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We investigate the Einstein scalar-field equations Ruv = 2¢,, ¢,, in spherical
symmetry using the scalar field itself as a coordinate. We construct the coordi-
nate system by requiring only that Oy¢ = 0, and @ is not constant. The metric
coeflicients in the new coordinates are shown to be related to the Ricci scalar.
The field equations simplify to yield a compatible system of two first-order par-
tial differential equations for two functions #(p,q) and b(p,q), where u(p, q) is
the position-dependent Schwarzschild mass of the system, and b(p, q) is the log-
arithm of the areal metric coefficient. Exact solutions are given for special cases:
we recover the Wyman solutions by requiring that bp=0or b,y =0.

1 Introduction

The problem of a massless scalar field coupled to gravity, described by the system
of equations R, =2 ®,u ¢, has been well-studied in spherical symmetry, and
with good reason. In general relativity, this system represents a very simple mat-
ter model which one can use to investigate gravitational collapse and black hole
formation, where recent numerical studies have produced indications of scaling
phenomena [1]. In scalar-tensor theories of gravity, this system represents (after a
conformal transformation) an even simpler matter model: spherically symmetric
vacuum. Because of the recent activity in scalar-tensor theories [2], it is important
to understand the simplest example of a scalar-tensor space-time.

This system has been explored in many different coordinate systems: Bondi
[3], Schwarzschild [4], and double-null (5] In this paper, we open a new avenue of
investigation by introducing the scalar field itself as coordinate.

2 Scalar Field Coordinates

Because of our restriction to spherical symmetry, the metric and scalar field can
be expressed in the form:

ds® = gu(r,t) dt® + g, (r, t) dr? + ggo(r,t) dO2
¢ = ¢(r,t). (1)
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We simplify our equations by choosing new coordinates in two steps. First, we
rescale the scalar field: ®= \/L§ . Under this rescaling, the field equations become:

R;U/ = 62 (10:11 pr (2)

Second, assuming that o(r,¢) is not a constant, we choose new coordinates
P = (rt) and ¢ = ¥(r,t) such that the resulting metric is diagonal. Using the

fact that Uy = 0, it can be shown that 9(r, t) must obey the following compatible
first order system:

Yyr = ~g66+/ —gt;:grr g“so,t
Yy = 996 ~ 912 9rr 9", (3)

Expressed in the new coordinates, the metric then has the form:

ds* = ~C(p,q) dg® + A(p.9) dp* + B(p,q) d022, (4)

where 72 = B(¢(r, t),9%(r,t)).
The clear advantage to using these coordinates ig the fact that the scalar field

derivatives become bp=€/V/2, #.= 0, thus eliminating one of the unknown
functions of the problem. The field equations (2) then reduce to:

R;uz = 52 5;Lp 6up (5)
Rescaling is important because it allows us to study the limit ¢ — 0, where we

expect to regain the solutions to the vacuum equations. This we shall do in Part
1I.

It is useful at this point to consider a specific example. A well-known family
of static solutions to our system are the metrics:

ds?2 — _(1 - %)k dt? + (1 _ ;Z;J)—k dpz + (1 _ %)l—k p2 dn?

#o1) = A7 10g (1 - 24)
0<k<1, p>oMm (6)

We set

p=%§¢=§10g(1—w)

A=¢e /-2, (7)

In {p,q} coordinates, the metric becomes:
/\2

AM?

2 5 AMZX2exp (2 — 5 dMf2 1— k)
ds® = exp (k/\p) dq—+wdp2+& 3 p]dQZ
(1~ exp Ap) (1~ exp \p)

(8)
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3 Field Equations

We now investigate the field equations (5) in scalar field coordinates. The wave
equation Uy = 0 gives us the algebraic relation C = A/B?. The equation Rgg = 0
provides an immediate expression for A in terms of the metric function B; if we
define b(p, ¢) = log B(p, ), and D = b,,, —1 (e?*) ,,, then we have:

A(p,g) = 5De" )

Thus, all of the metric functions depend only on B(p,q) and its derivatives. In-
corporating these initial results into the line element gives us:

1 1 :
ds? = ——§De_bdq2 +'§Debdp2 +ebd0?. (10)

The remaining three field equations can be shown to be valid if the following two
equations hold:

bip Dop +€™b,y Dy = D [ + (bpp +1b2 ) + €2 (bygq +15.2)]
big Dyg +b,p Dyg= D (2bpg + b,p byg) (11

We simplify the form of (11) by introducing an unknown function u(p, q):

. .
D = A
2 (eg - ,u)
— 32 _2b32
A = b, —e”b (12)
The governing equations then become:
b, b
pp = &% (e2 —u)
b, s
AU Y 3

We require that A # 0 in order to ensure non-degenerate solutions. It is easy to
show that A = 0 = D = 0, which by inspection of (10) yields [6] the unphysical
line element ds? = r2d?.

We can gain a better understanding of what u(p, ) means by expressing the
metric coefficients of the {r,t} coordinate system in terms of 4 and r = e*:

1
ds? = — K)o (1 - E) dr? + r2dQ? (14)
r(r—p) T
where
T d
k = / .
P~ Eli=const
po= uplrt),qrt) (15)
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Clearly, u is twice the mass contained in the coordinate radius r at time ¢,
Should p = const, then it is clear that the metric above reduces to the Schwarz-
schild metric. Examining our governing equations (13), we see that #{(p,q) = const
is indeed a solution only when ¢ = 0, just as one would expect.

The most important property of our governing equations is that their compat-
ibility condition

Hopg —fygp =0 (16)

yields nothing more than our definition of # given in (12). Consequently, we can
view our governing equations as two first-order partial differential equations for
two independent functions, whose compatibility condition ensures that the two
functions are related in the correct way. This allows us to drop the definition of

# and simply seek solutions to (13), since any solution to it must automatically
satisfy the compatibility condition (16).

4 Special Solutions

If we demand that b(p,q) depend only on p, or only on g, then we obtain the
static solutions found by Wyman (7). When b,p = 0, the field equations are easily
integrated to yield (8), which are the solutions when both the metric and ¢ are
time-independent. The other case, b,; = 0, gives us the static solutions with ¢

proportional to ¢, This class of solutions has two members, a parametrized family
(see [7]), and the lone solution:

ds? = —2r24t? 4 24r? + 72402
¢ =t (17)

This last solution is very important, for it has no free parameters, and therefore

does not have a vacuum limit. We will deal more thoroughly with this example in
Part II.

5 The Meaning of D and A

It turns out that D and A have physical and mathematical meaning. D can be
expressed in terms of the Ricci curvature scalar:

2e?
rD

and A can be expressed in terms of the jacobian of the transformation from
Schwarzschild to scalar field coordinates:

R= g"'@Rag =e2gPP = (18)

______ (19)

where t = h(p,q), r = exp (b(p,9)/2) is the transformation from scalar field coor-
dinates to Schwarzschild coordinates.
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6 Derivation of a Master Equation for b(p, q)

As one might expect from previous treatments of the problem [3], it is possible to
derive a single master equation for b(p,q). To do this, we proceed by integrating
both equations for p separately, and then equating the resulting expressions for .
This is possible because our governing equations are linear in p.

The resulting equation is:

’ by (P, q) exp {w +e?ulp',q) — u(p, Q)]} dp' -

Po

butnd)exn (ML) - ) o)} o

q0

=2[Q@ - Q@] 00 — 2 [p() - Pp)] e ir0 (20)
where
_ P b’p (-737 Q)
upa) = / K60 0), by (2,0) by 0]
‘ by (P, y)
v w0 A0, Y),bp (9,y),byq ( ,y))dy
Qle) = u(poiq), P(p) = pu(p, q0)
Qle) = exp [b(pg’Q)J, P(p) = exp [b(—péqo—)} (21)

7 Conclusion

We have presented a novel approach to the Einstein scalar field equations using a
completely new coordinate system. As with other approaches, we are able to regain
previously known special solutions. More qualitative and quantitative results can
be obtained using our framework, and will be published elsewhere. In Part II, we

shall investigate a perturbative approach to the system by taking ¢ to be a small
number.
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