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Bianchi Type I Cosmological Models with Variable
G and A: A Comment
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We treat in an alternate way a problem recently considered by Bee-
sham [1]. We find that anisotropic Bianchi I inflationary cosmologies
with variable gravitational and cosmological “constants” admit de Sitter
expansion at least for late times.

In a recent paper, Beesham [1] has extended to the case of anisotropic
Bianchi I models the work of Kalligas, Wesson and Everitt {2] on isotropic
Friedmann-Robertson-Walker (FRw) models with time-variable gravita-
tional and cosmological “constants”. There are various reasons for con-
sidering the latter [3], and in recent years several papers have appeared
wherein both parameters vary together in a way that leaves Einstein’s
equations formally unchanged [4-10]. We wish here to derive some results
in Bianchi I cosmology with.variable G and A using a slightly different
method from that of Beesham (1}, and to comment on his results.
We consider a Bianchi I universe

ds? = dt? — (o (t)%dz? + az(t)?dz? + as(t)?dz?) ¢))
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with a perfect-fluid energy-momentum tensor

Tuw = (p+ P)uuus — pguv (2)

and time-dependent G and A. Einstein’s equations and the law of energy-
momentum conservation (T, = 0) after assuming an equation of state
p = wp (w = constant), read
g + ajasg + Qo3 — 81(Gp+ A (3)
ajay  ajaz 003
Gide @) Go

4+ —+—=-81CGuwp+ A 4)
ajay ay Qg
il L ) I —87Gwp + A (5)
ayag (23] Qs
Q203 + Q2 23 _ —8rGwp + A (6)
Qa3 ay Q3
) 3 & e
p+p(1+w)(ﬂ+—2+—3)=o. )
oy az o3

Here a dot denotes differentiation with respect to ¢. It is useful to add
eqs. (4), (5) and (6), and use (3) to obtain a relation without the first
derivatives of the scale factors:
R —4p(1 4+ 3w)nG + A. (8)
a  a ag
The time derivatives of G and A are related by the Bianchi identities
(Ru — %Rg,,,,)“’ = 0 = (87GT,, + Ag,, ). It should be noted that this
way of handling the conservation laws implies that G and A appear as
indirectly coupled fields, similar to the case of G in the original Brans-
Dicke theory [11]. In our case, we obtain

A= -—87GC. 9

Note that this equation is the same as in the isotropic case [2]. The system
of egs. (3), (7), (8) and (9) can be decoupled to obtain a single differen-
tial equation relating the energy density and the gravitational parameter
following an analogous procedure with that in the isotropic models. We
start from equations (7), and after squaring and using (3) we get

(&) —awr[(2) + (2) + (2) +16mcora]. o0



Bianchi Type I Cosmological Models with Variable G and A 647

The time derivative of p/p from eq. (7) can now be expressed in terms of
G,A and p only, by using eqs. (8) and (10). We obtain

3 2 "
A\ 24w P o Y
(5) Tw)? st ~ 2rCe(l-w)+3A. (11)

Finally, on differentiating eq. (11) with respect to the time and using
eq. (9), we can write

5+3w ., 442w 5 3 2 . 9 2
- — = 127G -12nG 1—-w*).
T+w Pt Tre 5 127G p*(1+w)” ~120Gpp* (1 ~w?). (12)

p(P)

This is our central equation, and it corresponds to eq. (7) in our analysis
of the isotropic models [2].

As with that equation, when trying to solve eq. (12), we can find
analytic solutions only for a certain class of functions G(t). At this point,
it might be useful to stress that eq. (12) contains both the isotropic and the
anisotropic sectors. To distinguish between the two, we use the anisotropy

energy (o):

. . 2 . . 2 . . 2
81rca=<°‘—1-2> +<ﬂ—ﬂ)+(2—9‘3). (13)
a) Qg o a3 (27 a3

By expanding this and using eqs. (3) and (7), we can write

R\? 2 5\

Here the second equation holds for w # —1 only, and we have made use
of the average scale factor, R(t) = (aja203)'/3, in terms of which eq. (7)
reads :

R
p+3(1+w)Ep=0. (15)

This and our preceding equations give back the isotropic solutions [2] in
the appropriate limit.

However, we are mainly interested in finding solutions in the aniso-
tropic sector ¢ # 0. This is not so straightforward, because eq. (11)
even for constant G' and zero A (standard Bianchi I cosmology) does not
have analytic anisotropic solutions for every w # —1 [12]. Likewise in
the present case, where G and A are allowed to vary with time, we have
not been able to find such solutions even for simple functional forms of
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G(t) . However, if one is willing to impose a relation between G(t) and the
equation of state constant w, then it is possible to find analytic anisotropic
solutions for every w # ~1. We proceed with identifying one class of
solutions in this category. Thus consider

G = G(t,t,) = Ct™(t +t.)™, (16)

where C,ny,ny,t. are constants. The physical interpretation of ¢, will be
given below. (Note that one cannot eliminate t, from eq. (16) by redefining
the origin of time.) Now assume for the energy density

p(t, t,) = At (t + t.)"2. (17)

After a straightforward but lengthy calculation, one finds that if we set

8182

s1=—1—w=32, n;=ng =w, A=m,

(18)

then (16) and (17) satisfy our central equation (12). Equation (9) when
combined with (16), (17), and (18) gives

. 4w S | 1
A=—307w) (tZ(t+t.) + t(t+t.)2>’ (19)

which integrates to
4w 1

T30+ w) t{t+ts)

We see that the cosmological parameter preserves its natural 1/t2 be-
haviour for ¢ > t,. However, it varies as 1/t for ¢t < t,. The average scale
factor can be obtained from (17) and (18) with the help of eq. (15). We
find

A

(20)

R(t) = const. x t/3(t 4 t,)"/3. (21)

Finally, from the above expressions for G,p and A and eq. (14), we can
write for the anisotropy energy

87Go = 2 [t(t:—*t)] . (22)

This equation implies that if ¢, = 0 then ¢ = 0 too. Hence we can
interpret t, as the isotropization time. This is not surprising for if w =0
then the above solutions reduce to the matter-dominated solutions of the
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Bianchi I universe with constant G and vanishing A, where t, has the same
interpretation [13].

Let us now turn our attention to anisotropic solutions with constant
density. It is easy to see from eq. (7) that p = O is compatible either
with a static universe (& = 0, ¢ = 1,2, 3) or with a vacuum equation of
state (w = —1). Both cases have the corresponding FRw solutions [2] in
the isotropic sector. In view of our definition of the anisotropy energy —
eq. (13) — static solutions can only have o = 0. Therefore, we concentrate

on the case of w = —1, g # 0. For a constant energy density p, eq. (9) can
be immediately integrated to give
A(t) + 87G(t)p = constant = 3HZ. (23)
This into eq. (14) yields
R\? 2 4nGo
(_ﬁ) =31+ e ) (24)
and if we set AnC
W—; = sinh~%(at), a = const., (25)
then (24) reads
RY’ 2 c =20 2 2
7) = H3(1 + sinh™*(at) ) = Hjcotanh “(at). (26)
The solution of this equation is
R(t) = const. x sinh#°/%(at). 27

At late times the above relation becomes R(t) o« exp(Hot) which is the
usual de Sitter expansion of the FrRw models. Indeed, in this limit for
nonzero G(t), eq. (25) implies that o decreases exponentially with time,
and the universe isotropizes in the same way as in the usual Bianchi I
cosmology with constant G and A [14]. Our work overlaps somewhat with
the interesting recent paper by Beesham [1]. Our results complement his,
and we see from (27) that inflationary (de Sitter) behaviour is allowed at
least for late times.

To conclude, we have extended previous work by Kalligas, Wesson and
Everitt [2] on isotropic cosmologies with variable G and A to anisotropic
Bianchi I cosmologies. As before, we find that A varies as 1/t2 at late
times, which matches its natural dimensions and may explain why the
current value of this parameter is small. Our analysis has some similarities
with recent work by Beesham [1], and we find that at least at late times
de Sitter inflation is allowed.
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