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The estimation algorithm developed in this paper
offers an alternative to standard recursive nonlinear
estimators such as the extended Kalman filter and the
iterated extended Kalman filter. The algorithm, which
is developed from a quadratic cost function basis,
splits the problem of cost function minimization into a
linear first step and a nonlinear second step by
defining new first-step states that are nonlinear
combinations of the unknown states. Estimates of the
first-step states are obtained by minimizing the first-
step cost function using a Kalman filter formulation.

Estimates of the unknown, or second-step, states are |

obtained by minimizing the second-step cost function
using an iterative Gauss-Newton algorithm. The two-
step estimator is shown to be optimal for static
problems in which the time variation of the
measurement equation can be separated from the
unknowns. This method is then generalized by
approximating the nonlinearity as a perturbation of the
dynamic update, while keeping the measurement cost
function the same. In contrast, the extended Kalman
filter and the iterated extended Kalman filter are
shown to linearize the measurement cost function,
resulting in suboptimal estimates. Two example
applications confirm these analytical results.
I jucti

Most  nonlinear  least-squares  estimation
algorithms require a choice between an optimal
solution and a recursive formulation. If all the data is
available, various nonlinear search and iterative batch
algorithms can be used to minimize the desired cost
function, resulting in an optimal estimate."* However,
many applications require a recursive formulation of
the estimation problem. The standard nonlinear
recursive estimators, such as the extended Kalman
filter (EKF) and the iterated extended Kalman filter
(IEKF),’ linearize the cost function in order to use the
well-known, linear Kalman filter® equations. This
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linearization, however, results in an estimate that is
biased—i.e., the expected value of the estimator is not
the true value of the states—and suboptimal. On the
other hand, the two-step estimator developed in this
paper obtains the optimal estimate with a recursive
algorithm by breaking the cost function minimization
into two steps and moving the nonlinearity (o the
second step.

In contrast to the nonlinear least-squares problem,
methods for finding the optimal estimate for the linear
problem are well established. For the static case, in
which the unknown parameters are constant, the linear
weighted least-squares batch fit provides the optimal
estimate. When there are dynamics associated with the
unknown parameters, the Kalman filter gives the
optimal estimate at the current time step. The optimal
estimate for previous time steps based on all the data
can be found using a smoothing algorithm,” which
combines past, present and future measurements in
off-line  (post-processing) calculations. If the
measurement noise is Gaussian, the Kalman filter is

equivalent to both the minimum-variance and
maximum-likelihood solutions and results in an
unbiased estimate.’

When the unknown parameters enter the

measurement equation in a nonlinear manner, the
problem of estimation becomes more difficult.
(Problems with nonlinear dynamics are not addressed
in this paper. See Refs. 7 and 10 for approaches to
these problems.) If the estimation can be done off-line,
there are several optimal methods available. For the
static case, an iterative batch technique or nonlinear
search algorithm can be used.”” For the dynamic
problem, an iterated linearized smoother can be
employed to obtain the optimal estimate.** The
advantage of off-line estimation methods is that all of
the data can be used to obtain the optimal estimates of
the states. There are, however, several disadvantages
associated with these methods. First, many
applications require real-time state estimates that, for
example, can be used in dynamic feedback loops in
control problems. Second, it is difficult to update an
estimate with new data without using the entire data
set again. Finally, the dependencies of the state
estimates on other parameters are obscured. There is
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often much insight that can be gained by observing the
time variation of the estimates in recursive algorithms.

As a result, a number of approximate recursive
algorithms have been developed.” The two most
common, the EKF and the IEKF, are examples of
methods which make approximations to the
measurement equation in order to allow use of the
familiar linear filter equations. These methods give on-
line state estimates, thus facilitating their use in real-
time applications and the update of current estimates
with new data. Unfortunately, these methods result in
biased, suboptimal state estimates because they
linearize the original quadratic cost function in order
to develop a recursive algorithm. This linearization, by
assuming the errors to be small, makes these
algorithms very sensitive to the a priori estimate of the
unknown states about which the cost function is
linearized.

The two-step estimator developed in this paper
provides an alternative to the preceding algorithms. It
avoids linearizing the cost function by breaking the
minimization into two steps. A new set of states is
defined for the first step using nonlinear combinations
of the unknown, or second-step, states, so that the
measurement equation becomes linear in the first-step
states. The linear first-step problem can be solved
optimally and recursively using a Kalman filter. The
second-step states are then optimally obtained by
treating the first-step state estimates as measurements
and using an iterative Gauss-Newton algorithm to
perform a nonlinear least-squares fit. For static
problems in which the time variation of the
measurement equation can be separated from the
unknown parameters, no approximation is necessary
and the two-step algorithm achieves the optimal
estimate. For other static problems or problems with
linear dynamics, an approximation of the measurement
nonlinearity is made in the time update, but the
measurement cost function remains unchanged. The
result for the problems examined here is a substantial
reduction in estimate bias and sensitivity to initial
conditions when compared to the EKF and the IEKF.

This paper presents a summary of the two-step
estimator, including comparisons with some of the
other methods described above. First, the nonlinear
least-squares estimation problem is described. Next,
the two-step solution to the static problem with
separable time variation is presented. Included are a
summary of the method's cost function basis, a proof
of optimality, and derivations of the equations used to
perform the optimization of the first and second steps.
The method is then enhanced to include other static
problems and problems with linear state dynamics by

deriving an approximate time update for the first-step
states. The problem of how to choose the first-step
states is addressed and a general method is presented.
Implementation of the two-step  estimator s
summarized. An analytical comparison is made in
which the EKF and the IEKF are shown to be biased
and suboptimal. Finally, we give two example
applications, one a static parameter estimation
problem from the Stanford Gravity Probe B Relativity
Mission (GP-B) and the other a dynamic problem of
radar ranging. Numerical comparisons of the different
methods are made using these applications.

Noali I S Estimati
The general problem of parameter estimation from
discrete nonlinear measurements can be described by
state-space dynamic and measurement equations of the
form
X, =®,x +Tw, ¢y
z, = F(x,,t)+v, 2)
where the subscript k denotes the value at time step Z,.
The dynamic model in Eq. (1) describes how the
unknown state vector x is propagated through time by
the state transition matrix @ and the process noise
forcing function I'w. In Eq. (2), the measurements z
are expressed as functions F of the unknown states and
time, plus measurement noise v. The process noise and
measurement noise are assumed to be white, Gaussian
processes with zero mean and covariance matrices Q
and R, respectively (e, Eww']=Q and
E[w]=R). There may also be a priori information
available in the form of an initial guess X, and an
initial covariance matrix M, . .

The optimality of an estimate of the unknown -
parameters is determined with respect to a cost
function J defined over all the measurements. The
optimal estimate is the vector that minimizes this cost
function subject to the constraints of Eq. (1). In the
least-squares problem, a quadratic cost function is used

1 1 N-1
==(x,-%) M (x, —x1)+—zW.TQka
2 = )
1 > T -1
+52(z, - F(x,, t,) Rz, — F(x,,1,))

so that J is a weighted sum of squares of the initial
guess, the process noise and the residuals z — F(x,b).
N is the total number of time steps. Justification of the
nonlinear quadratic cost function is given by the fact
that the optimal estimate is equivalent to the joint
maximum-likelihood solution" and can be shown to
approach the minimum-variance solution
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asymptotically as the number of measurements
increases."

The Optimal Static Soluti

Minimization of the cost function in Eq. (3)
subject to the constraints of Eq. (1) can be done by
adjoining these equations to the cost function using
Lagrange multipliers.’ In the linear problem, this leads
to the Kalman filter. The nonlinear problem can be
solved optimally in a batch implementation by an
iterated smoother’ The traditional recursive
approaches, such as the EKF and the IEKF, attempt to
minimize a quadratic cost function at each time step
based on the estimate from the previous time step but
ultimately fail to minimize the cost function in Eq. (3).
The goal of this work was to obtain a recursive
algorithm that would more closely approach the
optimal batch estimate.

To simplify the problem temporarily, we will first
address the static problem, in which ® is the identity

matrix and Q =0. Under the additional assumption

that the time variation of the measurement equation
can be separated from the unknown states, we show
that the two-step estimator offers an optimal, recursive
algorithm. The GP-B data reduction problem, which
was the inspiration for the estimation algorithm
presented here, is an example of such a problem and is
described in greater detail in the first example. This
optimal static solution forms the basis of the two-step
method. It is later augmented in an approximate
manner to address problems in which the time
variation and unknowns cannot be separated, including
both the more general static problem as well as
problems with state dynamics. The estimates obtained
by this augmented method will then be compared to
the optimal estimate as defined by Eq. (3).

Before rewriting our cost function for the static
problem, we will define some new variables to
simplify the derivation. They are

4 F(x,t) v,

=] Fn=| p=li| @
zZ, F(x,1,) v,

The measurement equation can now be rewritten to
include all the time steps

E=F(x,nD+p ®
The cost function in Eq. (3) becomes
1
=E(§—T(x,t))'x"(§—‘f(x, n) ©)

where the state dynamics have been eliminated in the
static problem. We have also assumed no a priori
information to simplify the derivation. The weighting

matrix is defined by E[pp"]= R, so that R is a block
diagonal matrix with the matrices R, on the diagonal.

Equations (5) and (6) define the static nonlinear
estimation problem.

A necessary condition for optimality is that the
estimate be a stationary point of the cost function,’ i.e.,
the derivative of J must vanish at the optimal estimate
X

al ~0 @
3)6 x=%
Taking the derivative of Eq. (6) with respect to the
state vector x yields

aJ L OF(x,1)

—=—(-F(xnD)'R 8
Py E-F(x ®)

The optimal estimate of the unknown parameters is
then the vector that makes the right-hand side of this
equation vanish.

Two-Step Estimator

The two-step nonlinear least-squares estimator
divides the problem of minimizing the cost function
into a linear first step, estimating nonlinear
combinations of the unknown states using a linear
least-squares fit, and a nonlinear second step,
employing an iterative, nonlinear least-squares fit of
the first-step estimates to obtain estimates of the
unknown states.

The first-step states are defined as a vector of
nonlinear functions of the unknown states y= f(x).
We assume that these functions can be chosen so that
the time variation is separated from the unknowns and
the measurement equation (Eq. (2)) becomes linear in
the first-step states

7z, =Hy+v, ()]
The method for choosing these first-step states is
problem dependent and is addressed in a later section.
This measurement equation can be expanded as in the
previous section to include all the time steps by
defining a matrix # that comprises all the H, matrices.

The result is that the nonlinear function ¥(x,¢) in Egs.
(5) and (6) is replaced by Hy, where H depends
explicitly on time. Eq. (5) becomes

E=+p (10)
The cost function for estimating the first-step states
becomes

1
1, === %" ¢ 56) (1

Minimizing this cost function yields the optimal
estimate § and its associated covariance matrix P.

Note that this first step is completely linear.
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The estimates of the first-step states are treated as
measurements in the second step. The second-step
measurement equation is

y=fx)+e (12)
where the measurement noise e has covariance matrix
P, the covariance of the first-step states. The second-

step cost function is then defined as
1, A
J, =;(y—f(x))’P, G- f(x) (13)

Minimizing this nonlinear quadratic cost function
yields the optimal estimate £ of the second-step
states, as well as a covariance matrix P, describing the

error associated with the estimate. Equations (10)-( 13)
provide the basis from which the two-step estimator is
derived.

Proof of Optimali
Consecutive minimization of the quadratic cost
functions J, and J, can be shown to be equivalent to

minimizing the original cost function in Eq. (6). As
before, a necessary condition for optimization is that
the derivative of the cost function vanish at the
optimal estimate. Since the first step is linear, the
optimal estimate is just the well-known linear
weighted least-squares solution

J=PH'RE (14)
with covariance matrix given by
P =(H"RoH)" ~ (15)

The second-step cost function is minimized by setting
its derivative to zero. Taking the derivative of J,

yields

al N r a1 F(X)
—X — _(J— P — 16
P O-r) P Y (16)

Substituting from Egs. (14) and (15), this can be
rewritien as

al r . OHf(x)
Lo _(E- — 17
E-Hx)' R > a7

Finally, substituting #(x,7) for #f(x) yields Eq. (8).
Thus minimizing the cost functions J, and J_ in this

manner is equivalent to minimizing the original cost
function J.

First-Step Optimizati

Since the first-step cost function is linear, an
optimal estimate of the first-step states can be obtained
with either a batch fit or, if a recursive formulation is
desired, a Kalman filter. The batch fit is just the
weighted least-squares solution given by Eqs. (14) and

(15). It can be shown that the Kalman filter reduces to
the weighted least-squares fit for the static problem,’
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and thus provides an optimal, recursive aliernative.
The static Kalman filter is given by
Measurement Update:

J.=% +P HR'(z,-H3,) k=L.N
-1 T -1 -1
Pn =(Mn +Hk Rt Hk)
Time Update:
ykﬂ =§l

(18)

k=1L.N-1

Yk+1 Yk
The equivalence of the static Kalman filter and the
weighted least-squares fit implies that y, from Eq.
(18) is equal to § in Eq. (14). It is important to note
that any of the alternative forms of the Kalman filter
that may be computationally better (e.g., information
fillers, square root algorithms, etc.)™® can be
substituted for the form given in Eq. (18) since this is a
linear problem.

Second-Step Optimizat

Optimization of the second step can be carried out
whenever the best current estimate of the second-step
states is desired (it need not be done at every time step
of the Kalman filter for the optimal static problem).
An iterative algorithm is used to find the optimal
estimate in the nonlinear second step. One such
method is the Newton-Raphson algorithm,' which can
be written as

'Qm = ii - Hi_lqiT 19
where i is the iteration number and g, is the gradient
of the cost function J, evaluated at £,

al,
4, ="
o |oes
H,, the Hessian, is the second derivative of J ., again

evaluated at 1,

(20)

d°J,

H, = = 20N
The gradient g is given by Eq. (16). Taking another
derivative of this to obtain the Hessian would result in
second derivatives of the vector of functions f. This is
difficult to compute and does not necessarily give a
positive definite Hessian, which is required for
convergence. Positive definiteness can be ensured by
ignoring the terms with second- derivatives of f and
using the Gauss approximation of the Hessian

T
a-x x=5 & x=3
Using this approximation, Eq. (19) becomes
fm = ﬁ.‘ - Hc;lqir (23)
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which can be iterated until X, —X, > 0, or some
other convergence criterion is reached. This algorithm
is known as the Gauss-Newton method.

An approximate covariance associated with this
estimate can be derived from Eq. (23). The gradient g,

is obtained by evaluating Eq. (16) at £,. Substituting
this into Eq. (23) yields

im = ‘i\:i + HG;‘%' Py_l (9 - f(-i,)) (24)

The vector of functions f can be expanded in a Taylor
series about the current estimate. Truncating the series
after the second term gives

F .

f(x)=f(f,)+;| (x-Xx) (25)

This result is substituted into Eq. (12), which in turn is
substituted into Eq. (24). After some algebraic
manipulation and use of the Gauss approximation of
the Hessian (Eq. (22)), Eq. (24) can be rewritten as

) .
£, =x+ HGT’%’ P’e (26)

1
x=£,

where e =¥ — f(x), from Eq. (12). The covariance of
the states x can be calculated from the expected value

P = E[(X,, -0, -x)] 27N
Substituting Eq. (26) into Eq. (27) and using the fact
that E[ee”] = P,, the covariance is given by

}1 = Hca_l - 28

This covariance is approximate because of the
truncation of the Taylor series expansion of f. The
approximation improves as the estimate of x
approaches the true value.

Equations (23) and (28) form the iterative second-
step optimization. Together with Eq. (18), they
constitute the optimal two-step estimator. It is
interesting to note that for cases where the number of
first-step states is equal to the number of second-step
states, it is possible to choose the second-step
estimates so that the cost function vanishes. Depending
on the type of nonlinearity in the problem, it is thus
sometimes possible to invert the functions fto get X as
a function of §, making iteration to find the minimum

unnecessary.
Dynamic Solution

In order to generalize the optimal static solution
derived above, we will now relax our assumption that
the first-step states do not vary with time. This time
variation can be either explicit, in that time enters
directly into the nonlinear vector of functions f, or
implicit, through the dynamics of the second-step

states x. The generalization is accomplished by making
an approximation to the nonlinearity, resulting in the
time variation of the first-step states being treated like
a process noise perturbation in the first-step time
update. This more general formulation expands the
range of problems to which the two-step estimator can
be applied, while retaining the optimal static solution
as a special case. Both solutions assume that the
second-step states are observable from the first-step
estimates. This issue affects the choice of first-step
states and will be addressed in the next section.

The static solution derived above is optimal
because the two steps are decoupled. This keeps the
nonlinearity of the second step from affecting the
linear first step, where the noise averaging is being
done. For problems with time-varying first-step states,
this optimality could be maintained if we could
exactly describe the dynamics of the first-step states
with a linear formula that was independent of the
second-step states. We would then use the optimal
dynamic Kalman filter. However, the nonlinearity of
the problem generally prevents us from keeping the
two steps decoupled, and the first-step dynamics must
be approximated. This can be accomplished using the
known relationship between the first- and second-step
states

Y, = F(x,1,) (29)
The explicit time dependence of the first-step states is
shown in Eq. (29). In the sequel, the notation f, will

be used to indicate this explicit time dependence. The
dynamics of the second-step states are given by Eq.
(1). The optimal time update for the second-step states’
is
X, =9,7%, k=1L.N-1
Mxkﬂ = Qk};k(pkr + FRQRF:
This time update, along with Eq. (29), can be used to
obtain an approximate time update for the first-step
states. The goal is to obtain a dynamic update equation
in the first-step states y similar to Eq. (1), from which
the optimal time update can be derived easily. Using
the identity in Eq. (29) at time steps k and k + 1 yields

yl+l =yk+f;+l(xkﬂ)_f;(‘xk) (31)
The last two terms can be approximated by a first-
order Taylor series representation

o= RGOS ’ o 32)
f;u ('xk+l) = f;u (fkﬂ) + (y;ﬂ X

(xku X )

(30)

k4l xk‘l =xk~l

The time update of the states is the found from the
expectation
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Yiu = Ely,,,] (33)

Substituting Egs. (31) and (32) into Eq. (33) and using

the approximations that E[x,]= %, and Elx, 1=%,,
(an equality for the linear solution) yields

ykd = 5’k + f;m (fnn ) —f;(jk) (34

The covariance matrix of this time update is defined as

M, =E0,,-5.)0,.,-5.0"1 (35

Substituting Egs. (31), (32) and (34) into Eq. (35), and

using the approximations that Elx,]=X%, and

E[x,,,1=X,,, and the following definitions
P, = E[(x, - %)(x, -%,)"]

_ - (36)
qu] = E[(xlﬂ - xk+1 )(‘xhl - xk+l) ]
the covariance update can be written as
T
(y;fl (y;ﬂ
Yi+1 = Ph + Mxku
k+| xkd:?lol ,+l “lﬂ:“-’kol
r (37
_i P @tk Y
Xk
3xk anfx axk 'rl:fl

Equations (34) and (37) constitute the approximate
time update for the first-step states. The approximation
improves as X, — x, (gets better as the number of

measurements increases) and X, — x,, (gets better

as the process noise gets smaller and the number of
measurements  increases). Increasing the sampling
frequency should also improve the approximation
when there is an explicit time dependence in the first-
step states. As the approximation gets better, the
estimate will approach the optimal value. Comparing
the form of Eq. (37) to that of Eq. (30) shows that the
time variation of the first-step states has essentially
been treated as a perturbation term, entering the time
update in the same manner as the process noise.

It is interesting to note a couple of special cases of
this time update. If fis not an explicit function of time
and there is only process noise in the state dynamics
(@ is the identity matrix), the covariance update

reduces to
T

r o

F
— rTor™=
’Xl:i‘ ka & o

k

=P +

Y41 Yx

(38)

klx, =z,
As expected, the time update of the covariance matrix
involves only a correction term due to process noise,
resulting in an increase in the covariance estimates of
those first-step states affected by process noise. If the
process noise is also removed (Q = 0), the dynamic
time update collapses to the static time update given in

Eq. (18), as expected.

Choosing First-Step S

An implicit assumption of the two-step estimator
derived above has been that the second-step states are
observable from the first-step states. If this were not
the case, the Hessian matrix of Eq. (22) would not be
full rank and thus could not be inverted to perform the
iterative update. The choice of first-step states is
dependent on the particular problem being addressed.
We have devised a two-stage sequence that provides a
general method for making this choice. The first stage
is to attempt to separate the time variation from the
unknown parameters through algebraic manipulation.
If this can be accomplished, the optimal version of the
two-step estimator can be used. The static example
given below provides a good example of a problem
which is amenable to this method. One general group
of problems of this nature is the estimation of
amplitudes and phases of sinusoidal signals, which can
be derived in a manner similar to that of the static
example.

If sufficient separation of the time variation
cannot be done, then the second stage is to add some
or all of the second-step states to the first-step state
vector. The simplest version of this idea is to use the
measurement function as one first-step state and then
add the entire second-step state vector as the rest of the

first-step states
F(x,,t,)
Ve = (39
xl
Clearly the second-step states are observable now. The
Ineasurement matrix H, in this case is a row vector

with a one in the first postion followed by n zeros,
where 7 is the number of unknown states x. It is
important to note that while we now have estimates of
our unknowns after the first-step optimization, these
estimates are not optimal. There is still information
about these states contained in the estimate of the first
state in Eq. (39). This information must be combined
optimally with the estimates of the other first-step
states, using the associated covariance matrix. This is
precisely what the second step of the two-step
algorithm does. The dynamic example given below
illustrates how Eq. (39) can be used to handle
problems with implicit time variation due to state
dynamics. A good example of a problem that would
have explicit time variation in the first-step states (as
opposed to state dynamics) would be estimation of the
amplitude, phase and frequency of a sine wave. The
measurement equation can be writtten as

z, = Acos(wt, + )+ v, 40)

where the constant unknown state vector
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A

x=|w 41

¢

includes the amplitude A, the frequency @ and the
phase ¢ . The measurement equation can be rewritten
following the method of Eq. (39) as

Acos(wit, +¢)

A

z,=[1 0 0 0] +v, = Hy, +v,(42)

¢

where the first-step states are now a function of the
second-step states, y, = f,(x). This problem is not
simulated in this paper.

By their nature, nonlinear problems tend to
require a problem-specific approach. The method of
Eq. (39) should allow implementation of the two-step
formulation on any problem that the extended Kalman
filter can handle. However, better methods of choosing
the states may be possible for particular nonlinearities,
making the choice of first-step states an engineering
design issue.

Summary of Two-Step Estimator

The two-siep estimator can be summarized as
follows:

Given:

Measurements:

z,=F(x,,t)+v,=Hy, +v, k=L..N
Dynamics:

X, =D,x, +Fw k=1.N-1

Nonlinearity: = f(x,)
Initial Conditions: ?l » M

where E[v,]=0 E[v,v/1=R

Ew,1=0 Elww]1=0,
First - Step Optimization:
Measurement Update:

3, =%, +P HR'(z,-HY) k=L.N
B, =M +HR'H)"
Time Update:
yk+1=5’k+f;+1(fkﬂ)_f,(-f,) k=1L..N-1
T
=P + &;H %“

Yk+1 b4 ’Hl

k+l x,,=%,,

i‘
Xk
x, =%, ax x, =%,

k'l X. l_xl t

l

410

Second - Step Optimization:

Measurement Update:
%.=X, HG‘“q‘tx k=1..N
T
H, =20 prd
axk x,=£,; axk x, =%,
A A = J
4= —(yk - f; (xk.i))r F;,l_k
klx=3,,
-1
-\’k K] HGk i
Tune Update:
X,., =0,%, k=1L..N-1
Mx“; ¢k1)xk¢ + Fk QkaT

where i represents iteration number in the second-step
optimization. It is important to note that the second-
step optimization must be carried out between the
measurement and time updates of the first-step
optimization at each time step for problems in which
the time variation is not separable. In the case of
separable time variation, the first-step optimization
reduces to the static Kalman filter in Eq. (18) and the
second-step optimization need not be done at every
time step, as the two steps are now decoupled.
. . E ed Kalman. Fil 1 ]
E jed Kal Fil

The motivation for the two-step method was to
devise a recursive estimator for nonlinear problems
that would provide an optimal alternative to the
extended Kalman filter (EKF) or the iterated extended
Kalman filter (IEKF) typically applied to such
problems. The EKF and the IEKF are biased,
suboptimal estimators because they approximate the
original cost function by linearizing about the previous
estimate, thereby reaching a false minimum. This can
be shown by deriving the EKF and the IEKF for the
static problem (similar results can be derived for the
dynamic case) from the cost function at time step &

1
Jk =E[(x_fk)rM;’(x_fk)

+z, - F(x))" R (z, — F,(x))]
where the subscript k¥ on the function F indicates
explicit dependence on time. For the algorithm to be
optimal, it must not only minimize this cost function at
each time step, but it must also optimally combine the
estimates from each time step to achieve minimization
of the original cost function in Eq. (6) defined over all
the measurements. As stated previously, if F is a linear
function of the states, the Kalman filter, which can be
derived from a linear version of Eq. (43),” obtains the
optimal estimate and is thus equivalent to the weighted
least-squares batch fit. The Kalman filter is able to

43)
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combine optimally the cost functions at each time step
because the state and covariance equations are
decoupled. The EKF and the IEKF, on other hand,
linearize about the current estimate and thus cannot
decouple the state and covariance estimates. The
following derivations show that the IEKF obtains the
optimal estimate at each time step (i.e., it minimizes
the cost function in Eq. (43)), but does not minimize
the original cost function, while the EKF does not
even obtain the optimal estimate at each time step.
Both methods are shown to give biased estimates at
each time step. These proofs provide an analytical
basis for claims that the two-step estimator is an
improvement over the EKF and the IEKF.

The EKF can be derived by expanding the
nonlinear function K in a Taylor series about the

initial guess
_. OF, -
Ii(x)zﬁ(x,)+4'3x (x-x,) 4

Substituting this into Eq. (43) gives a linear cost
function

1
J, =5[(x—)'ck)'M;'(x—)_c,) 4s)
+(z, —Hx) R '(z, - H,x)]
where
z,=z,-E(X,)+H]X, (46)

H —E’ 47
' ax X=X,

Minimizing this approximate cost function by making
its derivative vanish yields the EKF measurement

update

and

‘fk = ik + IZ;H:R;‘(Z,: - F;(Ek))
R =M +HR'H)"
which is the same as that derived in Ref. 7. This
solution is suboptimal because it does not minimize
the desired cost function at each time step (Eq. (43)),
and thus does not minimize the original cost function
in Eq. (6).
The EKF estimator can also be shown to be
biased. Equation (44) can be made into an equality by
adding an error term b, to the right-hand side. The

new equality can be written as

_. OF
b, =FE(x)-FE(X,)~-

48

(x-X,) (49)

If there is no a priori information, then M,' =0. The
measurement covariance update becomes
P =(H/R'H)" (50)
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Substituting Egs. (49) and (50) into the state
measurement update of Eq. (48) and using the fact that
z, = F(x)+v,, the state measurement update can be
written as
X, =x+PHR'(v, +b,) (67))
where the covariance matrix P, and the gradient
matrix H, are functions of the initial guess. The
expected value of this estimator is
E[%,]=x+E[PHR (v, +b,)] (52)
In general, the second term in Eq. (52) will not be zero
and, as a result, the estimator is biased. The bias is
dependent on the quality of the approximation made in
Eq. (44) and the linearization made in calculating the
covariance and gradient matrices.

The IEKF can also be derived from the cost
function in Eq. (43). Instead of expanding F, about the
initial guess, it is expanded about the previous
iteration's estimate

. . 95 .
E@=EGE)+—H (-1, (53)
Substituting this into Eq. (43) gives the cost function
to be minimized at each iteration

J, = %[(x—fk)TM;'(x—ik)

(54)
+(z:,i - Hl_ix)TRk_l(zk,,i - Hk,ix)]
where
z:,i =z, - Ex (ik,i)+ Hk,ix\k,i (35)
and
H, = ok, (56)
BT o -

Minimizing this cost function yields iterative
equations for determining the measurement update -

A

X = fk + Pk,inT_iR;l (Z;,.' - Hk.ifk) (57

F,=M] +H R'H,)"
Again, these equations are the same as those derived in
Ref. 7. It can be shown that the IEKF measurement
update is equivalent to a Gauss-Newton method." This
means that iteration of the above equations will cause
the approximate cost function in Eq. (54) to approach
the cost function in Eq. (43) as %, , — £, ,. Thus the

IEKF obtains the optimal estimate for each time step.
However, the covariance matrix, which depends on the
current estimate, is approximate. At each succeeding
time step, the previous iteration’s estimate and
covariance matrix are used as the new a priori
information. =~ However, this  information is
approximate, resulting in an overall cost function that
differs from the original cost function in Eq. (6) and,
hence, a suboptimal estimate. This illustrates a
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fundamental difference between the IEKF and the two-
step estimator, both of which minimize the correct cost
function at each time step. The difference is that the
two-step estimator stores the information obtained
from the previous measurements in the first-step states,
which enter the measurement equation in a linear
manner. The use of these first-step estimates as the a
priori information for the next time step allows the
two-step estimator t0 make better use of all the
measurements.

The IEKF estimator can also be shown, in a
similar manner to that used above for the EKF, to be
biased. Again, the approximate Taylor series
expansion, Eq. (53), can be made into an equality by
adding an error term b, to the right side. The new
equality can be written as

., OF .
by=F(x)-EXx,)-— (-, (58

x=f,

Using this fact and similar steps to those in the case of

the EKF, the expression obtained for the state -

measurement update is

A

% ., =x+PB H R0 +b) (59)

Wi+l kiTk

where the covariance matrix P

ki

and the gradient
matrix H,, are functions of the previous iteration's

estimate. Taking the expected value of the estimator
yields

E[%,,,1=x+E[P_ H R (v, +b)] (60)
The estimator is biased because the second term in Eq.
(60), which is a function of the previous iteration's
estimate and the error in the approximation of Eq.
(53), will not, in general, be zero.

The above derivations show that the EKF and the
IEKF are suboptimal estimators for both the static and
dynamic problems because they modify the original
cost function. By comparison, the two-step method has
been shown to be an optimal estimator for the static
problem with separable time variation. When the time
variation is not separable, the two-step method
approaches optimality as the quality of the time update
approximation improves. In both cases, the EKF and
the IEKF make the approximation of the nonlinearity
in the measurement update. In contrast, the two-step
estimator moves the approximation to the time update
and treats it as a perturbation of the dynamics, thus
making better use of the measurements. This results in
better estimates than those given by the EKF and the
IEKF for many problems, especially those in which
most of the information is found in the measurements
or very little a priori information is available.

The EKF and the IEKF have also been shown to
be biased estimators. The EKF is biased and

suboptimal overall and at each step because it
minimizes a linearized cost function. The IEKF is
optimal at each step because it iteratively approaches
the correct cost function. However, these IEKF state
estimates at each step are biased due to the inherent
nonlinearity of the measurements, which transforms
the Gaussian probability density function so that
minimization of the quadratic cost function no longer
yields an unbiased estimator (as it did in the linear
case). This is simply a restatement of the fact that the
least-squares estimate is not equivalent to the
minimum-variance solution for nonlinear problems.
By the same reasoning, the second step of the two-step
estimator is also biased. The two-step method should,
however, result in smaller biases because the biased
estimate of the IEKF and its associated approximate
covariance matrix are used in the succeeding time
steps, whereas the second step of the two-step
estimator is done separately from the optimal,
unbiased first step in the static problem. Thus the
errors in the IEKF get compounded with each step,
while the bias of the two-step estimator decreases
rapidly as the number of measurements increases. In
the case where the time variation is not separable, the
biased second-step estimates of the two-step method
must be used in the succeeding time steps, but because
the nonlinearity is treated as a perturbation of the
dynamics, the effect should not be as great.

One common method of dealing with the bias in
the EKF and the IEKF has been to artificially increase
the state covariance matrix with “fictional” process
noise. This increases the filter gains, preventing the
filter from “going to sleep” and allowing the estimate
to move away from the biased value, hopefully toward
the optimal value. Unfortunately, this method is
imprecise, requiring tuning of the process noise, and it
tends to increase the estimate errors relative to the
optimal solution.

The compounding of the error at each time step in
the IEKF illustrates that the two-step method should
outperform the IEKF in problems where the states
become observable over time due to variation in the
measurement matrix. This is because the first step of
the two-step estimator is linear, so it optimally uses all
the measurements even though the states are not
observable at any given time step. The IEKF, however,
makes a linearization at each time step using only the
a priori information and the current measurement. The
linearization can be poor and the IEKF can get a bad
estimate, which is then fed into the next measurement
update. The static example given in the next section is
a problem in which the time variation of the
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measurement matrix is used to make the states
observable.

Estimate optimality and bias are not, of course,
the only criteria on which to judge an estimation
algorithm. Another important criterion is speed. The
computation time of the two-step estimator is similar
to that of the IEKF, but both are slower than the EKF.
Some studies have shown, however, that most of the
benefit of iteration is gained in the first or second
iterations.” Limiting the number of iterations
performed at each time step of the two-step method
may make its computation time more comparable to
that of the EKF, while retaining most of the
optimality. Robustness to unmodeled effects is also an
important criterion, but it can be difficult to define
because it is very problem dependent. The
comparisons made in this paper assume perfect
measurement and dynamic models.

Static E le—GP-B Data Reducti

The example chosen for the static case is based on
the Gravity Probe B Relativity Mission (GP-B) data
reduction problem. GP-B is a space experiment
intended to test Einstein’s General Theory of Relativity
by measuring tiny changes in the direction of the spin
axis of an Earth-orbiting gyroscope.® The
measurements taken during the experiment are
proportional to the angle that the spin axis makes with
respect to an inertial reference direction. This signal is
modulated by rolling the satellite about the reference
direction. A simplified model of the measurements
that will be taken during the experiment'’ is

z, =clat, + b+ Asin(w t,)) cos(w,t, +d)+v, (61)
where f (time), A, @, and @, are known. The
measured angle consists of a relativistic drift rate 4, an
initial bias angle b, and a sinusoidal signal of
amplitude A due to a known variation of the reference
direction at the satellite's orbital frequency ®,. This
angle gets modulated at the satellite roll frequency @,,
which has an unknown phase bias d, and then gets
multiplied by the unknown scale factor ¢ of the
measuring device, which converts the angle in
arcseconds to a voltage. The constant unknown states
to be estimated are

a

b
x= (62)
c

d
Using a trigonometric identity to substitute for the
cosine term, this measurement equation can be
rewritten as
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z, =Hy+v, (63)
where
t, cos(w,t,)
—t, sin(@w,t,)
; cos(m,t,)
H, = : (64)
—sin(w,t,)

Asin(w t, ) cos(w,t,)

| —Asin(wf,)sin(w,t, ) |
and
[ ca cos(d) ]

casin{d)

¢b cos(d)

= = 65
y=1t cb sin(d) 63)

ccos(d)

| csin(d) |
These equations can now be used directly in the two-
step estimator.

The parameter values used in the simulations are
given in Table 1. The measurements for the
simulations were generated using Eq. (61). Since this
is a static problem, the optimal static form of the two-
step estimator is used. The true state is taken to be x4,

while the initial guess is generated randomly for each
Monte Carlo run by assuming a normal distribution
with mean p_ and covariances given by matrix M,.

This provides the a priori information for the EKF and

Table 1 Parameter values for the GP-B problem

Given:
®, = 2n/6000 rad/sec
®, = 2n/180 rad/sec
A = S5arcsec
T = 10sec sampling time
R, =9x10 volts’ meas. noise variance
States:
a 0.001° 0 0 0
b 0 05 0 0
H, = M, = 2
c 0 0 0.05 0
d 0 0 0 0.01°
where:
a = 0.001 arcsec/sec
b = 10arcsec
¢ = 1 volt/arcsec
d = Orad
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the IEKF. The two-step algorithm assumes a very
large initial covariance because it is independent of the
initial guess for this problem. The plots which follow
are for estimates of the relativistic drift rate parameter
a. Any of the other unknown states could also have
been displayed and would have given similar results.

Figure 1 shows that the two-step estimator gives
the optimal estimate while the EKF and the IEKF do
not. It also shows that the two-step estimator gives a
good prediction of the error associated with the
estimates. The root-mean-square (RMS) error in the
estimate of the relativistic drift rate is calculated for
100 Monte Carlo runs. The figure shows how this
RMS error evolves over time for the different
estimators. The two-step estimate matches that of the
iterated Gauss-Newton batch fit, which makes optimal
use of all the data. The EKF and the IEKF differ
significantly from the optimal estimate. The only
reason they are even close (and actually a little better
at the beginning) is that the initial guess was very
good. With less a priori information, the EKF and the
IEKF often diverged, yielding very poor estimates. In
contrast, the two-step estimator is independent of the
initial guess for this static problem. The predicted
covariance of the states for the two-step estimator is
also plotted, and it agrees very well with the actual
RMS error. The EKF and the [EKF were found to give
similar covariance predictions, but these do not reflect
the true errors in the estimates and are an indication
that the estimators have become biased.

102

O Gauss-Newton Batch

= ] —— Two-Step

£ 109 O Two-Step Predicted
8 E

]

5 104 4

g 3

2 ]

2 10° 5

§ 3

<)

104

Time (min)

Fig. 1 Relativistic drift rate RMS error for 100
Monte Carlo runs.

Figure 2 shows that the two-step estimator is less
biased than either the EKF or the IEKF. For an
estimator to be unbiased, it must have the property that
E[X]1=x. To determine the expected value of the
estimator from simulation, a running average of the
estimate is plotted over many Monte Carlo runs to
show how it converges toward a final value. The EKF
and the IEKF clearly have larger biases than the two-

step estimator, which appears to be nearly unbiased.
Again, it should be noted that the biases of the EKF
and the IEKF are very dependent on the initial guess,
which was very good in these runs.

1.2¢-5

1.0e-5 Two-Step{..

8.0¢-6

6.0e-6

¥ ],

--------

4.06-6 oo I e e e

2.0e-6
0.0e+0 /
-2.0¢e-6

-4.0c-6

Averaged Drift Rate Error (arcsec/sec)

] 20 40 60 80 100
Nuraber of Monte Carlo Runs

Fig. 2 Bias in estimate of relativistic drift rate for a
100-minute simulation.

D icE le—Radar Rangi

The example chosen for the dynamic problem is
that of estimating position and velocity of an airplane
flying overhead at constant altitude using
measurements of the distance to the plane from a radar
station on the ground. This is illustrated in Fig. 3, from

which the state vector can be defined as
a

x=|a (66)

b
where a is the horizontal range of the plane, g is the
horizontal velocity, and b is the altitude. The
measurement equation is
2 =va' +b* +v 67
and a kinematic model of the state dynamics can be
expressed as

01 0 0
X=Fx+Gw={0 0 Olx+|1]|w (68)
0 0 O 0

where a random walk has been added to the horizontal
velocity. The continuous state dynamics can be

converted to the following discrete dynamic
equations'
1 T 0 T /2
X,=0x, +I'w, =10 1 Ox,+| T |w, (69
0 0 1 0

where T is the sampling period. The measurement at
time step k can be written

z, = 1/af +b' +v, (70)
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In this example, the second-step states are not
observable from the measurements. However, the
method described earlier in the section on choosing the
first-step states can be used to solve this problem.
Following Eq. (39), the first-step states y can be
chosen as

a +b’

yo=rf)=[ * D

a,

b
where the unknown state vector x has been appended
to the measurement function. The new measurement
equation is
z,=Hy,+v,=[1 0 0 0y, +v, (72
Equations (71) and (72) can now be used in the two-
step estimator.

Fig. 3 Radar ranging of an airplane flying

overhead at a constant altitude.

The parameter values used in the simulations are
given in Table 2. The measurements for the
simulations were generated using Eqs. (69) and (70).
The true state is taken to be 1, while the initial guess

is generated randomly for each Monte Carlo run by
assuming a normal distribution with mean g and
covariances given by matrix M,. This provides the a
priori information for the EKF, IEKF and two-step
algorithms. For the two-step method, the initial guess
for the first state in Eq. (71) is derived from the other
states. The plots which follow are for estimates of the
horizontal range parameter a. Any of the other
unknown states could also have been displayed and
would have given similar results.

Figure 4 shows that the two-step estimator nearly
achieves the optimal estimate while the EKF and the
IEKF do not. The RMS error in the estimate of the
horizontal range is calculated for 100 Monte Carlo
runs. The figure shows how this error evolves over

Table 2 Parameter values for the radar ranging

problem
Given:
T = 0.1sec sampling time
R = 1f’ meas. noise variance
Q, = 1ft"/sec' process noise variance
States:
a 100° 0 0
u,=|al M= 0 100° O
b 0 0 100
where:
a = 1000ft
a = 500 ft/sec
b = 3000ft

time for the different estimators. The two-step estimate
is close to the estimate given by an iterated smoother
like that found in Ref. 4, which makes optimal use of
all the data. The EKF and the IEKF differ significantly
from the optimal estimate and are highly dependent
upon the initial guess. In fact, the EKF is divergent,
with no improvement in the estimate error as
measurements are added. In contrast, the two-step
estimator is nearly independent of the initial guess.
The predicted covariance of the states for the two-step
estimator is seen to underpredict the actual RMS error.
Similar results were found for the EKF and the IEKF
(not shown). This underprediction of the actual error is
an indication that the estimators have become biased.
The bias in the two-step estimator was found to
decrease greatly as the measurement noise was
reduced. This supports the notion that the two-step
algorithm works well for problems in which most of |
the information is contained in the measurement
equation.

1000 O Iterated Smoother

- 3 — Two-Step
£ O Two-Step Predicied
5 ] —-— IEKF
‘un.l 100 o ....... EKF
z i &
) : N
3 10
:
ES ]

14 © 9 o &

T | L] T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Time (sec)

Fig. 4 Horizontal range RMS error for 100 Monte
Carlo runs.
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Figure 5 shows that the two-step estimator is less
biased than the IEKF. For a dynamic estimator to be
unbiased, it must have the property that E[%,]=x,. To

determine the expected value of the estimator from
simulation, a running average of the estimate is plotted
over many Monte Carlo runs to show how it converges
toward a final value. The IEKF clearly has a larger
bias than the two-step estimator, which approaches the
optimal iterated smoother. The bias of the EKF was
much larger than those plotted in Fig. 5 and is not
shown. Again, it should be noted that the biases of the
EKF and the IEKF are very dependent on the initial
guess, which was very good in these runs.

2
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Fig. 5 Bias in estimate of horizontal range for a 10-
second simulation.
Conclusi

A new estimation scheme, the two-step estimator,
was developed for problems with discrete, nonlinear
measurements. The motivation for developing this new
algorithm was to devise a recursive estimator which is
guaranteed to minimize the desired quadratic cost
function. The two-step estimator achieves optimality
with a recursive formulation by splitting the cost
function into two parts, a linear first step and a
nonlinear second step. In contrast to the suboptimal
EKF and IEKF, the two-step algorithm was shown to
obtain the optimal estimate for problems in which the
time variation can be separated from the unknowns.
While all three give biased estimates because of their
least-squares formulation, the bias of the two-step
estimator decreases rapidly as the number of
measurements increases. In the case of inseparable
time variation, an approximation of the nonlinearity
was made which allowed the second-step dynamics to
be treated as a perturbation of the first-step dynamics.
Though this approximation makes the two-step
estimator suboptimal, it was argued that the
approximation in the two-step algorithm is better than
that of the EKF or the IEKF because the nonlinearity

is treated as a small dynamic perturbation of the time
update, rather than as a linearization of the
measurement equation. Two example applications
were used to demonstrate the effectiveness of the two-
step method. The static example, taken from the GP-B
data reduction problem, showed nearly exact
agreement with the optimal Gauss-Newton batch fit.
The dynamic example, a radar ranging problem,
showed very good agreement with the optimal iterated
smoother. In both cases, the two-step estimator
performed considerably better than either the EKF or
the IEKF.

Acknowledgements

This work was prepared under NASA contract
NAS8-39225. The authors wish to express their
gratitude to A. E. Bryson of Stanford University for his
valuable comments and suggestions.

References

'‘Bard, Y., Nonlinear Parameter Estimation,
Academic Press, New York, 1974.

‘Gill, P. E., Murray, W., and Wright, M. H,
Practical Optimization, Academic Press, London,
1981.

‘Bryson, A. E., and Frazier, M., “Smoothing for
Linear and Nonlinear Dynamic Systems,” Proc.
Optimum Sys. Synthesis Conf., U.S. Air Force Tech.
Rept. ASD-TDR-63-119, Feb. 1963.

‘Bach, R. E., Jr, "A Variational Technique for
Smoothing Flight-Test and Accident Data,” Journal of
Aircraft, Vol. 19, No. 7, 1982, pp. 546-552.

‘Idan, M., "Nonlinear Smoothing Identification
Algorithm with Application to Data Consistency
Checks," Journal of Guidance, Control, -and
Dynamics, Vol. 16, No. 2, 1993, pp. 337-345.

‘Leondes, C. T., Peller, J. B., and Stear, E. B.,
"Nonlinear Smoothing Theory," IEEE Transactions on
Systems Science and Cybernetics, Vol. SSC-6, No. 1,
1970, pp. 63-71.

'Gelb, A., Applied Optimal Estimation, M.1.T.
Press, Cambridge, MA, 1974,

*Kalman, R. E., "A New Approach to Linear
Filtering and Prediction Problems," Transactions of the
ASME, Series D: Journal of Basic Engineering, Vol.
82, 1960, 35-45.

*Bryson, A. E.,, and Ho, Y. C., Applied Optimal
Control, Hemisphere, New York, 1975.

“Daum, F. E. “Exact Finite-Dimensional
Nonlinear Filters,” IEEE Transactions on Automatic
Control, Vol. 31, No. 7, 1986, pp. 616-622.

"Jazwinski, A. H., Stochastic Processes and
Filtering Theory, Academic Press, New York, 1970.

416

American Institute of Aeronautics and Astronautics



“Gonin, R., and Money, A. H., Nonlinear L,-Norm
Estimation, Marcel Dekker, New York, 1989.

“Bierman, G. J., Factorization Methods for
Discrete Sequential Estimation, Academic Press, New
York, 1977.

“Bell, B. M., and Cathey, F. W., "The Iterated
Kalman Filter Update as a Gauss-Newton Method,"
IEEE Transactions on Automatic Control, Vol. 38, No.
2, 1993, pp. 294-297.

“Wishner, R. P., Tabaczynski, J. A., and Athans,
M., "A Comparison of Three Non-Linear Filters,"
Automatica, Vol. 5, pp. 487-496.

“Everitt, C. W. F., “The Stanford Relativity
Gyroscope Experiment (A): History and Overview,”
Near Zero: New Frontiers of Physics, Fairbank, J. D,
Deaver, J. B. S., Everitt, C. W. F,, and Michelson, P.
F., Eds., W. H. Freeman and Company, New York,
1988, pp. 587-639.

"Haupt, G. T., Gutt, G. M., Lockhart, J. M.,
Kasdin, N. J., Keiser, G. M., Parkinson, B. W., “The
Stanford  Relativity Mission ‘Niobium Bird’:
Verification of the Science Mission by Experimental
Application of a New Nonlinear Estimation
Algorithm,” Proceedings of the 18th Annual AAS
Guidance and Control Conference, American
Astronautical Society, Vol. 88, 1995.

“Franklin, G. F., Powell, J. D., and Workman, M.
L., Digital Control of Dynamic Systems, 2nd ed.,
Addison-Wesley, Reading, MA, 1990.

417

American Institute of Aeronautics and Astronautics





