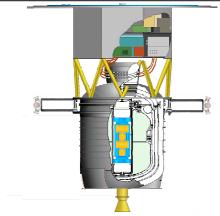
STEP – The Satellite Test Of the Equivalence Principle

Principal Investigator: C. W. F. Everitt, Stanford University

A collaboration of Stanford University and NASA MSFC with international support, STEP will compare the rate of fall of test masses in a drag-free satellite in low earth orbit providing a robust test of the cornerstone of General Relativity and modern gravitational theory, the identity of gravitational and inertial mass.

Technology investment by NASA has developed the STEP mission into a low-cost, flight-ready program.

B. FACT SHEET

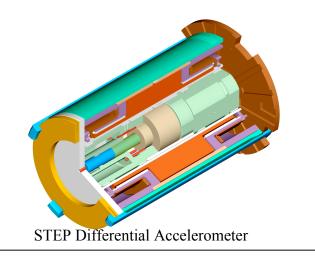

B.1 Science Objective

STEP will advance the testing of the Equivalence Principle by more than 5 orders of magnitude, to 1 part in 10^{18} . Four pairs of optimally chosen test masses and multiple systematic error checks will enable a robust measurement.

B.2 Mission Overview

Launch Date – June, 2013 Orbit – 550km sun-synchronous inclination 97.6° Eclipse Free through Mission Duration after set up phase Eccentricity – <2% Mission Duration – 6 months Telemetry – S-Band, IONET Poker Flat and Svalbard Ground Stations Stanford Mission Operations Center Launch Vehicle – Indian Supplied PSLV Launch Capability – 1600 kg Injected Mass – 819 kg including reserve Launch Margin – 95%

B.4 Spacecraft


Flight qualified Surrey Satellite Technology Spacecraft Bus ESA Phase A Service Module Feasibility Study Complete Low Cost. Selected Redundancy Passive Thermal Control GaAs Solar Array 360 W Dual 5 W S-band Tranceivers Separate Service Module and Payload Electronics Mounts for Simplified Integration Flight Proven Drag Free/Attitude Control system Thrust Provided by Helium Boil-off From the Dewar Mature Interface Control

B.3 Science Payload

Cryogenic Payload

- Qualified Superfluid Helium Dewar Design
- Aerogel Helium Confinement
- ^a Four Differential Accelerometers
- Redundant SQUID and Electrostatic Readout
- Superconducting Magnetic Bearings
- Optimally Chosen Test Masses

Flight Electronics design concepts verified

B.5 E/PO

PI Lead w/ Science Team and MSFC Support Managed by experienced E/PO director -

Dr. Shannon Range

- \$ 700k Budget
- Vigorous Program with Connections to Schools, Museums and Media Ranges from Fundamental Science Concepts to Innovative Technology Large Presence in Underserved Communities

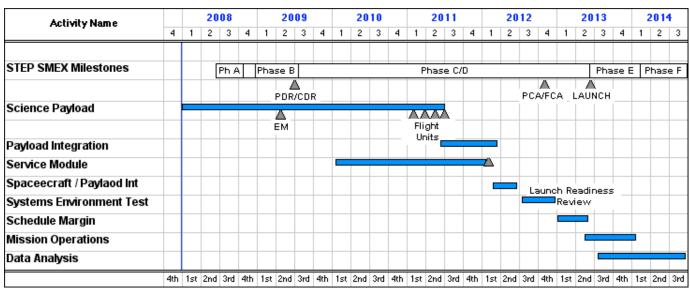
Uniquely Accessible Experiment Concept

B.7 Schedule

B.6 Mission Management

Experienced PM - Gaylord Green Integrated Product Team Structure Clear lines of Authority and Responsibility Stanford

– PI responsible for Mission Success


- Program Manager leads Implementation MSFC

- Supports program management

- Supports Safety and Mission Assurance Teledyne Brown Engineering

– Leads Systems Engineering

Established, Well Integrated Science Team

B.8 Cost Estimate

NASA Funding is leveraged by UK, German and Indian contributions.

Element	Cost (\$FY'08)	Schedule	
Phase A/B+bridge	8,512,281	6/08-6/09	
Phase C/D	66,059,975	6/09-6/13	
Phase E/F	6,162,015	6/16-9/14	
Total PI Cost	79,185,336		
Total w/30% reserve	102,940,937	6/08-9/14	
Contributions	39,400,000		
Contrib w/30% reserve	51,220,000		
Total Mission 154,160,937			
Includes 5 Months Funded Schedule Reserve			

B.9 Key Margins

Parameter	Requirement	Margin
Mass	819 kg	95%
Power	300 W	20%
PLD	11.52 mips	108%
Processor		
OBMU	448 Kwords	52%
Memory		
Downlink	232.5 kbps	500%
Data Rate		
Downlink	10.5dB	9dB
SNR		
Dewar Life	6 Months	33%
Vibration	>10Hz	170%