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GP-B ORBIT MODELING AND INJECTION REQUIREMENTS

Penina Axelrad®, Richard H. Vassar', and Bradford W. Parkinson?

Gravity Probe B (GP-B) is a NASA spacecraft mission to test two previously
unverified aspects of Einstein's theory of General Relativity. The plan is to
measure two tiny drifts, known as the geodetic and frame dragging drifts, as
manifested in a nearly perfect gyroscope in orbit around the Earth. Our goal is
to measure these drifts to an accuracy of 0.4 marcsec/yr as compared to the
direction to a distant inertial reference. Of this error, approximately 0.1
marcsec/yr is allocated to orbit induced drifts.

The ideal orbit for the GP-B spacecraft is circular, polar, and contains the line of
sight to the guide star, Rigel. The drag compensation system employed to
reduce the nongravitational disturbances acting on the science gyros governs the
orbit motion during the course of the 18 month experiment. Thus, the orbit
will be perturbed primarily by the non-central terms in the Earth’s gravitational
field, the Sun, and the Moon. An additional effect due to the precession of the
equinoxes is also considered. These influences on the orbit are modeled and
simulated in order to deiermine the initial orbit elements which will yield the
smallest overall deviation from the ideal orbit. Injection error tolerances are
derived to meet the desired Newtonian gyro drift rate of less than 0.1 marcsec/yr .

INTRODUCTION

Gravity Probe B (GP-B) is a NASA project primarily designed to test two aspects of
Einstein's theory of General Relativity. Based on General Relativity, L.I. Schiff predicted
that a gyroscope in orbit around the Earth will undergo two motions not predicted by
Newtonian analysis. These are known as the geodetic and Sframe-dragging precessions. In
a precisely polar orbit at an altitude of approximately 650 km, the two effects would be
orthogonal, with magnitudes of 6.6 arcsec/yr and 42 marcsec/yr, respectively. The GP-B
spacecraft, planned to be launched in 1997, will carry extremely sensitive gyroscopes
designed to measure these relativity effects to an accuracy of three tenths of a
milliarcsecond (0.3 marcsec) or better. The history of the program development, which
began about 1963, and the technology applied to solving the problems associated with
measuring the relativity effects are described in references such as Everitt [/980].
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Every effort is taken to reduce disturbances which would cause Newtonian drifts of the
gyroscopes in order to achieve this unprecedented level of accuracy. The experimental
package has been carefully designed making use of cryogenics and superconductivity to
create a stable, disturbance-free environment. The relativity gyros are quartz spheres
coated with superconducting niobium, electrostatically supported inside a quartz housing.
The entire cryogenically cooled experimental package is carried on a “drag-free” satellite
which uses proportional helium thrusters to counteract all nongravitational forces acting on
the spacecraft. Each of the four gyros is spun up so that its axis is initially aligned with the
line of sight to the star Rigel to within a few arcseconds.

The direction to Rigel serves as a “distant inertial” reference against which the relativity
drifts are to be compared. A telescope mounted along the vehicle axis of symmetry senses
the apparent position of the guide star. The pointing control system will keep the spacecraft
aligned toward this image to within 20 marcsec [Parkinson and Kasdin, 1988]. Over the
course of the experiment, the star image will move due to both the physical drift of the star,
known as proper motion, and optical effects such as parallax, deflection of starlight, and
annual aberration. All of these effects are well known and can be reliably calibrated and
removed in the data reduction.

The most difficult errors to correct are Newtonian drifts of the gyros. These drifts
would be caused by forces exerted by the suspension system on the nearly spherical gyros.
The spacecraft has been designed so that most of these forces will average to zero over an
orbit or over the 10 minute roll period. However, if the spacecraft symmetry axis does not
lie in the orbit plane, gravity gradient torques on the spacecraft will not average to zero, and
there will be a net support force exerted on the gyros. Such a misalignment will occur for
two reasons: 1) the spacecraft must rotate to track the apparent motion of the star, and 2)
the orbit plane will rotate due to perturbing gravitational forces. The largest contributor to
the spacecraft rotation is the 20 arcsec annual aberration which must be tracked. Further
background information on GP-B can be found in references such as Parkinson et al.
[1986, 1987].

The primary drivers in the selection of an appropriate orbit for the GP-B spacecraft
mission are minimization of torques from nongravitational forces on the science gyros,
separation of the geodetic and frame-dragging effects, and maximization of the relativity
and geodesy data signals. This translates into an ideal orbit which is circular, polar, and
contains the line of sight to the guide star, Rigel. Nongravitational disturbances on the
orbit during the science mission are reduced to less than 10-10 g’s through the use of a drag
compensation system; however, this precludes any type of orbit adjustments to maintain
the nominal orbit. There are three major ramifications: 1) orbit corrections can only be
performed prior to the start of science data collection, 2) the ideal orbit can only be achieved
in an average sense, and 3) the target injection orbit must be determined very accurately,
accounting for the deviations which will occur over the course of the mission. Clearly, a
priori modeling of the GP-B orbit is critical.

This paper focuses on the modeling of the GP-B orbit, and the derivation of orbit
injection accuracies necessary to achieve the goal of Newtonian gyro drifts of less than 0.1
marcsec/yr. The first section below provides background on the the orbit requirements.
Variational equations are then given for the set of orbit elements used to describe the GP-B



orbit. The following sections develop the models of the perturbations caused by the
Earth's noncentral gravitational field, the Sun and Moon gravity gradients, and the
precession of the equinoxes. Numerical simulation results are presented to show the orbit
variations over the course of the 18 month GP-B science mission, and the preliminary orbit
injection requirements derived from these simulations, are summarized.

ORBIT REQUIREMENTS
The parameters of the spacecraft orbit influence both the relativistic drift and the
Newtonian precession of the science gyros. The ideal orbit is circular, polar, and contains
the line of sight to Rigel. If such an orbit could be achieved, it would have the following
advantages.*
1. Gravity gradient torques on the gyros average to zero over an orbit.
2. Suspension torques on the gyros average to zero over an orbit.

3. Geodetic and frame-dragging effects are orthogonal.
4. Data reduction is simplified.

If the orbit is nearly circular, it has the added benefit of obtaining the minimum average
altitude for a given dewar size.

Of course, it is impossible to maintain or even to inject the spacecraft into the nominal
orbit perfectly. Thus there will be precessions of the science gyros other than the northerly
geodetic and the eastwardly frame-dragging drifts. There are two ways to deal with these
disturbances to the relativity signals. The first is to try to reduce the disturbance to an
acceptably small level. If this is not possible, the second approach is to account for the
disturbance by mathematically modeling it in the data reduction. In practice it is likely that a
combination of these methods will be employed. The current goal is to reduce the physical
error in the frame-dragging drift to 1% of the expected value, i.e. 0.4 marcsec/yr. Of this
we allocate about 0.1 marcsec/yr to errors caused by orbital effects. In the following
paragraphs the contributions to the measured science gyro drifts due to orbit deviations
from the nominal are summarized and possible calibration methods are briefly discussed.
The general recommendation is that deviations from the ideal orbit plane should be reduced
to the lowest level possible.

Relativity Drif
The orbit averaged geodetic and frame-dragging drift rates were given by Everitt [1980]
as follows:

S = Ag (cos i cos 8 - sinisin &g sin Q)§+AG sinicos .QI?/ ()
SED = -%AFD [(1 +3 cos 2i ) cos g -3 sin 2i sin Og sin .Q]E

- %AFD sin 2i cos Op N

-

These advantages are only approximate. That is, given the ideal orbit, the Newtonian torques on the
gyros will approximately average to zero. Further discussion of this can be found in Keiser { 1985].
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where the relativity drift constants, A and App, are,

A =1_ﬂ5_"__, Apn = — O 1E ©F
T 2c2a(1-e2)” P 2c2q3(1- €2 P2 )

and pgis the Earth's gravitational constant, n is the orbit rate, ¢ is the speed of light, g and e
are the semimajor axis and eccentricity of the orbit, and @g is the Earth's rotation rate.

For a 650 km circular orbit the computed values of Ag and Arp cos 8. are 6.6 arcsec
and 42 milliarcsec per year respectively [GP-B, 1988]. Notice that these coefficients
would become smaller if the semimajor axis, @, were increased.

By making approximations for small values of i and £2, Eq. 1 becomes,

$c= Acg (' cos6R-.Qsm6R)E+AG N
SFD = ApDcos5RE Arp3i'cos O g N
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Thus the geodetic signal appears primarily in the north direction, whereas the frame
dragging drift is primarily easterly. Since Ag is two orders of magnitude larger than Agp,
we should compare the eastward component of the geodetic drift to the primary frame
dragging term. Substituting the right ascension and declination of Rigel into Eq. 3 gives,

See. = Ag(i'-0.1502) @

In order to separate this term from the frame-dragging drift, we must know the values
of the coinclination and node of the orbit to better than about 10-3 deg (125 m). The
eastward component of the geodetic drift can be determined by first obtaining the geodetic
coefficient based on the northward drift alone (the northward frame-dragging drift is
negligible). The frame-dragging term is then isolated by estimating and removing the
eastward geodetic drift based on the estimate of Ag and the time history of the inclination
and node.

Newtonian Precessions

Vassar [1982b, 1986] identified and modeled the orbit dependent torques and the
resulting Newtonian precessions of the gyroscopes as part of an end to end error analysis
of the relativity mission. The most significant drifts are caused by torques produced by the
gyro suspension system acting on the nearly perfect gyros. The suspension system keeps
each of the science gyroscopes centered within the housing and supports it against residual
specific forces including gravity gradients due to the separation of the gyro from the proof
mass, centrifugal acceleration due to spacecraft roll, random drag, and disturbances caused
by the pointing system.

Vassar found that the largest contribution was due to the gravity gradient forces, and
computed the resulting gyro drift rates to first order in the angle between the gyro spin axis
and the orbit plane (7). This angle is given by the following combination of the orbit
coinclination (i’ ) and node measured relative to Rigel (£2) [Vassar, 1986].
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Gyro drifts due to both primary suspension torques caused by the interaction of the
support forces counteracting the gravity gradient force with the gyro out of roundness, and
the secondary suspension torques due to the asphericity of the gyro and the asphericity of
its housing were considered. The rotor shape is modeled by a spherical harmonic
expansion similar to the model of the Earth's graviational field. Vassar found the dominant
component to be the primary torque due to the even terms in the harmonic expansion which
produces a northward drift of approximately 500 ¥ marcsec/ yr, where 7 is measured in
radians. Thus

Sgg = 500 (i 'sin 5R4+ £ cos b ) marcsec fyr (6)

This expression can be integrated using the results of long term simulations of the
variations of the orbit plane to determine if the Newtonian drrateift will be within the
desired error margin of 0.1 marcsec/yr. In the simulation results it will be shown that this
goal can be achieved if highly precise orbit injection requirements are met.

The suggestion has been made that if the Newtonian drift is in fact significant, it would
be possible to calibrate it in the data reduction based on the orbit plane time history. There
are several difficulties which might arise in trying to carry out this scheme. For example,
the effects of capacitance differences, gyro mis-centering, drifts in the suspension system
null, and thermal gradients would be impossible to model and calibrate. It may be possible
to extract from the measured data enough information to determine coefficients describing
the mean shape of the gyroscopes using techniques developed by Feteih [1990], and Cohen
[1990]. However this would add complications to an already difficult data reduction task.

Altitude Variations

The requirement for the GP-B spacecraft to be placed in a nearly circular orbit is based
on two objectives - to make the eccentricity small enough that second order terms can be
ignored, and to keep the average orbit altitude as low as possible so as to maximize the
relativistic drifts. In order for the spacecraft to remain drag free, the translational control
system must have sufficient control authority to compensate for the maximum atmospheric
drag, which generally occurs at the perigee of the orbit. Since the perigee altitude is set by
the helium vent rate of the dewar, the minimum average semimajor axis would be achieved
by a circular orbit. Unfortunately, the combination of the Earth oblateness and odd
harmonic terms, cause even an initially circular orbit to become elliptical. Periodic altitude
variations of 15 km, corresponding to a maximum eccentricity of 0.002, are acceptable
since it produces only a minimal reduction in the relativistic drifts.

ORBIT PERTURBATION EQUATIONS

Disturbances can produce both secular and periodic variations in the spacecraft
instantaneous orbit elements. In this paper we address only the long term motions; thus all
effects are averaged over an orbit and disturbances which produce only short term periodic



oscillations of the instantaneous elements are not included in the analysis and simulations.
However, to determine the precise instantaneous target injection values for a given date and
time, these periodic variations must be added to the mean target values discussed here. For
example, for a near polar orbit, the J, 2 term in the Earth’s Gravitational field causes the
instantaneous inclination to oscillate about a mean value with an amplitude of 0.002 deg
and a twice daily period. Similar variations occur in the ascending node. The in plane
elements oscillate with fairly large amplitude, at the orbit frequency due to perturbations
produced by the Earth oblateness. Except where otherwise noted, all elements refer to the
daily mean values.

Fig.1 shows the orbit elements used to describe the GP-B orbit. They are similar to the
Delaunay and the equinoctial elements often mentioned in the literature [Battin, 1987]. The
semimajor axis, a, and right ascension of the ascending node, £2, in this case referred to
Rigel, are two of the classical elements. The coinclination, i '=Z - i is substituted for the
inclination, i, to facilitate small angle approximations for the near polar orbit. Because the
orbit is nearly circular, the argument of perigee (®) and true anomaly (f) are poorly defined.
The components of the eccentricity vector in the equatorial plane, & and in the northward
direction, 1, and either the argument.of latitude, u, or the mean argument of latitude, ug,
are used instead of e, w, and f.

E=ecosw, mnN=esinw, u=f+w or w=M+o D

Disturbing forces exerted on the GP-B spacecraft cause its orbit to deviate from a
Keplerian ellipse. For a typical near Earth spacecraft these disturbances are primarily due
to atmospheric drag, solar radiation pressure, noncentral terms in the gravitational field of
the Earth, amd gravity gradients of the Sun and the Moon. GP-B is unusual in that the
drag compensation system will eliminate the atmospheric drag and solar pressure effects on
the orbit down to a level of less than 10-10 g’s. Other orbit perturbations which must be
considered are solid Earth tides, and precession of the equinoxes.

The effects of these disturbances on the orbit elements can be analyzed using standard
variational methods, expressed in terms of either a perturbing potential or force.
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a - semimajor axis

§=ecos o -component of e vector in equatorial plane

1 = e sin @- component of e vector orthogonal to equatorial plane
i’ - coinclination

{2 - right ascension of the ascending node

u - argument of latitude

Fig. 1 Definition of Orbit Elements for GP-B.
Eliminates singularities of classical elements for a polar, near circular orbit.



The variational equations for the orbit elements in terms of a disturbing potential are
given by,

da _ /—aU
dt 2#*-' dug
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where ¥2 = 1-€2.

The potential form of the variational equations is particularly useful because there is no
explicit dependence on the time variable, ug. Thus to determine to first order, the average
rate of change of the elements, we need only average the potential, U, and compute the
rates using Eq. 8.

Earth Harmonics

In this section the disturbance to the orbit due to the nonspherical gravitational potental
is considered. The Earth oblateness, sometimes referred to as J,, has the most significant
effect on both the orbit plane and the evolution of the eccentricity vector. Various tesseral
terms have periodic effects on the orbit, but no significant near resonances were found for
the suggested choice of orbit altitude (650 km).

The spherical harmonic expansion of the perturbing geopotential is given by Kaula
[1966] as,

= |
R
= Z Z Um= 2 2 ua é [szcosm2.+51,,.sinml] Pim (sing) (9)
=2 m=0 =2 m=
where C;, and S;  are cmpmcally determined coefficients, and P; , are the associated
Legendre Functions. The coefficients are often normalized for computation purposes.
=~ (I+m)! I
im=
(I-m) 21+ 1) (2 -8 |
where &m = 1 for m=0 and &y, = O otherwise.

Cim (10)



The C2,0 (-J2) coefficient is three orders of magnitude bigger than the next largest
coefficient. The magnitude of high order normalized coefficients can be approximated by
Kaula's rule of thumb as follows, [Kaula, 1966, p. 98].

Y160 x 106 -5
10 a1

V214413 12
Terms with m= 0, known as the zonal harmonics, depend only on the geocentric
latitude (¢ ) of the satellite subpoint. General terms, known as tesserals, have both latitude

and geocentric longitude (A ) dependence. For a nearly circular, polar orbit, ¢ and A can
be approximated by, sin ¢ =sinu, A =Q-awg 1.

|Elm I =

The following section deals with the U3 g term by itself, followed by a description of
the zonal and tesseral effects.

E laten

The Earth’s equatorial bulge or oblateness has an unnormalized coefficient
C20=-J2=-1.082x 10-3. We will see in later sections that the coinclination and
node will have variations on the order of 10-3 and that the eccentricity will also be of the
same order of magnitude. Thus, J2 will be considered first order small. Substituting
=2, m=0in Eq 10 gives the J; potential

2
HE J2 Re 3(3 oy s 1
- _(1+ecos cos?i'sin?u - L 12
03(1_82)3( f) (2 ntu 2) (12)

This expression can be averaged over time to obtain the slowly varying part of the
potential. The average J, potential is then substitued in Eq. 8 to determinethe average rates
of the orbit elements. Keeping terms to second order, (i.e. €2, 12, £ J,, i’ Jo, etc.) we
obtain the following nonzero average rates for &, 77, and £2, and u(Q,

Ujz=

dnp _ 3 Re:

dt 4nJ2a274§ _
d.sz=_3_nJ2£,i i’ (13)
dt 2 aty?

dﬁon_ .3 REZ

T —n(l 2jza2y3

If this were the only disturbance on the orbit, the average eccentricity vector would
rotate in the orbit plane at a rate of 6.69x10 rad/orbit (period of 101 days) opposite the
orbit motion, and the node would have a secular drift rate of 45.5 i’ per year.
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The terms in the spherical expansion of the gravitational field which do not depend on
longitude are known as zonal harmonics. The disturbing potential for each zonal term in
the model can be expressed as ,

R
Ui,o= —é Ji P (sing) (14)

k
where P (sing)=2"'Y aj sin'*%/¢
j=0

wr o D IQL-2))Y (172 forleven
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For / greater than 2, the average potential over an orbit to first order in e and i’ is

2K .
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To first order, the average potential for the even zonals, J4, Jg, Jg, etc., does not
depend on the orbit elements &, 1, i’, or £2. Thus the average rates of change of the orbit
elements are all zero.

For [ odd, the average potential has a first order dependence on 1 which produces a
constant rate of change of &, as follows:

d&ioad _  [He , R}
| _dt = ale—aT(l'l)P['l (16)
{1
2 DS +2j+1)!
where P“= Z 2 ] -

o 2M2+L Il ol i !
j=0 2 ( > +j).(2 j).j.(j+1).
All other average orbit element rates are second order small.

The oscillation in the two components of the eccentricity produced by the Earth
oblateness is analogous to a mass-spring system with natural frequency equal to

3/4nJ2Re / (a2y 4). The rate of change of & given in Eq.19 acts like a forcing term
which offsets the center of this oscillation. This is equivalent to a constant force acting on a
mass-spring system.
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The sum of the rates due to the odd harmonics of order 3 to 35 is 0.894 x 10-6 per
orbit. This rate of change of £ due to the odd harmonics, divided by the rotation rate of the
eccentricity vector-due to the Earth oblateness, gives the "frozen eccentricity" offset of
0.001338. The long term motion of the eccentricity vector will be a slow rotation about
this offset position.

Tesseral Harmonics Near Resonance

Terms in the gravitational potential given in Eq. 10 for which m>1, are known as
tesseral harmonics. In general they are a function of both latitude and longitude. Sectoral
harmonics, for which /=m, depend only on longitude. Kaula [/966, p.24] gives the
following form for the potential due to a single tesseral of degree ! and order m in terms of
the spacecraft orbit elements.

| = I-m even
He (Re\! . cos
UI"':T(TE) 2 Z Flmp(l) Glpq(e)-’lm[ Sinl[v/,]
P=04=w I-m odd
v=(l-2p)uo+qM+m(Q2-axt-Qim) ' an

Jim=VC? + 82 ,tan(m(pl,,,)—%—-

im

The inclination function Fmp as expressed by Allan [1967] is,

Fimpli) = _(+mp 2 (-1)+ (21'21’)( c31-m-2p-2k gm-1+2p+2k (18)
2'pt(l-p)t % bm

where ¢ = cos i/2, s = sin i/2, j =0 for /-m even and j =1 for /-m odd, and k ranges from

max(0, /-m-2p ) to min(l-m, 2/-2p). The eccentricity function Glpq is a complicated sum

which is of order &/4/, with Gipg(e)=1.

Most tesseral terms will have only short term periodic effects on the orbit elements;
however terms which are nearly commensurate with the orbital period may produce large,
long term variations in the inclination and node, referred to as librational resonance, and
secular growth in the eccentricity and semimajor axis, known as dynamical resonance.
Many papers have been written analyzing orbit resonances, and in fact orbital data from
near Earth satellites in near resonance have provided the means to estimate certain high
order coefficients very accurately [Allan, 1970, 1971, 1972, etc). In the next two sections
the effects of the tesseral harmonics on the GP-B orbit plane, and the spacecraft motion
within the orbit plane are described.

Qut of Plane Motions

To investigate the change in the coinclination and node of the orbit due to the tesseral
harmonics, set =0, and keep only terms which are first order in i’ for the potential in
Eq. 12. Substituting this in the variational equations Eq. 8 gives the following
expressions for the rate of change of i’ and 2 due to a single term Ujm.
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Thus one would expect the coinclination and node to vary sinusoidally unless y is close
to zero. This situation is known as a librational resonance, where the driving frequency
|,i/ associated with a particular harmonic is nearly zero [Allan, 1967a); expressed
mathematically as,

v=(1-2p)ug-mag=0
S (20)
or y=aup-Bawg=0
for some integers aand S.

For any set of orbit rate and Earth rate multipliers ¢ and B, we can compute the orbit
altitude for which resonance will occur. (For reasonable accuracy in predicting these
altitudes the effect of the Earth oblateness must be included in the orbit rate as in Eq. 13))
Table 1 lists the closest resonances for terms up to degree and order 60, for a polar orbit at
an altitude of 650 km. The exact resonant altitude and the period of the driving frequency
for GP-B associated with these near resonances are also shown.

In general, lower order resonances will be stronger than higher order ones because both
the normalized geopotential coefficients and inclination functions slowly decrease as the
degree and order increase. That is, although the GP-B orbit is closer to the 44:3 resonance
than to 15:1, the latter will probably produce a more substantial variation in the orbit
elements.

Table 1 Near Resonances for Polar 650 km GP-B Orbit .

o 2 3 4 1

B 29 a4 59 15

Resonant Altitude (km) 706.5 652.6 626.1 547.9
Period (days) 2.85 40.64 3.32 3.07

Each f/a resonance is composed of contributions from a sequence of tesseral terms,
which satisfy the conditions (I-2p) =, and m = 8. For example the lowest order terms in
15/1 resonance are (1,m,p)=((15,15,7), (17,15,8), etc }. Linear analysis can be used to
approximate the element rates for these near resonant terms; however, if the computed
value for y is too small, the linear approximations are no longer valid and a more involved
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analysis must be performed. In this situation the value of y may vary considerably and
secondary influences must be taken into account.

It is difficult to precisely predict the effects of higher order terms for two reasons.
First, the coefficients themselves are not well known and second, the usual series
expressions for the inclination function, Fimp(i), such as that given in Eq. 18, require
infinite precision for large values of I. Recursive [Kostelecky, 1986]; and FFT methods
[Goad, 1987] have been developed recently for determining these coefficients reliably;
however, these techniques require substantial computational and storage capabilities and
were not attempted for this paper.

The work that we have done indicates that the largest variation for GP-B is due to the
first few terms in the 15:1 resonance. The simulation results show a + 2 x 10-5 deg
variation in the coinclination, and an even smaller oscillation in the node. These variations
are small enough to be neglected in the preliminary orbit modeling, but should be included
in later studies.

For GP-B we have the flexibility to select the semimajor axis of the orbit so as to avoid
low order resonances. Based on these preliminary analyses, it appears that the suggested
altitude of 650 km achieves this desired objective. The period of oscillations associated
with the 15:1 resonance is three days is fairly short. A long 41 day resonance occurs for
Pla=44/3, which is of high enough order that the effects appear to be negligible for long
term orbit modeling purposes. If future work indicates otherwise, the orbit altitude can be
adjusted accordingly.

In-plane Motions

To investigate the in-plane effects of the tesseral harmonics it is necessary to
reintroduce terms in the series expansion of Eq. 17 to first order in e. Doing this and
substituting the perturbing potential in Eq. 8, gives the following rates for the components
of the eccentricity vector [Allan, 1967b)].

- I-m even l-m even
ton _ &)y Sy G 05 W Fimp Gip [V
T= n(—aE) Jim pg() F”"P Glp  Sin v i-m odd +F’”‘P Glp sin Y- -m odd
-, l-m even . [-m even
dMm _ (Re\'r N + |sin y* | S v
—Zt_'"( alfim E{)FIM Gip LCOS YT ] odd *Fime Sip | cos Vol moad
2D

where w¥=(-2 ptl) ug+m(2- ag), G,p:%a -4 p+1), G[p=%(4p-l+l)

As in the out-of-plane motions, a resonance will occur when y is near zero. In this
case, however, the resonant perturbing force is periodic at the orbital frequency. Blitzer
(1966) termed these in-plane effects, dynamical resonances. Expressed mathematically, the
resonant condition is given by [Allan, 1967b),
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y=(l-2pt1)io-mag=~0
L (22)
or y=aiy-PBawg=0
Thus, the same f/a combinations considered for the out-of-plane motions will cause
in-plane resonances, but the resonant indices are different (Eq. 20). For each (I*,m*) pair
there are two resonant values of p corresponding the +1 and -1 values of q.

For the 15:1 near resonance,.the eccentricity vector has an amplitude of less than
2 x 10-6 and rotates clockwise in the plane with the period of 3.0 days. This variation is
insignificant in comparison to the short term changes produced by J, and does not have a
long enough period to cause long term effects as did the odd zonal harmonics. If the
spacecraft were in an orbit closer to a low order resonant altitude, tesseral terms could
contribute slow or nearly constant offsets to the eccentricity vector which would appear
similar to the odd zonal harmonics discussed earlier. Again the higher order tesseral terms
in near resonance (/ 2 44, and / 2 59) are expected to produce extremely small variations.

Sun and Moon

The Sun and Moon gravity gradients affect the motion of the spacecraft both directly,
and indirectly through the solid Earth tides. The primary gravity gradient effect of each
body is a drift consisting of secular and periodic components in the coinclination and node.

The potential due to a distant mass is given by

Us Ms Ta-T U Mg r!
- = e 4
Torl W 3 7 i+t

where up is the gravitational constant of the disturbmg body, rp is the distance to the
body, and P;is the Legendre function of the angle between the spacecraft and the
disturbing body at the Earth center. isic and ip represent unit vectors pointing from the
center of the Earth toward the spacecraft and the disturbing body, respectively.

Pl( is - isic ) (23)

If Eq. 23 is expanded to third order in ;! L , one obtains

Up =2 + 2 (2)? [%(i,- ioc)* - 1]

s
(24,
I FIDRTLE TP}
Where the second term in Eq. 24 represents the gravity gradient potential. This perturbing
term will have a significant effect on the inclination and node of the orbit. The third term

could influence in the in-plane elements; however for GP-B its effect was found to be
insignificant.

The gravity gradient potential can be expressed in terms of the right ascension and
declination of the perturbing body and the orbital elements of the spacecraft orbit, by
making the following substitutions based on Figure 2.10.
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isc = cos9 cosa iy + cos¢ sina iy + sing i3

(25)
is = cosds cosap iy + cosdp sinag iy + sinds 13
thrc for a nearly circular, nearly polar orbit, to first orderin i ’,
a=2"'+Ac, sing =sinu,
(26)
cos¢ cosAa =cosu, cosP sinAa =i'sinu.

Notice that the longitudes, right ascensions, and orbit node ( £2") are referred to the
direction of the equatorial crossing of the perturbing body (ij).

Disturbing Spacecraft

Body

Fig. 2 Geometry for Disturbing Body (Sun or Moon).

This gravity gradient potential is averaged over an orbital period and expressed in terms
of the position of the disturbing body as follows:

Ms a?

Ty =
7

[- 1. 3-(cosz(m;-.Q' ) cos28s + sin?8s + i’ sin(os- Q') sin25g)]
2 4 . _(27)

- Then the average rates of change of i’ and £2due to the Sun and Moon can be computed
from Eq. 8. We find that
di'p 3 K pop (0s-£2" ) cos 26
t 4 pp}

(28)

ds 3 He
T, i sin (-0 ) sin 25

~ These rates can also be expressed in terms of the argument of latitude, u, and inclination,
ig, of the “orbit” of the perturbing body around the earth, by expanding Eq. 28, and
making the following substitutions:
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sin 8 = sin ip sin ug
cos O COS Oz = COS Us (29)

cos O sin 0 = cos ip Sin us
Then the average rates become ‘

di's __ 3 Hs { sin20" sinis

dt 8 nr3
-2 cos282' cosig sin2up + sin2Q' (1 + cos2is) cos 2ua}
- s 30)
&: - .3._ ] [ '
T 8 { sin 2ig cos £2

- sin 2is cos £2' cos 2us - 2 sin i sin 2" sin 2us)

The form given in Eq. 30 is particularly useful because it immediately shows that a
perturbing body will contribute a secular drift plus a periodic term at twice the rate at which
the body orbits the earth. The secular part is simply the first term in each of the
expressions above.

Thus, the Sun will cause a secular drift plus a twice yearly oscillation in both
coinclination and node. The secular drift-is approximately -1.6 x 10-3 deg/yr in
coinclination, and -3.7 x 10-3 deg/yr in the right ascension of the node.

The Moon also produces a secular drift plus a twice monthly variation; however, the
magnitude of the secular term depends on the position of the lunar orbit in its 18.6 year
precessional cycle around the ecliptic pole. Fig. 3 shows the motion of the lunar pole with
respect to the ecliptic pole and the north pole of the Earth. In the figure the 5 deg cone
which the lunar orbit normal traverses about the ecliptic pole is illustrated. Notice that
during part of the cycle it just crosses the nominal GP-B orbit plane which is oriented so as
to contain the line of sight to Rigel. The orbit plane secular drift rates as a function time
during the 18.6 cycle, are shown in Fig. 4.
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Fig. 3 Motion of the Lunar Orbit Plane with Respect to the Earth.

The top figure shows the relative positions of the Earth's North Pole, the Eliptic Pole and the
normal to the lunar orbit plane.
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Fig. 4 Average Secular Rates Due to the Moon.
Solid Earth Tides

The Sun and Moon exert forces on the Earth which cause variations in its shape. These
bulges in turn have a noticeable effect on the orbit of a near Earth satellite. A simple model
of this perturbation is often used in which the gravity gradient potential of the Sun or Moon
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is evaluated at the surface of the Earth and multiplied by the Love number, kj, and a
reduction factor of (5,5-)3 [NASA, 1988, p. 152].

This formulation was used in the long term simulations for both the Sun and Moon,
assuming an elastic response time of zero and a typical Love number k2 = 0.3 [NASA,
1988, p. 155]. These secondary effects of the Sun and Moon were found to be less than
one fifth of the direct influence. Thus, the simple model seems adequate at this stage of the
analysis.

Precession of the Equinoxes

Precession of the equinoxes refers to the movement of the Earth’s spin axis in a
23.5 deg cone about the ecliptic pole. This motion, which is due primarily to the torque
exerted by the Sun on the Earth’s equatorial bulge, has a period of 25,700 years. As the
Earth precesses underneath the spacecraft orbit it produces an effective change in the
inclination of the orbit. '

The reference point from where the right ascensions of both the guide star and the
ascending node of the orbit are normally measured also shifts as a result of the precession
of the equinoxes. However, because we are only interested in the relative position of the
node relative to Rigel, this shift has no effect on £2

The annual general precession is westward at the rate

Wpoe = 57%%; = 0.000244 radfyr = 0.0139 deg/yr 3D

which produces a change in the coinclination of a polar orbit aligned with Rigel of

é—fd—%o—e = sin (tiltg) sin ( AR) ljlpoe
= sin (23.5 deg) sin (78.484 deg ) (0.0139 deg/yr) (32)
= (0.0054 deg/yr
LONG TERM ORBIT MOTIONS

Simulation results for the long term motions of the spacecraft due to the combined
perturbations described in the previous sections will now be presented. By long term we
refer to effects which are secular or have periods of more than ten days The expressions
for the orbit averaged rates of change of the orbit elements were programmed and integrated
numerically.

Recall that the objective of the orbit selection is to maximize the relativity drifts of the
gyros, and to minimize the Newtonian drifts of the gyros. Newtonian drifts of the gyro
spin axis due to one of the dominant classes of torques are proportional to the angle
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between the line of sight to Rigel and the orbit plane, as identified in Eq. 6. Thus the target
injection orbit was selected to minimize the maximum separation between the orbit plane
and the direction to Rigel, and to reduce the mean eccentricity. The following sections
show the orbit evolution and compare the resulting variations in the elements to the
requirements described in earlier. The effects of orbit injection errors are also considered.
Because of the very low eccentricity of the nominal GP-B orbit and the elimination of
nongravitational disturbances by the translational control system, there is no significant
coupling between the in-plane and out-of-plane orbit dynamics.

Out-of-plane Simulation Results

The main contributors to the long term motion of the orbit plane are J;, solar and lunar
gravity gradient and tidal effects, and the precession of the equinoxes. In the simulation,
the nodal drift due to J; is modeled according to Eq. 13. The expressions in Eq. 28 for the
Sun and Moon effects are used, with the motions of the Sun and Moon modeled based on
almanac data [Naval Observatory, 1985]. The tides and precession effects are programmed
as described. The total orbit average coinclination and node drift rates are integrated
numerically over the mission.

Simulations were run for 18 month missions beginning on March 21 for the years 1997
and 2000. Table 2 summarizes the results by giving the target coinclination and node, and
the resulting deviations from the nominal orbit. Both the mean and peak values of the
coinclination and node are giQen. The target conditions were selected to minimize the
maximum variation in the node over the 18 month mission, because this has the most
significant influence in reducing the Newtonian drifts.

Table 2 Target Values of i’ and (2 for Orbit Injection.
Initial values and 18 month mean and maximum deviations from the nominal.

target mean  maximum target mean  maximum
Start Date i'0 i’ L'l [0} Q | 21
(deg) (deg) (deg) (deg) (deg) (deg)
Mar. 21, 1997 | 0.00375 -0.0005  0.0057 -0.0128 -0.0008 0.0187
Mar. 21, 2000 | 0.00640 -0.0004  0.0071 0.0260 -0.0011  0.0261

The maximum node deviation for the 1997 start date is less than 0.02 deg, and for the
year 2000 it is less than 0.03 deg. Fig. S illustrates the Newtonian gyro drifts due to the
suspension forces for the nominal 1997 and 2000 simulations as modeled by Eq. 6. In
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both cases the maximum drift is less than the desired 0.1 marcsec/yr error margin (for at
least a 12 month mission).

APPROXIMATE NEWTONIAN GYRO DRIFT

0.15 _ .
Start Date
Lo 3211997 —
0.08 : TR : :
- i RN 3/21/2000 -
E
ry
ad :
2
-0.05 4 S __
7 Y0 OO OGOt JOUSOP PRI SRRSO SRRSO -
0.15 ; ; ; ; ; ; - ; -
0 2 4 6 8 10 12 14 16 18
time (months)

Fig. 5 Newtonian Gyro Drifts for Nominal Orbit Injection.

The solid line shows the drift for nominal conditions in 1997 and the dashed line shows nominal results for
the year 2000. The dotted lines indicate the desired drift boundaries of 0.1 marcseciyr.

In order to specify the performance required from the orbit trim system, we must
evaluate the effect of orbit injection errors on the long term orbit motion and on the
expected gyro drift. Errors in the initial location of the ascending node translate directly
into a mean and maximum node error, and have reladvely little effect on the coinclination.
An initial error of 0.01 deg in the node produces an additional gyro drift of about 0.04
marcsec after 6 months, 0.09 marsec after 1 year, and 0.13 marsec after 1.5 yrs. Thus,
one can judge from Fig. 5 that such an error in the node injection can be tolerated in both
1997 and 2000, since the gyro drift remains within 0.1 marcsec for the first twelve months,
and within 0.15 marcsec during the full 18 month mission.

Inclination errors have a more subtle effect, due to the J2 induced drift rate which is
proportional to the coinclination. Table 3 summarizes the simulation results for initial
coinclination errors of + 10-3 deg and + 2 x 10-4 deg for each of the launch dates. The
evolution of the coinclination and node are plotted in Figs. 6-7. for the target conditions
and these initial injection errors.
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Table 3 Mean and Maximum i’ and £2 Due to Inclination Orbit Injection Errors.
Inclination errors of +0.001 and +0.0002 for Mar. 1997 and 2000 start dates.

error mean maximum mean maximum

Start Date Ai'o (deg) i (deg) 1i'l (deg) .Q(deg) i Q21 (deg)
Mar. 21, 1997 | -0.0002 - -0.0006 0.0059 +0.0076 0.0308
+0.0002 -0.0002 0.0055 -0.0060 0.0263

-0.0010 -0.0014 0.0067 +0.0348 0.0794

+0.0010 +0.0006 0.0057 -0.0332 0.0711

Mar. 21, 2000 | -0.0002 -0.0006 0.0073 +0.0079 0.0381
+0.0002 -0.0002 0.0069 -0.0056 0.0359

-0.0010 -0.0014 0.0081 +0.0350 0.0884

+0.0010 +0.0006 0.0074 -0.0327 0.0751

In the coinclination plots one can identify the twice yearly variation due to the solar
effect as well as the small twice monthly oscillations caused by the Moon. Notice that in
1997 there is almost no secular drift in the coinclination. In this year the sum of the drift
rates produced by the Sun, Moon, I3, and the precession of the equinoxes is almost zero;
whereas in the year 2000 there is a net secular drift of about -4x10-3 deg/yr in the
coinclination. This produces a larger deviation in the node for this year compared to 1997,
and causes greater drifts when orbit injection errors occur.

Figs. 8-9 show the Newtonian gyro drifts corresponding to the simulations with
inclination injection errors for the 1997 and 2000 start dates, respectively. In both céscs, '
injection errors of + 0.001 deg (125 m) cause drifts of more than 0.4 marcsec after 18
months. Errors of £ 0.0002 deg (25 m) produce acceptably small gyro drifts, within 0.1
marcsec over the 18 months for the 1997 launch and slightly greater in the year 2000.
Clearly this imposes a much tighter injection requirement than the node error. If we allow
for a  0.0002 deg inclination error, a 0.002 deg node error is still permissible. These
results should only be used as a guideline in determining the orbit injection requirements
because of the grcat uncertainty in the actual values of the gyro coefficients and their
variability.
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Fig. 6 Long Term Motion of the Coinclination and Node - March 21, 1997.

Solid line shows target orbit evolution. Dashed lines show results for initial coinclination errors of
+2x104 deg. Dash-Dot lines show results.for initial coinclination errors of +1 03 deg.
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Coinclination : Start Date March 21, 2000
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Fig. 7 Long Term Motion of the Coinclination and Node - March 21, 2000.

Solid line shows target orbit evolution. Dashed lines show results for initial coinclination errors of
+2x104 deg. Dash-Dot lines show results for initial coinclination errors of *1 03 deg.
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. APPROXIMATE NEWTONIAN GYRO DRIFT : 1997
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Fig. 8 Newtonian Gyro Drift - March 21, 1997.

Solid line shows target injection. Dashed lines show inclination injection errors of +2x1 04 deg. Dash-
Dot lines show inclination injection errors of 1073 deg. Dotted lines indicate +0.1 marseclyr bounds.

APPROXIMATE NEWTONIAN GYRO DRIFT : 2000
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Fig. 9 Newtonian Gyro Drift - March 21, 2000.

Solid line shows target injection., Dashed lines show inclination injection errors of *2xl 04 deg. Dash-
Dot lines show inclination injection errors of = + 1 03 deg. Dotted lines indicate 0.1 marsec/yr bounds.
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In-Plane Simulation Results

Long term motion within the orbit plane is governed primarily by the Earth oblateness
and the odd zonal terms. The near resonant tesseral Earth harmonics and the second order
lunar effects were found to cause only neglibly small variations. The J; term causes the
eccentricity vector to rotate in the plane with a period of about 101 days. The constant rate
in the equatorial component of the eccentricity produced by the odd zonals changes the
center of this rotation from & =0, =0 to £=0, 1=0.00134. This value of eccentricity,
e=0.00134, with perigee directed toward the north, is stable for a 650 km polar orbit. For
this reason it is known as the frozen eccentricity [Small, 1986]. The average eccentricity
for GP-B will be minimized by targeting this stable value. Other initial conditions with
different eccentricity or with the perigee away from the north pole will eventually cycle to
larger eccentricity values.. Fig. 10 shows the trajectory of the eccentricity vector for initial
conditions near the frozen value. To ensure that the orbit averaged eccentricity always
remains less than 0.002, the initial vector distance from (£g,1.9) to (0,0.00134) must be
less than 0.0006. '

ECCENTRICITY VECTOR MOTION

0.003
— Trajectory 1
0.002
2
-;;3 0.001
™ Represeniative
eccentricity

vector

-0.001 : :
-0.002 -0.001 0 0.001 0.002

€Cos®

Fig. 10 Long Term Motion of the Orbit Average Eccentricity Vector.

Evolution of the eccentricity vector is shown for four sets of initial conditions. The innermost trajectory is
very close to the frozen eccentricity vector of (0.0, 0.00134). Trajectory 1 shows the boundary for the
acceptable eccentricity vector errors. Note that if the initial eccentricity is zero it will grow to exceed the
permissible value.
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CONCLUSIONS

The long term orbit averaged motions of the GP-B spacecraft were simulated in order to
define a target injection orbit and to review restrictions on how accurately it must be
achieved. The target values of the most critical elements- coinclination and ascending node-
depend on the experiment start date. Table 3 summarizes the results of this long term
study. The nominal mission-average values of the orbit elements, the target injection
values for candidate start dates in March, 1997 and March, 2000, and acceptable injection
errors are given. QOut-of-plane requirements are highlighted to emphasize their greater
importance. If these conditions are met, the Newtonian drift of the gyro will be less than
about 0.1 marcsec and the orbit altitude will not vary by more than 15 km.

The target injection values determined here are gveraged elements which define the
launch vehicle guidance objective. It is unlikely that the upper stage of any booster will be
able to meet the stringent requirements specified above; thus there is a critical need for a
precise orbit trim system onboard the GP-B spacecraft.

Table 3 GP-B Orbit Requirements Summary

Elements Nominal Target Injection Target Injection
Value Injection Error Injection Error
Value Magnitde Value Magnitude
1997 1997 2000 2000
a (km) 7028.14 | 7028.14 <5.00 7028.14 <5.00
£ 0.0000 0.0000 < 0.0005 0.0000 < 0.0005
n 0.0000 0.0013 <0.0005 0.0013 < 0.000s
i' (deg) 0.0000 0.00375 < 0.0002 | 0.00640 < 0.0002
(£25m) (£25m)
Q (deg) 0.0000 -0.0128 < 0.002 0.0260 < 0.002
from igel) (5250 m) (5250 m)

The results shown in this paper are for two representative launch dates. As the paper
goes to publication, the tentative launch date for the GP-B science mission is July 1998.
Once a firm launch date has been selected, the analysis and simulations will need to be
repeatyed to determine the final orbit injection requirements. A more detailed simulation of
the orbit will be needed, including short term effects, to define the final target injection
orbit. Standard software packages exist in the industry which can perform the required
simulations. This paper is a preliminary analysis of the orbit requirements for the
continuinng GP-B mission studies.

26



Acknowlegements

The authors wish to thank Dr. Hunt Small of Lockheed for pointing out the stable
eccentricity of 0.0013 for a 650 km polar orbit. Also special thanks go to Professor John
V. Breakwell of Stanford University for his guidance 'and useful suggestions throughout
this work.

Allan, R. R. (1967a), “Resonance effects due to the longitude dependence of the
gravitational field of a rotating primary-1,” Planet. and Space Sciences, Vol. 15, pp-
53-76.

Allan, R. R. (1967b), “Satellite resonance with longitude-dependent gravity-II; effects
involving the eccentricity,” Planetary and Space Sciences, Vol. 15, pp. 53-76.

Allan, R. R. (1973), “Satellite resonance with longitude-dependent gravity-III; inclination
changes for close satellites,” Planer. and Space Sciences, Vol. 21, pp. 205-225.

Battin, R. H. (1987), An Introduction to the Mathematics and Methods of Astrodynamics,
New York, AIAA Inc. '

Blitzer, L. (1966), “Satellite resonances and librations associated with tesseral harmonics
of the geopotential,” J. of Geophysical Research, Vol. 71, No. 14, pp3557-3565.

Breakwell, J. V. (1987), Stanford University Class Notes, Advanced Space Mechanics
AA2798B.

Cohen, C. E., G. M. Keiser, and B. W. Parkinson (1990), “Tracking Gravity Probe B
gyroscope polhode motion,” Reprint from the Proceedings of the AIAA Guidance,
Navigation, and Control Conference, AIAA Paper 90-3419, Portland.

DeBra, D. B. (1973), “Disturbance compensation system design,” APL Technical Digest,
12, 2, 14-26.

Everitt, C. W. F. (1980), “Report on a program to develop a gyro test of General Relatvity
in a satellite and associated control technology,” Internal report known as the Green
Book, Stanford University.

Everitt, C. W. F. (1990), Private conversation on October 2, 1990.

Feteih, S. (1989), “Dynamically testing of GP B electrostatically levitated spherical
gyroscopes,” Ph. D. Dissertation Stanford University, Dept. of Aero. & Astro.

Goad, C. C. (1987), “An efficient algorithm for the evaluation of inclination and
eccentricity functions,” Manuscripta Geodaetica, Vol. 12, No. 1, pp- 11-15.

Kaula, W.H. (1966), Theory of Satellite Geodesy, Blaisdell, Waltham, MA.

27



Kostelecky, J., J. Klokocnik, and Z. Kalina (1986), “Computation of normalized
inclination function to high degree for satellites in resonances,” Manuscripta
Geodaetica, Vol. 11, No. 4, pp. 293-304.

Lerch, F. J., et al. (1981),“Goddard Earth models for oceanographic applications
(GEM10b and 10c),” Marine Geodesy, 5, 2, pp145-187.

NASA Technical Memorandum 4019 (1988), An Improved Model of the Earth's
Gravitational Field: *\GEM-T1*.

Naval Observatory (1985), The Astronomical Almanac, U.S. Goverment Printing Office,
Washington DC.

Parkinson, B. W., C. W. F. Everitt, and D. B. DeBra (1986), “The Stanford Relativity
Gyro Experiment,” Guidance and Control, Advances in the Astronautical Sciences,
Vol. 63, AAS.

Parkinson, B. W, et al. (1987), “The prototype design of the Stanford Relativity Gyro
Experiment,” 38th Congress of the International Astronautical Federation,
Brighton, IAF-87-458. .

Small, H. (1986), Lockheed Internal Doc., Question S-B-15, LMSC-F172421.

Vassar, R., et al. (1982a), “Orbit selection for the Stanford Relativity Gyroscope
Experiment,” J. of Spacecraft and Rockets, Vol. 19, No.1, p. 66.

Vassar, R. (1982b), “Error analysis for the Stanford Relativity Gyroscope Experiment,”
Ph. D. Dissertation Stanford University, Dept. of Aero. & Astro. and Dept. of
Physics, SUDAAR No. 531.

Vassar, R. (1986), “Influence of proof mass to gyro spacing on experiment accuracy,”
LMSC Memorandum #011/F066213.

28



