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Heisenberg showed in the early days of quantum theory that the uncertainty princi-
ple follows as a direct consequence of the quantization of electromagnetic radiation in
the form of photons, As we show here the gravitational interaction of the photon and
the particle being observed modifies the uncertainty principle with an additional term.
From the modified or gravitational uncertainty principle it follows that there is an abso-
lute minimum uncertainty in the position of any particle, of order of the Planck length.
A modified uncertainty relation of this form is a standard result of superstring theory,
but the derivation given here is based on simpler and rather general considerations with
either Newtonijan gravitational theory or general relativity theory.

1. Introduction

Max Planck discovered the €ponymous constant A when studying black body radi-
ation in 1900.! He realized immediately that the constants h, ¢ and G determine
a natural scale, now called the Planck scale, which is easily gotten by dimensional
analysis.? The Planck distance, time, mass and energy are

‘/@zl.ﬁxm‘“m, Tp5&=‘/@20.54x10"43sec,
c3 c c®
e B [ .

= —_—— = _— - 1.1
M_p_cLP G ~22x1078 kg, (1.1)

hcs
‘V ? ~20x 10° J=1.2 x 1019 GeV.
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From its construction the Planck scale should be relevant when the system consid-
ered is quantum mechanical (h), involves high velocities and high energies (¢), and
gravity is important (G). One such system is the very early universe. Another is
the collision of elementary particles such as quarks at about the Planck energy, but
to achieve the Planck energy in a laboratory would probably require an accelerator
about the size of a galaxy. Yet another system in which the Planck scale is rele-
vant is the cloud of virtual particles surrounding any real particle, since the virtual
particles may in principle have arbitrarily high energies. ‘

Much work has gone into constructing a quantum theory of gravity appropriate
to the Planck scale, but with little practical success. The only theory thus far that
seems to be a plausible candidate is superstring theory.3

Motivation for the present work originated from a talk by John Schwarz at

the Stanford Linear Accelerator Center in 1996, in which he presented a modified °

uncertainty principle as a result of superstring theory and scale inversion symmetry.
He asked if, in view of its simplicity, it might be more general than superstring
theory or any particular quantum gravity theory, and perhaps derivable by simpler
means. We hope this work partially answers that question. ’

We do not consider any specific quantum gravity theories here, but instead show
that the Heisenberg uncertainty principle is modified when we combine quantum
theory and some basic concepts of gravity. We give four separate derivations of
the modified uncertainty principle: dimensional analysis in Newtonian theory, an
approximate calculation in Newtonian theory, dimensional analysis in general rela-
tivity theory, and an approximate calculation in general relativity theory.4 All four
derivations are heuristic and somewhat rough, as befits a discussion of the uncer-
tainty principle. Moreover the derivations based on Newtonian theory should not
be taken too seriously since the Newtonian theory is action-at-a-distance, which
is certainly inappropriate for a photon moving at ¢; our purpose in including the
Newtonian derivation is to show that the modified uncertainty principle appears
to follow from rather general considerations on gravity, in particular that the addi-
tional gravitational term is linear in the energy or momentum of the photon.®

A minimum position uncertainty arises immediately from the modified uncer-
tainty principle, of order of the Planck distance. One might consider this to be a
minimum physically meaningful distance, and thereby question whether any theory
based on a a smaller scale, e.g. a space-time continuum, really makes operational
sense. Additionally, since all measurements dealing with small distances in particle
physics are really large momentum scattering experiments, the very concept of a
space-time continuum is doubly suspect. Further speculations of this nature are
contained in the conclusions.

A few words are in order concerning previous work on the generalized or grav-
itational uncertainty principle (GUP) which we obtain here, as well as the related
idea of a minimum measureable length. Early work on fundamental distances and
high energy scattering in string theory, leading to a GUP, was done by Veneziano
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of these string theoretical results is based on the idea of duality, a distance inver-
sion symmetry, discusseq by Witten in Ref. 7. More recently other authors® have
analyzed the use of D-branes rather than strings as high energy probes and found

that distances shorter than the characteristic string size may be accessible, thereby

many orders of magnitude larger than the Planck scale and depend on the size of
the apparatus have been made by Amelino-Camelia and by Ng and van Dam_12

These are interesting speculations, although the present authors disagree with the
conclusions.

Aa:H A (2 1)
Such a wave is quantized in the form of photons, each with a momentum
h
==, 2.2
p= (2.2)

an uncertainty in the electron momentum of about Ap ~ p. Thus we obtain the
standard Heisenberg position-momentum uncertainty relation

AzHpr/\(g) = h~h, (2.3)

No mention has been made here of the gravitational interaction between the photon
and the electron, which we consider below.
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3. Newtonian Theory, Dimensional Estimate

We first estimate the effects of gravity in a very rough and heuristic way ‘using
Newtonian gravitational theory, with the assumption that the photon behaves as a
classical particle with an effective mass equal to its energy divided by c?.4 Suppose
the electron is in an experimental region of characteristic size L, inside of which it
interacts with the photon. It will experience an acceleration due to gravity,

G(E/c?)

= ————T
r2

where 7 is the distance between electron and photon. During the interaction, which

occurs in characteristic time L /c, the electron will acquire, due to gravity, a velocity
and move a distance, given respectively by

i , (3.1)

GE (L GE (L\? ‘
Av E—i (Z) , A.’EG ~ _(}2_7‘2_ (—) . (3.2)

c

These will be uncertain since the photon scatters electromagnetically from the
electron at some indeterminate time during the interaction. The electron may be
anywhere in the interaction region so the electron-photon distance should be of
order r =~ L, which is the only distance scale in the problem. Since the photon
energy is related to the momentum by E = pe, we may also express this as

Azg =~ %13 . (3.3)
Noting that the electron momentum uncertainty must be of order of the photon
momentum, and using the Planck length LE=Gh/B asa parameter, we have

Glp _ (GhYAp _ 2 4p
S _ ()8 _ e ”

This is our main result. We add this uncertainty to the Heisenberg relation (3) to
obtain the modified uncertainty relation

Azg =

2 Ap
P h *
We refer to this as the extended uncertainty principle — or more descriptively as
the gravitational uncertainty principle (GUP). Note that it is invariant under

h

ApLp h

That is, it has a kind of momentum inversion symmetry.3

4. Newtonian Theory, Approximate Calculation

We may also make a more explicit estimate than the above using Newtonian theory.
As before we suppose the electron is in an experimental region of characteristic
size L and interacts with the photon as it crosses the region. The photon scatters

@
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electromagnetically from the electron at some uncertain time and at some uncertain
position inside the experimental region. Consider first the transverse impulse, i.e.

the motion imparted to the electron perpendicular to the photon direction. We
" take the photon directicn to be = and the transverse direction to be 1. The photon
passes very rapidly so the electron moves very little in the time it takes the photon
to cross the experimental region, and we may thus take y = yq. i.e. we use an
impulse approximation. The acceleration is then

=G(E_/02>(g) G(p/c) (_)N G(p/c)yo
T

r2 2 (8 + 222

We integrate this to get the transverse velocity impulse,

(4.1)

2Gp cT
Ay =~ s 4.2
Y™ 2w (\/yg +c2T2) (4.2)
where cT' = L > y is the characteristic interaction time. We thus have roughly

2Gp
Ay~ —— 4.3
v 2y yo ( )

Due to this gravitational velocity impulse there will be a change in the po-

sition of the electron, which is intrinsically uncertain, given approx1mate1y by
Ay =~ (Ay/2)/T or

GpT _ G, '
Aye ~ ” Cf, (4.4)

where we have taken yg to be of order less than L = ¢T. This is the same result
(3.3) as we obtained by somewhat more crude dimensional arguments in Sec. 3.
A similar analysis can be done for motion in the longitudinal direction, with the

result
Gp 2L

where g is the initial position of the electron. Since z¢ must be of order less than

L = ¢T and the log is a very slowly varying function we obtain about the same
result as (4.4) for the longitudinal uncertainty,
Gp

Azg ~ —. 4.6

G~"3 (4.6)

One should be justifiably suspicious of the Newtonian derivations since

Newtonian theory treats the gravitational field in front of the radiation as action-

at-a-distance, whereas the gravitational field actually propagates at ¢ and cannot

extend in front of the radiation. The nature of the gravitational field will become

clear when we discuss the calculation usmg linearized general relativity.
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5. General Relativity Theory, Dimensional Estimate

The arguments in the preceding two sections are only marginally convincing as
heuristic arguments since they are based on action-at-a-distance Newtonian gravi-
tational theory, with the ad hoc assumption that the energy of the photon produces
a gravitational field. In this section and the following we give a dimensional esti-

mate and an approximate calculation based on general relativity theory, free of such
drawbacks. 2414

The field equations of general relativity are

8nG |
Gpu == (7) T/w . (51)

The left-hand side has the units of inverse distance squared, since it is constructed.
from second derivatives and squares of first derivatives of the metric. Thus on
dimensional grounds we may write the left-hand side in terms of deviations of the
metric from flat, in schematic order of magnitude dimensional form, as

LHS. ~ "Zg" , (5.2)
where § guv denotes the deviation of the metric from Lorentzian, and L is the same
characteristic size as used in Sec. 3. Similarly the energy-momentum tensor has
the units of an energy density, so its components must be roughly equal to the
photon energy over L3. Thus we can write the right-hand side of the field equations
schematically as

. [(8rG\ E . Gp
R'H-S' ~ <c_4) F ~o 63_L3 . (5.3)

Equating the dimensional estimates in (5.2) and (5.3) we get an estimate for the
deviation of the metric,

G
89 ~ 03—’];. (5.4)

This deviation corresponds to a fractional uncertainty in all positions in the region
L, which we identify with a fractional uncertainty in position, Azg /L. Thus we
have an uncertainty in position due to the gravitational interaction given by
Azg Gp Gp
— =g, N —— Azg ~ =2, 5.5
L~ %™ Ep ¢Ta (5.5)
As should be expected the characteristic size L has canceled out of the relation.
Finally the uncertainty in momentum of the electron must be comparable to the
photon momentum, Ap =~ P, and we obtain the same relation (3.4) as before for

Azg.
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6. General Relativity Theory, Approximate Calculation

To make an approximate calculation we use linearized general relativity theory.
From the general energy-momentum tensor of the electromagnetic field it is easy

to show that for radiation moving in the z direction the specific form of the energy-
momentum tensor is!415

1 -1 0 0

1 o -1 100
Tl""zFl‘aFau'l"r]yVZ OzﬁF ﬁ:p 0 0 0 0 , (61)

0 00O

Where p = (E? + B?)/2 is the energy density of the radiation field, and may be a
function of z — ct, ¥ and z, corresponding to a truncated plane wave. The equations
of linearized general relativity theory follow from (5.1), with the metric taken to be
Lorentz plus a small perturbation, g,, = n,, + hus. They are

O ,:hgu - %ny,uh] = - fg) Tp,v N h= ﬂ“vh‘“, = hg y
62 32 32 32 .
® 0= Sy "5 Bp o (62

1
Lorentz gauge condition [h,‘; - Enl‘;hJ =0.

v

It is straightforward to solve this system with the energy—momentum tensor given
in (6.1). We are interested only in the inhomogeneous solution, and the system then
reduces to a form involving only one unknown function,

1 -1 00
100 8n@
h#u = f((L’ —ct,y, Z) 0 0 0l Df == (?) p. (63)
0 000

For convenience we choose the energy density to be a product,

p(z — ct,y,2) = Py (x— ct)pu (v, z), (6.4)

and it then follows that the metric function f is also a product of the form
f($ - Ct,y, Z) = f"(l‘ - Ct)f.l_(ya Z), with

2 2 T
(5 + ) £2t00) = (5o, fie-cr=pa-c). @)
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6. General Relativity Theory, Approximate Calculation

To make an approximate calculation we use linearized general relativity theory.
From the general energy-momentum tensor of the electromagnetic field it is easy
to show that for radiation moving in the z direction the specific form of the energy-
momentum tensor is!4 15

1 -1 0 0

1 -1 1 0 0
T”V:F“QFQV'*'T];LVZ aBFaﬁ-:P 0 00 0 , (61)

0 000

where p = (E2? + B?)/2 is the energy density of the radiation field, and may be a
function of z — ct, y and 2, corresponding to a truncated plane wave. The equations
of linearized general relativity theory follow from (5.1), with the metric taken to be
Lorentz plus a small perturbation, g, = n,, + h,,. They are

62 32 62 32 .
T @ 5 o A (62)

1
Lorentz gauge condition [h;: - Enl‘;h]' =0.
14
It is straightforward to solve this system with the energy-momentum tensor given
in (6.1). We are interested only in the inhomogeneous solution, and the system then
reduces to a form involving only one unknown function,

1 -1 0 0
huy = f(z — ct,y,2) (1) g g ) Df——<'8:TG>P (6.3)
0 000
For convenience we choose the energy density to be a product,
Pl —ct,y,2) = py(z — ct)pL (v, 2), (6.4)

and it then follows that the metric function f is also a product of the form
f(x —ct,y, Z) = f"(.’l,‘ - Ct)fJ.(ya Z); with

2 2 e
(57 + o) £s00) - () rswn),  fie-c)=pa—c). (5)
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From the metric (6.7) the Christoffel symbols are easily found and we obtain for
motion in the longitudinal = and transverse directions
d? 1 10
_E::_Qig, ﬂI::___fﬁ, (6.11)
dt? 20z dt? 20r
where we assume motion in the z and r directions.

Longitudinal motion is easy to analyze and rather informative. The derivative
of f gives two delta functions. As the front of the radiation cylinder passes the
electron it first gives the electron a velocity impulse of
2Gp :
2L (m, B (6.12)
and then as the back of the radiation cylinder passes the electron receives an equal
and opposite velocity impulse and stops. In the time of passage it has moved

2G; 2G 2G,
Az = S 2g(r)T = —c3£g(r) ~=F, (6.13)

Az =

since g(r) is of order 1 in and near the radiation cylinder. Thus we obtain the same
result (3.4) as previously. Notice that the gravitational field of the radiation only
acts as it passes over the electron, not before and not after.
For the transverse motion, we differentiate f with respect to r to find

d’>  4Gp (r/R?, r<R

2~ 2L | 1/r, r>R
so that in the region of the cylinder we have very roughly a velocity impulse and a
corresponding position change Ar = (Ar/2)T, given by

. 4Gp 2G’p 2Gp

Ar——c2LRT, AT_c'-’LR N5
That is once again we find that the transverse motion corresponding to an uncer-
~ tainty in position due to gravity is the same as in (3.3) or (3.4).

}0[,(:0 ~ct)  (6.14)

(6.15)

7. The Minimal Distance Uncertainty

The GUP has a remarkable consequence. If the photon momentum and Ap are
chosen to be very small, then the electron position is imprecise because the long
photon wavelength gives poor resolution. If the photon momentum and Ap are
chosen to be very large, then the gravitational field of the photon makes the electron
position very imprecise. Between the two extremes there is a minimum position
uncertainty, which we find from (3.5) to be

. 5 g
AZmin = 24/ %;3& =2L, for Ap= he” =2 (7.1)

This means that we can never localize the position of a particle such as an electron
to better than about the Planck distance.
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Similar analyses of space-time using the path integral formalism lead to anal-
ogous conclusions; space-time at small distances and times undergoes quantum
fluctuations, and at the Planck scale the fluctuations are of the same order as the
distances involved.2

8. Conclusions

We have shown, using Newtonian and general relativistic gravity, that the position-
momentum uncertainty principle of quantum mechanics is modified by an additional
term. In both theories it is clear that the extra term must be proportional to the
energy or momentum of the photon, so on purely dimensional grounds the order of
magnitude of the extra term is uniquely determined. As a consequence there is an
absolute minimum uncertainty in the position of any particle such as an electron.
Not surprisingly the minimum is of order of the Planck distance. )

In view of the absolute minimum position uncertainty one may plausibly
question whether any theory based on shorter distances, such as a space-time con-
tinuum, really makes sense. Indeed in light of the fact that laboratory experiments
which probe small distance properties of particles are all high energy scattering
experiments, one might conclude that space-time at such small scales may not be
a useful concept, and that space-time at the Planck scale may not even exist in
any meaningful operational sense. Such ideas are not new and were espoused in the
era of S-matrix theory in the ’60s, i.e. that the scattering amplitude expressed n
terms of input and output momenta may be the fundamental reality of high en-
ergy physics, and not point-like or string-like particles in a space-time continuum.16
One might even speculate that the Space-time continuum concept actually impedes
Physics in the same way as the concept of an ether impeded physics in the 19th cen-
tury. As such, a theoretical structure based entirely on momenta, such as a modern
version of S-matrix theory, might be desirable and interesting.
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