General Relativity and Gravitation, Vol. 24, No. 4, 1992

Flat FRW Models with Variable G and A
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We consider Einstein’s equations with variable gravitational coupling G
and cosmological term A. For a power-law time-dependence of G, the
cosmological term varies in proportion to the inverse square of the time,
provided the equation of state is not that of vacuum. There is then no
dimensional constant associated with A. For a vacuum equation of state
the model is compatible with classical inflation for a wide class of func-
tions G(t) and A(t). For non-power-law behaviour of G(t), it is possible
to have a scale factor that increases exponentially without a vacuum
equation of state. For this case the energy density associated with A
decreases exponentially, while at time zero it is equal with opposite sign
to the regular energy density, so there is zero total energy initially.

1. INTRODUCTION

There have been numerous extensions of general relativity in which the
gravitational parameter G varies with cosmic time ¢ [1]. This is reason-
able, since GG couples geometry to matter, and in an evolving universe we
might expect G = G(t). None of these theories has been widely accepted.
But recently a new one has been discussed which may be more appealing,
because it leaves the form of Einstein’s equations formally unchanged by
virtue of allowing a change in G to be accompanied by one in the cosmo-
logical parameter A [2-5]. This approach is actually non-covariant, but
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we believe it is worth investigating because it may be the limit of a more
viable fully covariant theory, such as 5D gravity [6]. In what follows we
will look at some solutions in this theory for the case of perfect fluid, flat
Friedman-Robertson-Walker models. Certain solutions for this case have
already been found [7]. But we will adopt an approach which is more com-

. pact than others, and which not only allows us to confirm earlier solutions

but also leads to new ones. We will in addition make some comments
aimed at clarifying the relevance of these solutions to important cosmo-
logical questions such as the horizon problem, quantization and the size of

A.
2. GENERAL ANALYSIS AND SOLUTIONS WITH POWER-LAW G
We consider a spatially flat FRW universe
ds? = dt? — R(t)*[dr? + r(d6? + sin® 0 d¢?) ] (1)
with a perfect fluid energy momentum tensor

Tuu = (P + p)uuuu —Puv, (2)

and time dependent G and A.
Friedman’s equations and the law of energy-momentum conservation
(T, = 0) have the same form as in the standard case,

R\’ srG)p . A@)
(E) =73 T3 )

. R

where dot denotes differentiation with respect to t and in eq. (4) we as-
sumed an equation of state p = wp, w = constant. An additional equation
relating the time changes of G and A can be obtained by the Bianchi
identities (R,, — 1/2 Rgu)” = 0 = (87GT,, + Agy, ), which under our
assumptions yield

A = —87Gp. (5)

The system of egs. (3)—(5) requires one more equation for a unique
solution. Before specifying this, however, it is convenient to combine (3),
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(4) and (5) to give a single relation that applies to all models. (We be-
lieve that this is a better way to approach the subject than others in the
literature.) Thus combining egs. (3) and (4) and squaring we obtain

(%p)2=9(1+w)2 (520+3). ©®)

and by differentiating with respect to the time ¢ and using egs. (4) and (5)

we get s
PP (B) = 12(1 + w)?*xGp. (7)
p p

This 1s the central equation of our analysis. For the moment we assume

that the density is not a constant. (We will return to this below.) We can

then write

pb — 52 = 12(1 + w)2nGp®. (8)
Let us now assume that G(t) is given by a power law
G =Ct", C = const. 9)
We can now solve the system. From (8) and (9) we have
n+2 1 '
t) = -2 1
PO = GareEc e "7 , (10)

For the density to be positive definite we must have that n > —2. Next,
on combining egs. (5), (8) and (9) we obtain
2 2) 1
_n(n+2) 1 , (11)
314+ w)? 3
which on integrating and setting a constant to zero (for self consistency of
the system) gives

A=

Az n(n+2) 1
T 31+ w22

We see that A varies as t~2, which matches its natural dimensions and
means there is no longer a dimensional constant associated with the cos-
mological term in the field equations. [Note that this result follows from
eq. (7), but if we were to treat the case of a finite constant A then we have
to return to eq. (6).] Following from (12), this with (9) and (10) into (3)
gives

n# -2 (12)

R(t) = const. x t("+2)/[3(1+w)], n# =2 (13)

We can see that for n = 0 this reduces to our familiar result R oc ¢2/[3(1+)]
for the flat FRw model with constant G.
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3. SOLUTIONS WITH CONSTANT DENSITY

Obviously, one solution of eq. (7) is p = 0. One way this can be
compatible with eq. (4) is if the scale factor is a constant too. Equation (3)
then yields

87Gp = —A, (14)

whose time derivative is (5), showing that our system of equations is satis-
fied. (The functions G(t) and A(t) in eq. (14) are arbitrary.) The vacuum
energy in this solution is

A
- = 15
Pvac. 871G 4 ( )
and if we denote the total energy by pior. = p + pvac. We have
Prot. = 0. (16)
Therefore, we have a spatially flat static universe with varying G and A,
and zero total energy. Onme can prove that if n = —2 and w # —1 the

above solution is necessary. For that value of n, however, we can see from
eq. (14) that A still falls as 1/¢t2 and, therefore, this law holds for every
n> -2 ‘

An alternative way of satisfying eq. (4) with a constant energy density
is to have w = —1 so R can be nonzero. Using g = 0 and eq. (5), the time
derivative of eq. (3) yields

RR-R*=0. (17)

This equation has solutions of the form R = exp(Zconst. x t) implying
classical inflation (De Sitter expansion). Note that the only constraint
on G and A comes from eq. (5) and as in the case of the static solutions
their functional form is otherwise free. This means that for any G(¢) and
A(t) satisfying (5), we obtain inflationary solutions from the assumption
of a vacuum equation of state. It should be noted that Berman [7}, in a
treatment of the same subject we are considering but by a somewhat dif-
ferent method, has emphasized the avoidance of the horizon problem with
solutions where the scale factor is proportional to the time.* However, it

4 Incidentally, our analysis for power-law G(t) leads to the same equations as Berman's
though with a different parametrization, but we note that in his egs. (16)-(18) a

should be
5 (ram)] -
a=|— _— -
3 4rA

for consistency.
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is apparent from our eq. (17) that the horizon problem in universes with
variable G and A can also be avoided with solutions of the traditional ex-
ponential kind. Furthermore, while a variable A-term of geometric origin,
as considered in these models, can provide a more flexible framework for
the solution of the cosmological constant problem, it is the behavior of the
sum of A with the contribution to it from the rich vacuum of gauge theories
that has to be consistent with particle physics predictions and observation
[8]. Further study is needed before one can claim successful resolution of
the problem within this framework.

4. OTHER SOLUTIONS

Solutions to the differential equation for the energy density, eq. (8),
can also be found for forms G(t) other than power law. In particular,
consider

G(t) = Bt*~? exp(-bt*), B >0, (18)

and try for the energy density
p(t) = Aexp(qt*). (19)
On inserting the above expressions into eq. (8) we obtain
A?s(s — 1)gt* "% exp(2¢t*) = 12(1 + w)*7BA%* 2 exp[ (3¢ — b)t*], (20)
which can be solved for A and ¢ to give

s(s—1)

p(t) = 20 T w)rB exp(bt*). (21)

For the energy density to be positive we must have
bs(s—1)>0. (22)

The cosmological constant can now be obtained from eq. (5), which gives,

_ 2s(s—1)b [ ,_ bs o1
e Rt @

with the scale factor

R(t) = const. x exp [ (24)
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In order to have expansion b has to be negative. Note that these are ex-
ponential solutions that do not arise from an equation of state p = —p
as in inflation, because w = —1 is not allowed in the above expressions.
Another interesting feature is that the vacuum energy density is exponen-
tially supressed when we have expansion (b < 0), since from egs. (18) and
(23) we have

s(s—1)b bs
Pvac = —#(1‘*‘);’—)—5 [1 - -2—(;_—1)#’] exp(bt*). (25)

The ratio of the ordinary energy density to the vacuum one is

P 1 ’
LA , 26
Pvac 1—[bs/2(s — 1) ]t (26)
so in the limit of # — 0 we have p = —py,c. This corresponds to an initial

state with zero total energy. The scale factor and the energy densities p
and py,c are finite in this limit, but both A and G diverge at time zero for
the expanding solutions. It should be noted that solutions like ours with
G divergent for t — 0, (except the power law ones), provide a classical
rational for strong-coupling quantum gravity, in which the dynamical part
of the Hamiltonian is effectively reduced from two terms to one by letting
G diverge [9,10]. Of course, for models in which G was different in the past
it may be necessary to restrict them to epochs prior to nucleosynthesis,
and in general to choose the parameters that are compatible with limits
on the variation of G [11].

5. CONCLUSION

We have looked at Einstein’s equations for the case of spatially flat
FRW models where the perfect-fluid energy-momentum tensor has zero di-
vergence, but where the gravitational parameter G and cosmological pa-
rameter A are both allowed to depend on the cosmic time ¢. We have
confirmed some solutions in the literature and found some new ones with
interesting properties. We have discussed possible connections with well
known questions in gravitation, notably the size of the cosmological con-
stant and quantum gravity and have shown the compatibility of the model
with classical inflation. However, we have concentrated on the solutions,
and their detailed physical implications will require further investigation.
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