Superconductor Science and Technology is an international multidisciplinary journal from The Institute of Physics publishing original research papers, review articles and research letters on all aspects of superconductivity. It provides a forum for chemists, physicists, materials scientists, and electronics and electrical engineers involved in any aspect of the science and technology of superconductors, both conventional and the new ceramic materials.

Honorary Editor
J E Evetts, University of Cambridge, UK

Editorial Board
A D Appleton, NEI International Research & Development Co. Ltd, Newcastle-upon-Tyne, UK
I Campbell, Université Paris-Sud, France
P Carelli, Università degli Studi de L’Aquila, Italy
W I F David, Rutherford Appleton Laboratory, Didcot, UK
G B Donaldson, University of Strathclyde, Glasgow, UK
P P Edwards, University of Cambridge, UK
D Finnemore, Iowa State University, USA
H C Freyhardt, Universität Göttingen, Federal Republic of Germany
J B Goodenough, University of Texas, USA
K Gray, Argonne National Laboratory, USA
P Kes, Rijksuniversiteit te Leiden, The Netherlands
D C Larbalestier, University of Wisconsin, USA
K K Likharev, Moscow State University, USSR
J Livingston, General Electric Company, New York, USA
I McDougall, Oxford Magnet Technology, UK
V M Pan, Academy of Sciences, Kiev, USSR
D E Prober, Yale University, Connecticut, USA
C N R Rao, Indian Institute of Science, Bangalore, India
T M Rice, ETH-Honggerberg, Switzerland
K Tachikawa, Tokai University, Kanagawa, Japan
D R Tilley, University of Essex, Colchester, UK
Zhao Zhong-Xian, Academia Sinica, Beijing, People’s Republic of China
Zhou Lian, Baoji Institute for Nonferrous Metal Research, People’s Republic of China

Managing Editor
R J Palmer

Production Editor
A D Evans

Advertising Sales
Stephen Sadler
PO Box 930
London N1 7XE

Editorial, Advertisement and Marketing Office
IOP Publishing Ltd
Techno House, Redcliffe Way
Bristol BS1 6NX, UK
Tel: 0272 297481
Fax: 0272 294318
Email: ioppl@uk.ac.rl.gb on JANET

Consultant Editor
V I Lemanov
IOPP Editorial Office
A F Ioffe Physico-Technical Institute
26 Polyteknicheskaya
194021 Leningrad
USSR
EXTENDED ABSTRACTS

Papers have been reproduced without editing, as submitted by the authors.

Inclusion of a paper in these abstracts is in no way intended to restrict its publication anywhere else. Many of the papers in this volume will in fact be submitted for publication in Superconductor Science and Technology.

Further copies of these abstracts can be purchased, subject to availability, from Meeting Makers, 50 Richmond Street, Glasgow G1 1XP, Scotland, until 30th June 1992.

Copyright 1991 by Meeting Makers
An Ultralow Noise Amplifier
for Superconductive Detectors

G.M. Gutt, J.S. Kim, M.R. Condon II, J.M. Lockhart, B. Muhlfelder
Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 U.S.A.

* Supported by NASA under contract NAS8-36125
* Also with Physics and Astronomy Dept., San Francisco State University

Abstract. The design and construction of an ac-coupled, ultralow noise amplifier (equivalent input noise voltage $E_{in} = 0.33 \text{nV/}\sqrt{\text{Hz}}$, optimum source impedance 1kΩ at 100kHz) is presented. The amplifier employs nine Sony 2SK152-4 JFETs in parallel to yield the low noise result. Measurements were taken to characterize the amplifier's bandwidth, the additive voltage noise vs. frequency, and the current noise vs. frequency. SPICE modeling parameters for the JFETs used will also be discussed. Finally, we will review the performance of the amplifier in a flux-locked SQUID application.

1. Introduction

Superconductive detectors, such as SQUIDs and Josephson junction particle detectors, often have very low intrinsic noise (10-100 pV/$\sqrt{\text{Hz}}$ for a dc SQUID). The noise of the following amplifier must be significantly smaller than the output noise of the superconductive detector to realize the full system performance. As the performance of superconducting detectors improves so must that of the room temperature amplifier.

In this paper we describe the theory, implementation and characterization of a very low noise amplifier which we have used to directly measure the output signal of a dc SQUID. The basic form of the amplifier is similar to that published by Hallgren[1]. Other similar amplifiers have been presented by VanVechten, et al.[2] and Pallottino, et al.[3]. Modifications were made to these designs to optimize an amplifier for our purposes.

2. Amplifier Theory

The total noise density observed at the input to an amplifier (E_{in}) can be modeled in the following form:

$$E_{in}^2 = E_d^2 + E_v^2 + I_s^2Z_{in}^2 \text{ (V}^2/\text{Hz})$$ \hspace{1cm} (1)

where E_d is the output noise density of the detector in units of V/$\sqrt{\text{Hz}}$, E_v and I_s are the voltage and current noise densities of the amplifier with units of V/$\sqrt{\text{Hz}}$ and A/$\sqrt{\text{Hz}}$ respectively, and Z_{in} is the net impedance at the amplifier input (consisting of the source impedance Z_s in parallel with the amplifier's input impedance). For many applications Z_s dominates the Z_{in} term, in the following discussion we approximate $Z_{in} \approx Z_s$. In this paper we assume that E_v and I_s are uncorrelated and that E_d is fixed.

For a fixed source impedance, Motchenbacher and Fitchen have shown that when K identical amplifiers are placed in parallel, E_v is reduced by a factor of \sqrt{K} while I_s is increased by the same factor[4]. For a given source impedance Z_s, one finds that the amplifier's contribution to the total noise E_{in} of equation (1) is minimized when

$$K = E_v / (I_sZ_s)$$ \hspace{1cm} (2)

Alternatively, for a fixed amplifier configuration and source impedance, one may use a transformer to modify the effective impedance of the source. Within certain limits, a transformer increases the effective impedance of a source by the square of the turns ratio $(N_2/N_1)^2$ where N_2 and N_1 are the number of turns on the secondary and primary of the transformer respectively. In general, the optimum turns ratio occurs when:

$$(N_2/N_1)^2 = E_v / (I_sZ_s)$$ \hspace{1cm} (3)

Caveats- Both impedance matching techniques described above have their shortcomings. In practice, physical size, input capacitance and power consumption limit the number of amplifiers one can place in parallel. Large step-up transformers have limited bandwidth and self resonances caused by parasitic capacitances.
By making an attempt to optimize the noise impedance of an amplifier (\(E_r/(Kl_n) = Z_n \), equation 2), the construction of an impedance matching transformer is greatly simplified, and sometimes unnecessary. For the remainder of this paper we will concentrate on amplifier optimization for low impedance sources.

3. Implementation

Our amplifier, shown in Figure 1, was constructed on a single ground-plane 4" X 5" prototype board. The design is essentially that of a two-stage cascode amplifier with an op-amp follower. The input stage consists of nine Sony 2SK152-4 JFETs in parallel (Q1-Q9). The noise of a single 2SK152-4 was measured to be: \(E_r = 1.3 \text{ nV/}\sqrt{\text{Hz}} \) and \(l_n = 65 \text{ fA/}\sqrt{\text{Hz}} \) at 10kHz with a drain current of 10mA (\(E_r \) of the 2SK152-4 is approximately a factor of two larger with a 1mA drain current)\(^2\). The 10mA bias condition results in an optimum source impedance \(Z_{opt} \) (where \(Z_{opt} = E_r/l_n \)) of 20k\(\Omega \) for a single device. Since the typical dynamic impedance of a SQUID is on the order of 5\(\Omega \), equation (2) suggests one would need 4000 stages to optimize this amplifier. Nine FETs seemed a practical limit, based on the bias current needed for each FET. The total current of the input stage (90mA) must flow through Q10 (Harris 2N5434) which is close to its upper limit of 100mA. To prevent nonlinearities in Q10 and thermal noise in R1 from degrading the amplifier's noise performance, both parts should be well heat sunk; R1 should also be rated for high power (5-10 Watts). All other resistors are 1% metal film and all non-polarized capacitors use mylar dielectric. Q10 and Q11 are 2N5434; all other FETs are 2SK152-4.

![Schematic of Low Noise Amplifier](image)

Figure 1: Schematic of Low Noise Amplifier

The first stage alone only afforded a voltage gain of 15 V/V so a second similar single FET stage was needed to prevent the noise of the OP-37 op-amp (3nV/\(\sqrt{\text{Hz}} \) at 1kHz) from degrading the amplifier's noise performance. The total gain of the first two stages is 220V/V. The amplifier has poor power supply noise rejection. Therefore, to achieve the specified low noise result, large (6Ahour) lead acid batteries were used to provide quiet supply voltages. The need for large battery capacity is a result of the approximately 2W power dissipation in this circuit.
The gate capacitor labeled CGATE is needed for this configuration to give the best high-end frequency response. However, it was noted that with low source impedances (<50Ω) the amplifier would drift into harsh oscillations. All measurements discussed in the next section took place without this capacitor for maximum stability. It should be noted that for higher source impedances (100-1kΩ) the amplifier was quite stable (no oscillations were observed) with the capacitor inserted. In this situation the bandwidth can be increased by a factor 3-4 (reduction of the Miller effect).

The voltage on the gate of Q10 should be adjusted to approximately 5V. The individual drain currents should then be adjusted on Q1-Q9 and Q12 to 10mA (about 90Ω total drain resistance). The drain current can be easily monitored across the 49.9Ω fixed resistor in series with each drain. If the amplifier oscillates, small adjustments to the gate voltage of Q10 generally bring the amplifier into a stable and robust operating condition. Finally, the 10kΩ op-amp feedback resistor should be adjusted for the desired gain. If an OP-37 op-amp is used, the feedback resistor should be >5kΩ or the op-amp may become unstable. Any high performance op-amp may be used, however, its noise should be less than 22nV/√Hz.

![Voltage Noise of Amplifier Vs Frequency](image1)

![Current Noise of Amplifier Vs Frequency](image2)

Figure 2a: Eo of Low Noise Amplifier

Figure 2b: Io of Low Noise Amplifier

4. **Measurements**

Figures 2a and 2b show Eo and Io for the amplifier described above. Eo was measured with the input to the amplifier shorted using a HP-35660 spectrum analyzer (Hanning window). 100 RMS averages were taken to reduce the variance. To prevent quantization error, a low noise commercial amplifier (4nV/√Hz) was used to make the total gain a calibrated 10⁶ V/V. Finally, a second order regression was performed on the data.

Io was measured by placing a mica capacitor across the input such that the Io term of equation (1) dominated the expression. Several different capacitors were used (12pF,100pF,620pF). Since Io is independent of source impedance, the input capacitance of the amplifier and Io can be obtained (amplifier input capacitance=400pF). Zo is computed from Eo/Io at each frequency of interest (4kΩ at 1kHz, 1kΩ at 100kHz). Eo and Io measurements were made on individual FETs using an amplifier similar to the second stage shown in Figure 1.

The low frequency -3dB point for this amplifier occurs at 500Hz; it can be reduced by increasing the size of the three 1μF coupling capacitors. The high-end -3dB frequency depends greatly on the source impedance. Rolloff occurred at 1.3MHz for a 50Ω source and at 350kHz for a 1kΩ source. The harmonic distortion of a 2kHz pure sinusoid was measured to be .02% (75dB down at the first harmonic).

This amplifier was modeled using SPICE with the FET model parameters shown below:

```
.MDLO 2NS434 NJF(VTO=-2.5,BETA=15E-3,LAMBDA=0.021,CGD=35PF,CGS=35PF)
.MDLO 2SK152 NJF(VTO=-2.0,BETA=3.5E-3,LAMBDA=0.046,CGS=9PF,CGD=4PF)
```

With these parameters, SPICE predicted the system gain within 10% and the -3dB points within a factor of two.
5. SQUID Application

Best results in a SQUID application are typically obtained by using a cryogenic transformer or tank circuit to couple a dc SQUID to the room temperature amplifier. However, in many cases it is useful to couple to the superconductive detector with little or no impedance transformation. We have employed the amplifier described above for measurements on dc SQUIDs with no impedance transformation.

The amplifier is used in two modes of operation. First, the intrinsic noise of a SQUID which has an output voltage noise density greater than 0.4nV/√Hz can be measured. Second, a SQUID can be operated as a magnetometer using linearizing feedback electronics. In this mode of operation the low noise amplifier serves as the preamplifier.

In the feedback (flux-locked) mode of operation the SQUID is flux modulated at 100 kHz. This process up-converts the SQUID's output to 100 kHz where noise contributions from the electronics are smaller. Figure 3 shows the modulated SQUID signal (30μVpp typical SQUID output) using two different types of following amplifiers. The noise as seen in Figure 3a is dominated by the following amplifier (low noise commercial amplifier with 4nV/√Hz). The noise as seen in Figure 3b (our design) is dominated by the intrinsic noise of the SQUID. Both situations used identical gain and filtering. The result of Figure 3b allows operation of this particular SQUID as a linear magnetometer at noise level of 5μΦ0/√Hz without a transformer. Additionally, the amplifier's dynamic range, bandwidth and slew rate are all adequate to follow the modulation signal as well as the expected input signal to the SQUID.

6. Conclusion

We have designed and built a low noise amplifier well suited to use with superconductive detectors. It yields a measured performance of $E_n = 0.33$ nV/√Hz, $I_n = 335$ fA/√Hz, a maximum bandwidth of 1.3MHz, and a noise impedance of 1kΩ at 100kHz. A flux-locked noise of 5μΦ0/√Hz was obtained using this amplifier with a thin-film dc SQUID.

Acknowledgements

The authors would like to thank Dean Yon and John Turneaure for their helpful support.

6Analog Integrated Circuits Data Book 10, (PMI 1990), 5-179.