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Abstract

We give a general derivation of the metric of a spinning body of any shape and
composition using linearized general relativity theory (LGRT), and also obtain the same
metric using a simple transformation argument. The latter derivation makes it clear that
the linearized metric contains only the Eddington v and o (= 1) parameters, so no new
parameter is involved in any frame-dragging or Lense-Thirring (LT) effects. We then
calculate the precession of an orbiting gyroscope in a general gravitational field, described
by a Newtonian potential (gravito-electric field) and a vector potential (gravito-magnetic
field). Finally we do a multipole analysis and give the general spherical harmonics ex-
pansion of the precession in terms of multipoles of the scalar and vector potentials, i.
e., moments of the density distribution. In particular, in regard to the Gravity Probe B
(GP-B) experiment, we find that the effect of the Earth’s quadrupole moment J; on the
geodetic precession is large enough to be measured by GP-B (a previously known result),
but the effect on the LT precession is somewhat beyond the expected GP-B accuracy.

1 Introduction

The Gravity Probe B satellite is scheduled to fly in‘the ‘year 2000 [1]. It contains
a set of gyroscopes intended to test the: predictions of general relativity (GR) that
a gyroscope in a low (altitude~s 650 km) circular polar orbit will precess about 6.6
arcsec/year in the orbital plane (geodetic precession) and about 42 milliarcsec/year
perpendicular to the orbital plane (LT precession, see [2]; [3], secs. 4.7 and'7.8; [4],
sec. 9.1). In this paper we review the theoretical derivation of these éffects and in
"particular consider the Earth’s quadrupole and higher multipole fields’ contribution
to them.



We first review the derivation of the metric for a rotating body using the stan-
dard LGRT approach ( [5]; [2]; [3], secs. 4.7 and 7.8). The metric is characterized
by a Newtonian scalar potential (called the gravito-electric field) and a vector po-
tential (called the gravito-magnetic field) ([3], secs. 3.5). We then obtain the same
result with a simple transformation argument which clarifies the physical meaning
of the metric ([4], sec. 4.3). Specifically it makes clear that if the metric of a point
mass contains fundamental parameters such as the Eddington parameters a and +,
then to lowest order the metric of a rotating body contains no new fundamental
parameters [6]. Thus there is no new "LT parameter” to be measured by GP-B —
or any other experiment.

We then derive the precession equations for a gyroscope in a general way, that
is for any scalar and vector potential fields [2]. The calculation is valid to first order
in the fields and velocities of the source body and the satellite. The gravitational
field of the earth is described by the scalar and vector potentials which depend
on the shape of the body and the mass distribution inside it; in addition, the
gravito-magnetic potential depends also on the rotation velocity ([3], sec. 3.5). We
treat both of these fields by a multipole expansion and express the precessions in
series of spherical harmonics whose coefficients are combinations of scalar and vector
potential multipoles, in other words, of spherical harmonics moments of the density
distribution. In particular we show that up to the order | < 2, both precessions
depend only on the tensor of inertia of the earth. The major contributions to
the GP-B precessions are from the Earth’s quadrupole moment and both have a
magnitude of about 1 part in 10%. The contribution to the geodetic precession is
detectable by GP-B and quite important for the determination of the parameter 0%
which is to be measured to about 1 part in 105, the most accurate measurement
envisioned ([3], sec. 3.5 and in particular table 14.2; [7]); the contribution to the
LT precession is somewhat beyond the GP-B accuracy.

2 The Lense-Thirring Metric and Eddington Parameters

2.1 Derivation by Linearized General Relativity

This is a standard derivation, so we review it briefly [2].

The metric of a rotating body such as the Earth in LGRT is obtained by intro-
ducing a small perturbation hyy of the Lorentz metric 7),,, that is Guv = Tuv +hy.
The perturbation is assumed to be independent of time and isotropic in space,
hi1 = hga = haz = h,. The energy-momentum tensor of slow-moving and low
density matter with negligible pressure is T = putu”, where u* is the 4-velocity
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and p is the matter density, the field equations are then (R, is the Ricci tensor):
R, = —87rG(T,“, - (1/2)g,“,T), T=T7 (1)

The calculation of R,, and T, to the lowest order in the perturbation is straight-
forward and results in the following form of equations (1):

A(hoo/2) = A(hs/2) = 4nGp o)
Ahoi - hOl|li = 1671’Gp vt

In the last expression we have kept only first order terms in the velocity in the
off-diagonal metric elements. The first of equations (2) is the Poisson equation
for the metric perturbation, so by correspondence with the classical theory the
latter should be related to the classical gravitational potential by the well-known
equality [2]: .
hoo = hs = 20 (3)

Equations (2) may be solved using the Green function as (ﬁ = {ho1, ho2, ho3})
“/ 3"/ [AYr{ vd ] 327
&(7) = G/ . ){’l h(*)_4g/p(r_)”(ﬂ_ 4)

Note that these expressions are analogs of the equations of electrostatics and mag-
netostatics, which is why one may speak about gravitoelectric and gravitomagnetic
effects in LGRT described by gravitoelectric potential (®) and gravitomagnetic

vector potential R [2]. In summary, we may write the Lense-Thirring line element
as

ds® = (1+2®)dt? — (1 - 28)d7? + 2k - dFdt (5)

2.2 Derivation by Transformation; Eddington Parameters

It is possible to obtain the above result from a different and physically interesting
perspective, and moreover introduce parameters convenient for discussing experi-
mental measurements. Following Eddington, consider the metric of a massive point
with a geometric mass m at a large distance r, m/r < 1. Expand the Schwarzschild
solution in isotropic coordinates for this situation as

ds? — (1 —m/2r)?
(1+m/2r)?

(1—2—m+2—m—+ )dt2—<1+2—m+§i+ )df‘2

3

dt? — (1 +m/2r)*dr?



Eddington suggested that this be written in terms of parameters as [8], [9]

2
ds? = (1—a27m+ﬂ2rﬂ2-+...)dt2—(1+72Tm+...)dr“2; (6)

The Eddington parameters @, 3 and +y are equal to 1 for GR. The power series (5)
is clearly a rather general form for the metric far from a spherical body. Since the
m which appears in the metric (6) is merely a constant of integration representing
the mass of the central body (specifically m = GM/c?), we may absorb parameter
a into it, which is equivalent to taking @ = 1. This is consistent as long as no
independnt nongravitational determination of the mass of the central body (the
earth) is considered. We shll nevertheless display the a in our calculations as a
book-keeping device.

The parameters may be used as a tool for tracking the terms in the metric
which contribute to some gravitational effect; alternatively they may be viewed
as numbers which may not be equal to 1 if a metric theory other than GR is
actually valid; in either case they provide a convenient way to express the results
of experimental tests of gravity as giving value to parameters. This parametrized
approach has been extended to include many other parameters and has been highly
developed under the name parametrized post-Newtonian theory, or PPN [4]. In
this paper we take the viewpoint that GR is to be tested and emphasize that we
are not using the more general PPN approach.

We consider only phenomena in which the term ~ m?/r? in goo of (6) is unim-
portant, that is in which we may ignore 8 and thus have an underlying linear theory.
Then, for a stationary mass,

ds? = (1 - aZ—TTT—l-)dtz — (1 + 7277") di? (7)

Since this is nearly the Lorentz metric, we may generalize it to a moving mass point
by simply using the frame transformation that is Lorentzian to the first order in
velocity: t, =t—wvx, =z, = z— ut; here the subscript r labels the system in which
the mass is at rest, and which moves at v in the positive z direction. This gives
the metric for the moving point mass as

ds? = (1 - a?)dtQ - (1 +727m)df'2 +(a+ 7)4Tm vdz dt,

which obviously generalizes for motion in any direction to

2m

w5 = (1-a2 )t - (1442 )i+ @4 ) D aa @)
T
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Since we assume that our theory is linear to this order, we can superpose the fields
of any distribution of such point masses and write ®(7) of (4) in place of m/r and
h(7) of (4) in place of 4mG%/r, resulting in

ds® = (1+2a®) dt? — (1 - 2y®) d7? + (e + ) (h - dF)dt (9)

This agrees with the LGRT formula (5) when a = v = 1 but now contains appro-
priate combinations of Eddington parameters. We emphasize that line element (9)
has been obtained for any slowly moving mass distribution from the parametrized
metric for a stationary mass point by transformation and superposition, and thus
no new parameter appears in its expression. Therefore a measurement of a phe-
nomenon which depends on the cross term in (9) provides a value for a + v and
not for some new parameter, i. e., does not provide an independent test of grav-
itational theory [6].

3 Precession Equations

An orbiting gyroscope has its spin axis parallel displaced in accord with metric (9),
that is ( [2]; 3], secs. 4.7 and 7.8; [4], sec. 9.1):

dS* dz®
2 oare vt 10
75 TL1veS 5 =0 (10)

Assuming that the gyro spin 4-vector is perpendicular to the velocity 4-vector (that
is the spin has no zero component it its rest frame), we work to the first order in
the potential and the velocities, ¥ and 17, of the central body and orbiting gyro,
respectively. We calculate the Christoffel symbols from metric (9) and use the
corresponding Euler - Lagrange equations of motion to convert (10) into the final
3D equation of spin evolution with antisymmetric and symmetric parts separated:

==ix3- %{2707 : VQ)§—Q[(§-V)V<I> +(S- V@)V]} (11)

Here & = Qg + Q7 is the sum of the geodetic and Lense-Thirring precessions
given by

Og = (a+227> Ve xV, (= (a;’y) %V x h, (12)

hereas the second term is responsible for stretching of 5, which effect is extremely
12ll under the conditions similar to GP-B. When averaged over the closed orbit,
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this term gives a zero contribution, as found from the motion equation V& = -V

(c. £ VD V =05dV? /dt, etc.); in reality, a small orbit variation might produce
some very small average which is inversely proportional to the time and may be
neglected, anyway. Therefore the average drift rate of the gyro spin is

(§') = §G + §I'JT, §A =(Q4)x S, A=gG, LT, (13)

with the averaged values of precessions found from (12).

4 FEffect of Distant Masses

When some distant masses M, such as the moon, move with velocities v, relative
to the central body, the density distribution p(7) may be expressed as

N
pN(F) = P(F) + 3 Mob(7 — )

In their turn, the scalar and vector potentials (4) are now replaced by
YoM, 9,
‘I’N(f')‘—“p(f')—GZI?'_—%—I, hn(F) = h(?)+4GZ|4n~n'
n=1 n
From (12) we find, in particular, the LT precession including the effect of distant
masses (L, = M, (¥ — ) X @, is the angular momentum):

-

Ly,
Ofr = Qur — (@ +7)G Z o
5 Solid Body Rotation: Multipole Expansions

5.1 Solid Body Rotation: Vector Potential II(7)

From now on, we assume, for brevity, the GR values @ = v = 1, and study the case
of rigid rotation: ¥ = & x 7. We see from (4) that it is natural to introduce a new
vector potential II(7) by setting

B =4 x i), 1) = | ”(F'JF"”' (14)
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From (4) and (14) we derive the important relation V - [i = —(® + 7 - V&) which
allows us to rewrite expression (4) for Q1 as

Qrr =2 [—(a; Wi+ a;(v : ﬁ)] =2 [(a W)+ a(cp + 7 V@)} ., (15)
or, choosing the z axis along &,
Grr = —2w [ﬁ,z +(2+ r@,,)]ea, F=ws (16)
Note also that the metric (5) in terms of II() is:
ds® = (1+2®)dt* — (1 —2®)di? + 8(& x II) - dFdt (17)

5.2 Multipole Expansions: Genéral

We choose the origin of spherical coordinates {r, 8, ¢} at the center of mass of the
earth, introduce spherical harmonics

cosSmy, V==c
},l""n(o’ (p) = ‘I)lm(coso) {Sinm(p’ V=as ,

and expand the potentials ® and fin corresponding series:
GMR w (RB\ o
2(7) = [1+ > an(%) Ylm] e - S5 5 (2 v
1>2,m,v >1,m,v
(18)

Here R is the characteristic size of the body (we will use the equatorial radius for
the Earth), and the coefficients are related to the mass distribution by

_ — ) l
oty = &= Im0) () / o) (E) YO &R, m=0,1,...L (19)

(I+m)!
!

(For convenience, we shall write afo = ayo, a{o = 0 pi = ply, pis = 0). Among
many reasons for doing the multipole expansions, one is that the gravity coefficients
ay,, are very well measured for the Earth at least up to =18 (1o

From (12) and (16) the multipole expansions for {}¢ and 3,7 may be computed;
the first calculation is straightforward since it reduces to finding V®; the second
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one would be rather difficult but for expression (16) which simplifies it 51gn1ﬁcantly
Thus, with the z axis along &, we have a surprisingly simple expansion for Qo

i GMuw iv Y R l , . X
LT = —, Z [(l —m) P m — lazm5i3] <7) Yo, O=w2 (21)

I>2,m,v

For any frame rotated from this one the corresponding expansion is found in
the standard way by means of rotation matrices (see [11]).

For the earth of any shape and mass distribution it is impossible to express
pi¥ through ay,,, in other words, the values of the scalar and vector potentials are
independent. Nevertheless, a useful relationship between two sets of coefficients
exists; to describe it, we need a notation for a general moment of the density,

k
T .
Mim = [ o) (3) Vi (22)

in particular,

v _(2_61710) (l_m)'
“m =TT U m)

M, l';m (23)

Using definitions (20) and (21) and the recurrence realtions for Legendre func-
tions [14], we derive the following equalities relating p{, to a¥, :

P = (2l + 1)*1{—2—1(1 +m+ 1)+ m+2)afi g + (2= 1) ey g+
[0 =)/ M )] (M s = = D+ )My 1]}
Y= (F)(2+ 1)—1{2-1(1 +mA 1)+ m+2)ak (2= 6ny) lat -

(= m) M@ m)] (M gy = =D+ m)ME ] (20)

i = 24+ 1)H{(+m A 1)afs 11 + 2= o) (0= M) MY/ M+ = 1)1}

"In the second line of (24), the minus sign is taken and px = s when v = ¢, the plus
sign and g = ¢ when v = s.



5.3 Multipole Expansions for [ < 2 and the Inertia Tensor

If the shape of the central body and the mass distribution inside it are known,
then all the pertinent quantities, including multipole expansion coefficients ay, and
pi¥ , may be found by integration, but this is rarely the case. Even when ay,, are
measured, as for the Earth, all the pi , and the LT effect with them, remain entirely
undetermined. However, for a body of any shape and composition, ay., (l=2)and
Pim, (I = 1) can be expressed in terms of elements I;; = J o(®) (r?8i5 — z;z5) d37
of the tensor of inertia I (we write I;; = I):

agp = —(213 - Iz - Il)/(2MR2), a§2 - (IQ - Il)/(4MR2)
Plo=—(Is— L —1,)/(2MR?),  pl¢=—(I;+ 1, — 5)/(2MR?)
pli = —(Is — I + I)/(2MR?) (25)
ag; = _P}o = P%i = 113/(MR2)7' aj = “P%o =P:13.f = 123/(MR2)
—a3y = pi}/2 = p¥/2 = I,/ (MR?)

This is done by comparing the integrals (18) (with [ = 2) and (19) (with { = 1) to
I;; using explicit expressions of Legendre functions with { = 1,2; formulas for aso
and a$, are known and used in geodesy for the determination of Earth’s moments
of inertia ([12]).

Introducing (25) into (17) and dropping the terms with [ > 2 for ® and [ > 1
for ﬁ, we first obtain the [ < 2 formulas for the potentials,

&) = —%{M+ . [trl'— - (IF-F)} } i) = —%[IF— . (trI)FJ (26)

and then from those, by doing differentiation in (12), we obtain for the precessions:

— —

Oq = gg,{[MJrz—f,-(trI—;%(IF-F))J(Fx V) + % (I7 x V)
(27)
ur = 151534 (o) - 079028 w1y

(Of course, the same expression for {37 is also obtained from (25) and (21) with
l = 2). These expressions are valid under either of two conditions: 1) far field,
R/r < 1; 2) high symmetry (all higher order moments are small). They alter our
notion of the geodetic and Lense-Thirring effects: the first one is proportional not
only to the orbital momentum, but to I x V as well, and the LT precession points
not in the direction of the angular momentum I, = I, but has also components
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parallel to &, 7, and I7. Two particular cases of the inertia tensor are of special
interest.

a) Spherical symmetry, 1 = diag{I, I, I}. In this case, the classical Lense—
Thirring formula follows immediately from (27):

" 2GI U B
Qur = -5 [— t (@- F)’”] (28)

Note that we have thus shown this to be the exact result for a spherical earth with
any radial density distribution p = p(r).

b) Symmetric top, I = diag {I1, I1, I}, I, # I. For & = w3, the previous
expression remains true; to the main order in the oblateness, this proves to be the
exact result for a slightly oblate uniform ellipsoid of revolution rotating about its
semiminor axis.

6 Earth Models and Results for GP-B

6.1 Earth Models

To go beyond the [ < 2 approximation, one must make some assumptions about
the shape of the earth and density distribution inside it, and use the data of grav-
itational potential measurements, if available. In the case of the Earth and GP-B
conditions (R/r a2 0.9), one needs to check the validity of the { < 2 approximation
to ensure that theoretical predictions match the expected experimental accuracy
(10° for geodetic effect, ~ 1072 for LT effect). Here is our set of reasonable
assumptions.

1.Gravitational potential For the required accuracy, it is enough to include only
the quadrupole moment into @, i. e., to set

—ag = Jy ~ 1.083 x 1073, ap,=0 for [=2,m>0, [>2 (29)

because all gravitational coefficients other than the Earth’s oblateness J- are at least
2 orders of magnitude smaller [10]. Then, by (18) and (25), the [ < 2 expression
(26) for @ is valid with I = diag{l;, 1, I}, I, = I — J,MR2. Also, by (12),
(26) and (29), the geodetic precession is completely determined including the J,
correction calculated for the first time by Breakwell [7]. Note that small and/or
slow motion of the Earth rotation axis relative to the Earth centered inertially fixed
frame may be neglected.

2.Shape It is sufficient to assume that the Earth is a slightly oblate ellipsoid
of revolution (the Clairaut formula, see Roy [13]), so that to the first order in

10



eccentricity € (= 3.353 x 1073) the surface equation is r = r,(6, o) =
R(1 — ecos?9).

3.Mass distribution We examine two different models:

a) With po, Ap being arbitrary functions of their arguments, set

o(7) = po(r) + Ap(8, ¢), / Ap(6,¢)sin0dbdp =0 (30)

unit sphere

The first term here describes any depth variation of the average density, and the
only assumption is that the angular variations are depth-independent.
b) For arbitrary py and p,, set

P(7) = po(r) + ps (8, ©)8(r — 75(0, 0)) (31)

Contrary to the previous model, here all angular variations of the density are con-
centrated at the Earth’s surface, which is rather realistic, since the estimated thick-
ness of the layer where the mass distribution varies significantly in the angular
directions is about 30 km.

Note that instead of 3a) and 3b) an entirely different assumption is used in
geodesy, namely, that the sum of gravitational and centrifugal potentials is constant
at the Earth’s ellipsoid surface ([15]). It allows one to relate a;o to the eccentricity
and the Earth angular velocity only (in particular, to obtain J, with a surprisingly
good accuracy), but gives zero values to aj,., m # 0 and leaves p{” undetermined.

Evidently, our two models should give the bounds for the corrections to the
l > 2 values of the LT effect. Moreover, for both of them it is possible to find
the corrections explicitly by means of the following procedure. Working all the
way to the first order in the eccentricity, we 1) using (19), fit (30), model a), (or
(31), model b),) to the values of a¥,; this permits one to determine completely the
function Ap(d, ¢) (respectively, ps(6,¢)) and all the moments MY, ; 2) using the
latter, calculate p{¥, for [ > 1 by (24), determining thus the LT precession by (21).
It turns out that for both models the only additional non-zero coefficients are those
with { = 3, m = 0,1 under condition (26); their values for model a) are

Py =P8 = (5/49) Jo;  ph = —(15/49) Jy; (32)

for model b) they are larger by just the factor 7/5.

Let us show briefly the appropriate derivation using model a) as an example;
‘calculations for model b) are absolutely similar. First, we introduce (30) into the
definition (22) of the general moment of density, and working to the main order in
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eccentricity ¢, find it in terms of Fourier coefficients p},, = [ ApY}”, sin8d0dy of
function Ap(8, p):

M = R (kt3) ™ {[1—e(k+3)Vim ot (b +3)[Stm g m+ Timbl g m] | +O((ch)?)

(33)
Here Vi, Sim, Tim are known positive rational fractions of | and m bounded for all
their values, and the formula is lightly different for the case | = m = 0, but we do
not need it. For k = [ the left-hand side of this equality is given via aj,, according
to (23), thus by inverting this tri-diagonal system for P, With small off-diagonal
elements, we express the latter in terms of ay,, and then, iserting the result back
into (33), we get all moments expressed through the gravitational coefficients:

M (—m}i+3
v v 4
kE+2r1~ ~ ~
ek—+3- [Vlma}’m + Stmaliom + Tlma}’_z,n] } + O((el)?);

quantities V,m, S’lm, Tim are simply related to Vipm, Sim, Tim, respectively. By (24),
we need only k =1 +1 in (34) to obtain pj¥, in terms of a¥,,, and the result is:

Y 1 (+m+1)(l+m+2) , (l-m)l-m-1)(1+2) ,
lem = A +1 [— ) A imp1t 20+ 4) 4 _1my1t
1 , 1+2
m(az+1m—1 - H_—4¢lz-1m—1) +O((e)?)
ow_ (B [(tmi)ltm2) ,  (-m-m-1D(+?) ,
Bim = A +1 2 I+1lm+1 20 + 4) I~1m+1
1 1+2
m(arﬂm—l + maf—lm—l) +0(()?) (35)
" I-m)(l+2) ,
D = T (I+m+1)afy, + %az—m} +O((el)?),

with the minus and p = s for v = ¢, plus and p = ¢ for ¥ = s in the second of
these formulas. Whatever values of the gravitational coefficients are specified (by
measurement), pi¥ . and therefore the vector potential (18) and the LT precession
(21), are found by (35) under the above assumptions 2) and 3a). If, in addition,
equality (29), that is assumption 1), is valid, then that gives exactly the result (32).
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6.2 Results for GP-B

Using the above results, let us finally give the values of geodetic and LT preces-
sions-averaged over the circular polar orbit of 650 km altitude perturbed by the
quadrupole moment. To the main order in the oblateness J;,

3GMV 9 R\?
<“G>——zr2 1”5"?(%)

Glw 9  (R\® 88 MR?
(our) =5 152 () (- T
where the values (29) for model a) are used. The corrections in both cases are
close to 0.1%, which is beyond GP-B accuracy for the LT effect but two orders of
magnitude larger than the expected measurement error for geodetic effect. Since

GP-B is intended to measure the geodetic precession and parameter + to about a
part in 10%, this is a critically important correction.
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