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We continue our study of the Einstein scalar field equations by investigating
asymptotic expansions to the spherically symmetric solutions, where we use the
coupling of the scalar field to the geometry as our small parameter. Exam-
ples of this kind of asymptotic expansion are given using known exact solutions
to the system. Although there are exact solutions that do not have asymp-
totic expansions of this type, those that do can be classified into two distinct
categories: perturbations about Schwarzschild, and perturbations about the de-
generate metric ds® = r?¢d0?. Each category is examined in both scalar field
and Schwarzschild coordinates. The Schwarzschild category gives the behaviour
expected from previous studies, but the degenerate category is altogether new,
and exhibits properties reminiscent of Mach’s principle.

1 Introduction

In [1] we introduced scalar field coordinates to study the problem of spherically-
symmetric Einstein equations:

Ryu =2 ¢u b,
O,6=0 (1)
where the metric and scalar field are given by:
ds® = gye(r, t)de? + g, (r, t)dr? + r2d0?
¢ = ¢(r,¢) (2)

The process of constructing the coordinates consisted of two steps: rescaling
the scalar field: '

¢p=—=v (3)

Sl

and then choosing coordinates:.

p=o(rt), ¢ =y(rt) (4)
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such that the resulting expression for the metric in the new coordinates was diag-
onal. The line element then took the form:

ds® = —%De‘b(”"’)df + %Deb(”"’)dpz + eblra) g2 (5)

where

D =bpp— (€24 (6)

r=ef, t = h(pyq) (7)
U
hop byp —€h, by =0 (8)

The field equations in the scalar field coordinates became:
R, = ezdupdup (9)

The difference between (9) and the equations R,, =0 for vacuum is that former
contains one equation whose right hand side is not zero but rather €2, It is tempting
therefore to examine what happens as we make € small. One would expect that
many solutions of (9) possess an asymptotic expansion in £2 about the vacuum

3 Examples of parameter limits

We now give a two examples of how parameter limits function in known families
of solutions to (1).

3.1 Static Solution




When k = 1, this solution gives us the Schwarzschild geometry. The natural
way to introduce ¢ is to set : :
’ V1 - k2

e(k) = | 11
(k) 7 (11)
Then, our scalar field coordinate p becomes:
2 2
p=Lo=og 1 - o (12)

which is still a valid coordinate for e = 0, as desired.

3.2 A Non-Static Solution

As a second example, let us consider the solution [3]:

ds® = ~dr? + dp? + (1 - %) dn?

- k
¢—%log(1—-p—‘) (13)
For this family, the vacuum solution appears when k — 0. Therefore, we set:
k(e) =¢ (14)
Then our coordinate p becomes:
1 et
= —log|1l- = 15
P= 75log ( p) (15)

Ase 5 0,p— —ﬁp, which again is a valid coordinate.

3.3 Parameter-Free Solution

Not all solutions to (1) have a vacuum limit, which means that some solutions can-
not be considered to be perturbations of the vacuum solution. For completeness,
we give an example of such a solution [2):

ds? = —2r2ds? 4 9dr? 4. r2d0?2
=t (16)

Since this solution has no free parameters, we cannot make it arbitrarily close to a
vacuum solution, which means that we cannot approximate it with g perturbation
expansion about a vacuum solution.

4 Classification of the perturbations

We now turn to the field equations. The governing equations can be expressed in
the form:
e? 1
z,,,:b,pz[x - (z— —2->} (17)

2= by, 2 [;; + (z - %)J (18)




where D is given in (6), and
A=(b,y)" —e®(b,)?, 2= D/A (19)

The unknown function z(p, q) is related to the variable Schwarzschild mass u(p, q)
introduced in [1], equation(12), by

1 -1
z:~(1—g—) : (20)
We expand b(p, q) and z(p,q) in terms of a power series in e
b =50 4 g2p1) 4 ...
z:z(o)+522(1)+4.. (21)
and thus obtain equations for z(0)-

200, = —p0), 20) ;0 _ 1y

Z(O)’q = _b(O),q 2(0) (Z(O) - %) (22)
We can solve these equations exactly, and there are three cases: 2(0) = 0,200 = 3
and the general case when neither of these is true.
4.1 General Case
If 20 0,1, then
(
— (@ ol o _
[2 8 ) ] b },p_[Qlogz(o) 72 b J,Q_O (23)
or,
%
2:0 = € (24)
ez — 2M(0)

where M) is a constant. This is the Schwarzschild solution, so this is the class
of perturbations about the Schwarzschild geometry.

4.2 Case 20 = 1

If 200 = 1, then 2200 = 1, which corresponds to equation (24) with M(® = 0.
So, this class of perturbations are expansions about the Minkowski geometry.

4.3 Case 20 =g
‘This case implies that D(© = A(0),(0) _ o The line element to zeroth order is:
2
(ds(o)) = r2dQ? (25)
which is the degenerate, two-dimensional metric. Therefore, the metric coefficients

that are missing in (25) are due entirely to the coupled scalar field; in this case,
one can say that the scalar field creates the four-dimensional spacetime.
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Thus we may categorize the solutions of our system in the following way: a) so-
lutions with no parameter limit, b) solutions which are asymptotic expansions
about the Schwarzschild geometry, and c) solutions which are asymptotic expan-
sions about the degenerate metric ds? = r2d?. It is a nice feature of scalar field
coordinates that the asymptotic expansions can be classified so cleanly.

5 Perturbations about the Schwarzschild geometry
Since we have solved for the z(9)| we now turn to the problem of solving for 6(9):
D) — (0 A(0) ) (26)

Substituting for (%) from (24), we obtain

2 2
po 1 (4 e = e (8/2) [(69,)” - 2 (5©),,)?]
wp "5 \© g = 2 [exp (b(o)/2) _ 21‘4(0)]

Unfortunately, this is a non-linear, second order equation, even in the special
case when M) = 0. Since we cannot find its general solution, we have little
hope of solving explicitly for 41, although several particular solutions have been
found. However, the first correction u(!) to the variable Schwarzschild mass can
be immediately expressed in terms of integrals of (9. Then, by equation (14)
from [1], the formula for the line element in Schwarzschild coordinates is readily
available. The same is done in a slightly easier way in {r,t} coordinates, and the
proper expressions for the metric coefficients to the same order in ¢ are:

(27)

2O\ c
grr(r,t) = (1 - ) [1 + €2 {L(T, to) + 2rK(r,t) + :TJIM—W
1 "o /
‘?TM(O)/,O L(r', to)dr }]
2M(0) = o
gee(r,t) = — <1 - ) [1 +é {21‘1{(7‘, t) + L(r, tg) + 2¢9(t) + m

1 " f X " ' ' N
+T}\{(O)/ L(T ,to)dl +4/.o WK(T ,t)d’l }] (28)

To

where
L(rt) = /r: [x (¢,,g) (:c,t))2 + (x——Z%I(W (¢,$l) (z,t))2} dz
Kry = [ (69 ) 8 (r9)] d, (29)

g(t) is an arbitrary function of time, and C) and Cj are arbitrary constants. The
first term ¢(!) of the scalar field expansion,

¢=ed™ + 3@ ... (30)
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satisfies the wave equation with the unperturbed Schwarzschild metric:

D=5 (- 20) g 0], o)

Even though this equation — unlike (27) — s linear, its general explicit solution is
not known. So, for the general case, we are forced to express the metric corrections
in terms of integrals of functions which we do not know explicitly. In this respect,
Schwarzschild coordinates are no better than scalar field coordinates.

5.1 Perturbations about the Minkowski geometry

We simplify the situation by setting M(0) = q. Then (31) is just the normal flat
Space wave equation, whose general solution is:

1y _ g(r+t)+h(r—t)
R UL

where g(z) and h(z) are arbitrary smooth enough functions. Next, we let 9(z)
and h(z) be pulses, namely:

(32)

/_00 [g'(ar:)]2 dz < +oo0, /-00 [h’(x)]2 dz < 400 (33)

and g(+oo) = 0, h(F00) = 0. We take to = —00, €y = Cy = 0, and 9'(—o0) =
h'(+00) = 0 in (28) and (29) so that g, (r, to) = 7,,. Then the solution takes the
form:

g = —[1+52{M+n(nt)
gr = [1+52{3’”~fﬁ—[¢“>(r,t>}2” (34)

where

r

r—+t (<]
me) = [ i@y - | W@

MY = im m(r, t) (35)
t—o00
"1 2 4MM)
= = - (1) _
n(r,t) 4/ro o [m(z,t) T {ng (x,t)} sz o

If, in addition, h(z) and g(z) satisfy 9'(+00) = h'(~00) = 0, then as t — 00,
n(r,t) = —4M O /p, yielding the line element:

W

fields is left behind as a Schwarzschild mass, and the metric evolves with time
to the Schwarzschild solution. Qualitatively, this is what one would expect, since
Christodoulou has shown under certain conditions that pure scalar field collapse in

asymptotically flat space-times results in a Schwarzschild or Minkowski geometry
(4]-
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6 Perturbations about the degenerate solution ds? —
r2d0?

In this case, since D®) = 0, we have 2(9) = 0. Therefore, the zero order equations
are automatically satisfied, and we proceed to the next order:

1

2121) = Eb'g)) AR ) (37)
1

2V = Eb,g") PR (38)

We can immediately integrate these equations to yield:
© .
) = getr = Br, B = const (39)
Next we examine the equation for ), which we will need in order to solve (39)
for 5. For b we have:

1 {0)
DO =, -3 (ezb ) o = (40)

with the additional constraint that A(® # 0. Again, the general solution to this
equation is unknown, but this does not prevent us from expressing the line element,
in Schwarzschild coordinates to first order using our {p,q} formalism. Namely,
from (20) and (21), we immediately find the variable Schwarzschild mass:

1 1
“:r(1_2622(1)+...):T<1—2€2ﬁr+...> (41)

and finally, by equation (14) from (1) the line element in Schwarzschild coordinates
becomes:

ds? = £*C {—-21—rdt2 + 2rdr2} +1r%d0?, C = const (42)

It is interesting to note that as ¢ — 0, p diverges. The scalar field ¢(!) satisfies
the equation

o = 6,0 +rg 1), (43)

which allows for a general solution in terms of Bessel functions.
The interesting thing about this class of solutions is that they undergo a di-
mensional reduction when the scalar field coupling vanishes. That is, the scalar
field generates the extra two dimensions. This suggests an example of a kind of

Mach’s principle in which the presence of matter (e.g. scalar field) is crucial to
the existence of a four-dimensional space-time.
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