 2 [Vi (@s0) sin 2kq’, (wpt) X0%) sin 2kg*_(wpt) (28)

Here vi(wpt), € (wpt) and ¢’ (wpt) depend on the fluxon position angles &4, n according to eq.
(12). As explained in the previous section, expressions (28) for the coefficients are the lowest order
approximation for a bounded set of numbers k. In the course of the GP-B experiment, the telemetry

will provide the first three odd harmonics (k = 0,1,2) and the first three even harmonics, counting

19



D.C. (k = 0,1,2) of the quantity Cs®y(t) (volts), where Cs is the SQUID scale factor. So, the

following signals are assumed to be known:
wi(t) = CDg(wpt) + noise; 7k (t) = CEg(wpt) + noise;

Yk(t) = C(Bsinwyt + a)Ux(wpt) + noise; zk(t) = —C(Bsinwrt + a)Vi(wpt) + noise, (29)
for k=0,1,2.
Here

C = Cs2F5(1)/m (volts/units ®o) (30)

is the adjusted SQUID scale factor.

The noise level is expected to be about the same for the odd and even harmonics. However, the
amplitudes of the even harmonics signal is several orders of magnitude smaller. Moreover, the even
harmonics signal will be known with less accuracy because it will be truncated to reduce the total
GP-B telemetry volume. Fore these reasons, we shall for now stay away from the analysis of the even
harmonics, even though they may provide useful information, and concentrate on the odd ones. For
the odd harmonics, on the other hand, the signal-to-noise ratio is expected to be ~ 10% or better.
Thus, the electronic noise is smaller than the error in our approximation of the harmonic amplitudes,
so we may disregard the noise in the odd harmonics altogether for the purposes of our analysis, at
least in the initial approach.

For the purposes of HF signal investigation, we assume that the spin frequency and polhode

frequency are known from the baseline GP-B data analysis and an estimate of cosyg can be obtained
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from these via eq. (9), while the roll frequency is known since it is a commanded parameter. We wish
to obtain from this analysis the total number of fluxons N » & more precise estimate of yg, and, ideally,
the fluxon position angles (€%,7% ). Furthermore, the scale factor C either can be treated as a known
parameter (it can be determined from the LF analysis), or we may attempt to estimate it during the

HF analysis as well.

4.2 Determination of the Number of Fluxons

The first useful application of the theoretical calculation of the harmonics amplitudes lies in our
ability to easily obtain an estimate for the total number of fluxons. Let us consider the average of the
magnitudes squared of wo and g over the polhode period. According to (29), this can be expressed
in terms of the harmonics amplitudes as:

1 to+Tp

2, 2 — 1 2, .2 — 2/ n2 2
<w° + x0> polhode ~ T}, Jt (wo + xo) dt=C <D° + Eo > polhode
By (28), the sum D2 + EZ consists of two parts,
N . o . . N
Z [cos2 g% (wpt) + cos? ¢*_(wpt) + sin? ¢ (wpt) + sin? ¢t (wpt)] = Z[l +1] = 2N,
i=1 i=1

and the sum of the crossterms cos g%, (wpt) cos qi(wpt) and sin ¢’ (wpt) sin ¢, (wpt) for i # j. Since the
fluxon positions, and thus the phases q%., are more or less random, it is natural to expect that these

crossterms should average out to zero over the polhode period. Consequently, we find that

2 2 ~ 2
<'LUO + m0>polhode ~ 2NC (31)
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Since we can determine the l‘)olhode period anq the SQUID scale factor C' by other means, this gives
us a method for obtaining the number of fluxons on a gyroscope.

To verify this method, we took a sample GP-B SQUID high frequency harmonics signal that was
generated eérlier for the GP-B data reduction simulation. That signal included one hundred fluxons
(N = 100), of which 60 were randomly distributed over the sphere, while the remaining 40 were
placed quasi-randomly in such a way that they provided a net flux in the direction of the London
moment. After performing the averaging operation via a Matlab program that was based on Simpson’s
integration method, we obtained a value of 226 for N from eq. (31). Although this is a considerable
error, a significant portion of it can be attributed to the not completely random distribution of fluxons.
In particular, if a sizeable fraction of the half-fluxons are arranged in such a way that the values of cos g
are approximately equal for them, as was the case for 40 of the fluxons in the distribution we analyzed,
the crossterms discussed above should not be expected to average out to zero over the polhode period,
and their contribution will increase our estimate of N.

We should note here that in the lab experiments with the cooled rotors the fluxon number was
estimated by the maximum value of the trapped flux through the pick-up loop divided by ®g. This
generally yields values that are a factor of 2 lower than the true number of fluxons because fluxons are
not lined up and thus do not yield their maximum contributions to the total flux at the same instance
of time; the result of this approach for the signal studied gives N = 43, as one can yield from fig. 7
in paper [5]. Therefore, though not very accurate, the analysis described above may still be useful for

obtaining a better estimate of the total number of fluxons.
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4.3 Analysis of a Single Fluxon

Although the determination of the fluxon position angles, the angle vg, and the scale factor C is a
very daunting nonlinear multidimensional parameter estimation problem in the case of many fluxons,

this problem can be solved in the case of single fluxon, N = 1. A possible method for obtaining all

of the parameters in this scenario is described here.

First, let us compute the scale factor, C. Note that the third odd harmonics amplitudes, Dy and

E1, may be written by (28) in terms of the first odd harmonics amplitudes, Do and Fy.

Dy =1/3(cos 3¢ —cos 3¢_) = 4/3(cos g, —cos q-)3+4cos gy cosg_ (cos g4 —cosq_)—(cos g —cosq_) =
4/3D3 + 4 cos g+ cosq_Dg — Dy

Ey = 1/3(sin 3¢y —sin3¢_) = —4/3(sin g+—sing_)*—4sing, sing_ (singy—sing_)+(sing; —sing_) =
—4/3E§ — 4sinqy sing_Ey + E,

From these and from equations (29) with the noise neglected, we obtain the following expressions

for cos ¢, cosq_ and sin q+sing_:

COSqy cosq_ = —L _ wg + L
T8 = o T307 T 1

. . T 2:8 1

sing, sing_ = —E 302 + 1

The above equations, together with

wi 4z = C*(D3 + E?) = C*(2—2cosqy cosq_ — 2singy sing_),
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allow us to obtain an expression for C in terms of the odd harmonics amplitudes only:

wg-}-zg

C?=
3(1 - 0.5w; fwg + 0.5z /)

(32)

Note that the right hand side of (32) is some function of time which, according to our model, should
be a constant, so this can also be used as a crosscheck of our approximation.

Now let us assume that the value of the scale factor has been obtained by this method. There are
five parameters we would like to estimate; the position angles of the two half-fluxons (£,,7n,,£_, n-)
and the angle between the body symmetry axis and the normal to the pick-up loop, y5. We first

recall that tanq = b/a from eq. (12), which allows us to write

ara_  wy/wo— 4wg/(3C%) +1
byb_  —z1/20 — 422/(3C2) + 1

or, in the form that will be more convenient later,
0= (a+a-)(~x1/2o — 423/(3C?) + 1) — (byb_) (w1 /wo — 4wd/(3C2) + 1) (33)
The expressions for a4 and by in (12) may be rewritten as
Gt = aot + @14 COSwpt + az+ sinwpt, bt = b1 coswpt + boy sin wpt,
where the coefficients are constant functions of the parameters we want to estimate, namely:
ag+ = cosypcos&t, aj+ =sinéy cosny, az, = —sinéysinny,

bi+ = cosypsinéisinny, boy = cos yBsiné4 cos .
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Consequently, the products aya_ and byb_ may also be written in a similar form, which removes

all time-dependence to the trigonometric functions of wpt:
aia_ = ag + aj cos wyt + ay sinwpt + a} cos 2wyt + af sin 2wyt
b1b_ = by + by cos 2wyt + b sin 2wt
with
ag = ap+ao— + (arrai— + a2+a2-)/2, ay =aiya0- +aj—apy, ah= a2+a0— + ag_agy,
a3 = (a14a1- — agpaz_)/2, ay = (a14a2- +azpa;.)/2,

b6 = (b1+b1_ + b2+b2_)/2, bll = (b1+bl_ - b2+b2_)/2, b’g = (b1+b2_ + b2+b1_.)/2.

If the expressions for aya_ and b;b_ obtained above are substituted into equation (33), we see that

we have an equation of the form
=7

Z(t) =) K;H;(t)2;(t),
i=1

where the output signal Z is given by
Z = wy/wy — 4wi/(3C?) + 1,
H;(t) are known the polhode harmonics,
Hi(t) =1, Ha(t)=coswyt, Hj(t)= sin wpt,

Hy(t) = Hs(t) = cos 2wpt, Hs(t) = Hq(t) = sin 2wpt

b
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Z;(t) are known combinations of the harmonics amplitudes from the GP-B HF telemetry,
Z1(t) = 25(t) = 23(t) = Z4(t) = Z5(t) = —z1/z0 — 422/(3C?) + 1,

Z6(t) = Z7(t) = ~w1/wo + 4w}/ (3C?) — 1,

and the unknown constants K ;j are expressed through the five parameters a} and three parameters b;-,

ap

7
_% s
=0

bO

ay
Y2
bO

by
by’

K; %,

/
Kr=-21 Kg=

' /
a2 a3
K3=27 Ky =, Ks = 0
0

Ky = 5 5’
which are, in turn, the above combinations of angles we are trying to estimate. Thus we have a linear
paramter estimation problem. Various filtering techniques, such as batch filters or Kalman filters,
may be used to determine the values of K j- A second step, consisting of the application of some error
minimization technique, will then allow us to obtain the values of the five parameters £4+,74+ and vyp
that best fit the overdetermined system of equations relating them to the seven constants K e

Although the results of the application of this method were not ready in time to be included in

this thesis, a more thorough investigation of it and a further search for other trapped flux analysis

methods will continue over the summer.
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