

Polhode Motion, Trapped Flux, and the GP-B Science Data Analysis

Alex Silbergleit, John Conklin

and the Polhode/Trapped Flux Mapping Task Team

Outline

- 1. Gyro Polhode Motion, Trapped Flux, and GP-B Readout (4 charts)
- 2. Changing Polhode Period and Path: Energy Dissipation (4 charts)
- 3. Trapped Flux Mapping (TFM): Concept, Products, Importance (7 charts)
- 4. TFM: How It Is Done 3 Levels of Analysis (11 charts)
 - A. Polhode phase & angle
 - B. Spin phase
 - C. Magnetic potential
- 5. TFM: Results (9 charts)
- 6. Conclusion. Future Work (1 chart)

Outline

- 1. Gyro Polhode Motion, Trapped Flux, and GP-B Readout
- 2. Changing Polhode Period and Path: Energy Dissipation
- 3. Trapped Flux Mapping (TFM): Concept, Products, Importance
- 4. TFM: How It Is Done 3 Levels of Analysis
 - A. Polhode phase & angle
 - **B. Spin phase**
 - **C. Magnetic potential**
- 5. TFM: Results
- 6. Conclusion. Future Work

- Euler motion equations
 - In body-fixed frame: $\hat{x} = \hat{I}_1, \ \hat{y} = \hat{I}_2, \ \hat{z} = \hat{I}_3$
 - With moments of inertia:

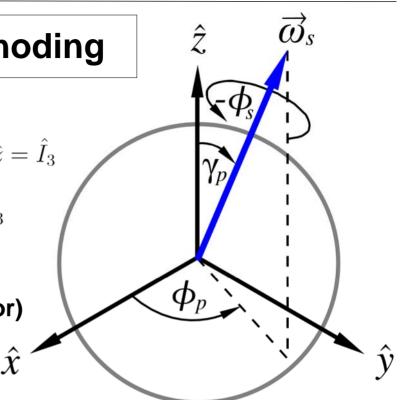
$$0 < I_1 \le I_2 \le I_3$$

– Asymmetry parameter:

$$0 \le Q^2 = rac{I_2 - I_1}{I_3 - I_1} \le 1$$
 (Q=0 – symmetric rotor)

 Euler solution: instant rotation axis precesses about rotor principal axis along the polhode path (angular velocity Ω_p)

• For GP-B gyros
$$\frac{I_i - I_j}{I_k} \sim 10^{-6} \Rightarrow \Omega_p \sim 10^{-6} \omega_s$$



1.2 Symmetric vs. Asymmetric Gyro Precession

• **<u>Symmetric</u>** ($I_1 = I_2$, Q=0):

 $\gamma_p = \text{const} \ (\omega_3 = \text{const}, \text{ polhode path} = \text{circular cone}),$ $\phi_p = \Omega_p = \text{const}, \text{ motion is uniform,}$ $\phi_p(t) \text{ is linear function of time}$

• **<u>Asymmetric</u>** $(I_1 \neq I_2, Q > 0)$:

ession
$$\hat{z}$$
 $\hat{\omega}_s$
e), $\hat{\gamma}_p$ $\hat{\psi}_p$ $\hat{\psi}_p$

 $\gamma_p \neq const(\omega_3 \neq const, polhode path is$

not circular), $\phi_p \neq const$, $\phi_p(t)$ is nonlinear, motion is non–uniform

Why is polhoding important for GP-B data analysis? Main reason: SQUID Scale Factor Variations due to Trapped Flux

HEPL Seminar

1.3 GP-B Readout: London Moment & Trapped Flux

- SQUID signal ~ magnetic flux through pick-up loop (rolls with the S/C):
 - from dipole field of London Moment (LM) aligned with spin
 - from multi-pole Trapped Field (point sources on gyro surface fluxons)
- LM flux $\Phi^{LM}(t) = C_g^{LM}\beta(t)$ angle between LM and pick-up loop ($\beta \sim 10^{-4}$, carries relativity signal at low roll frequency ~ 0.01 Hz)
- Fluxons
 - frozen in rotor surface spin, with it; transfer function 'fluxon position pick-up loop flux' strongly nonlinear —
 - Trapped Flux (TF) signal contains multiple harmonics of spin; spin axis moves in the body (polhoding) —
 - amplitudes of spin harmonics are modulated by polhode frequency

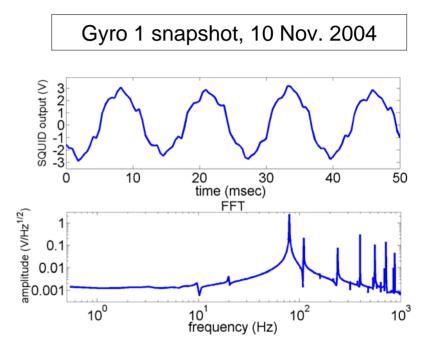
$$\Phi^{TF}(t) = \sum_{n} H_{n}(t) e^{-in(\phi_{s} \pm \phi_{r})} = \sum_{n=odd} H_{n}(t) e^{-in(\phi_{s} \pm \phi_{r})} + \beta(t) \sum_{n=even} h_{n}(t) e^{-in(\phi_{s} \pm \phi_{r})}$$

• LM flux and LF part of Trapped Flux (n=0) combine to provide LOW FREQUENCY SCIENCE READOUT (TF ≤ 0.05 LM Flux):

$$\Phi_{LF}(t) = \Phi^{LM}(t) + \Phi_{DC}^{TF}(t) = C_g^{LM} \beta(t) + C_g^{TF}(t) \beta(t); \quad C_g^{TF}(t) \equiv h_0(t)$$

1.4 GP-B High Frequency Data

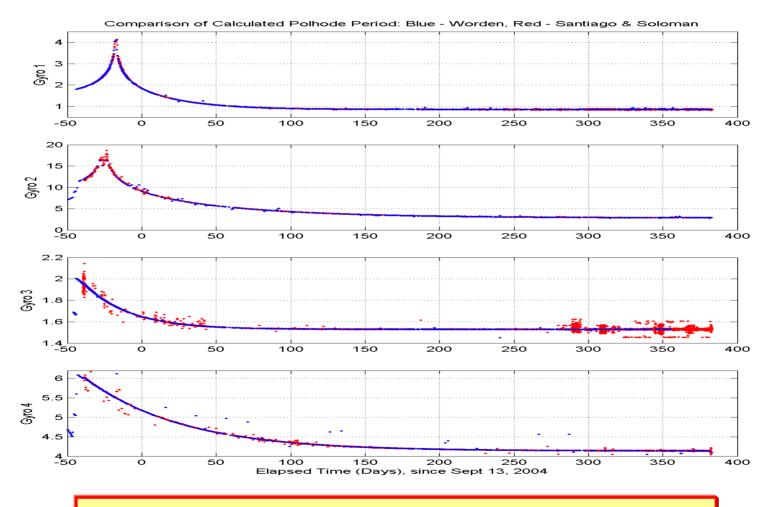
- HF SQUID Signals
 - FFT of first 6 spin harmonics
 - 'snapshot': ~ 2 sec of SQUID signal sampled at 2200 Hz
- Both available during GSI only;
 ~1 snapshot in 40 sec; up to 2 day gaps in snapshot series
- FFT analyzed during the mission
- 976,478 snapshots processed after the mission [harmonics H_n(t)]
- LF SQUID signal (taken after additional 4 Hz LP filter) is used for relativistic drift determination ('science signal')



Outline

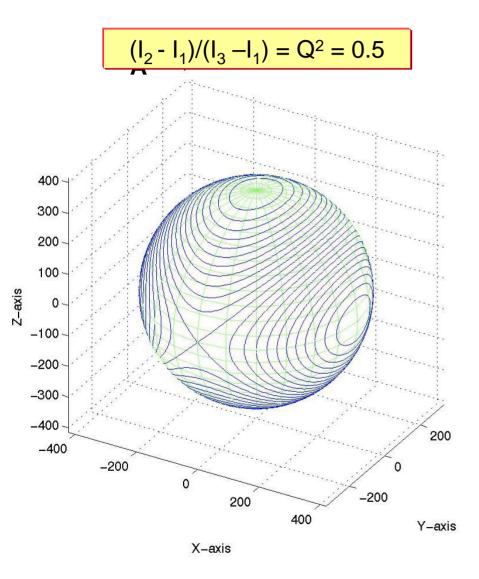
- 1. Gyro Polhode Motion, Trapped Flux, and GP-B Readout
- 2. Changing Polhode Period and Path: Energy Dissipation
- 3. Trapped Flux Mapping (TFM): Concept, Products, Importance
- 4. TFM: How It Is Done 3 Levels of Analysis
 - A. Polhode phase & angle
 - **B.** Spin phase
 - **C.** Magnetic potential
- 5. TFM: Results
- 6. Conclusion. Future Work

2.1 Discovery: Changing Polhode Period- from Two Sources (HF FFT- red, SRE snapshots - blue)



Also confirmed by the analysis of gyro position signal

2.2 Explanation of Changing Polhode Period: Kinetic Energy Dissipation



$$L^{2} = I_{1}^{2}\omega_{1}^{2} + I_{2}^{2}\omega_{2}^{2} + I_{3}^{2}\omega_{3}^{2}$$
$$2E = I_{1}\omega_{1}^{2} + I_{2}\omega_{2}^{2} + I_{3}\omega_{3}^{2}$$

- Classical polhode paths (blue) for given angular momentum and various energies: intersection of ellipsoids L² = const and E = const (no dissipation)
- Dissipation: L conserved, but E goes down *slowly*, then...
- The system slips from a curve to the nearby one with a lower energy (each path corresponds to some energy value). So the longterm path projected on {x-y} plane becomes a tight in-spiral, instead of an ellipse.

2.3 Explanation (contd.): Kinetic Energy Dissipation

- Dissipation moves spin axis in the body to the maximum inertia axis I_3 where energy is minimum, under conserved angular momentum constraint
- Relative total energy loss from min, I_1 , to max, I_3 , inertia axis is:

 $L = I_1 \omega_1 = I_3 \omega_3 \implies (E_1 - E_3) / E_1 = (I_3 - I_1) / I_3 \le 4 \times 10^{-6} \text{ for GP-B gyros!}$

- The total energy loss in GP-B gyros needed to move spin axis all the way from min to max inertia axis is thus less than $4 \mu J (E \sim 1 J)$; in one year, the average dissipation power need for this is just $10^{-13} W$!
- General dissipation model is found in the form of an additional term in the Euler motion equations (unique up to a scalar factor).
- Fitting the model polhode period time history to the measured one allowed the determination the rotor asymmetry parameter Q^2 (also from gyro position signal), the asymptotic polhode period $T_{pa} \sim 1-2 hr$, and the characteristic time of dissipation $\tau_{dis} \sim 1-2 months$ (for each gyro)

2.4 Dissipation Modeling: Products

1. Asymptotic Polhode Period and Dissipation Time

	Gyro 1	Gyro 2	Gyro 3	Gyro 4
T _{pa} (hrs)	0.867	2.581	1.529	4.137
T _p (hrs) (9/4/2004)	2.14	9.64	1.96	5. 90
τ _{dis} (days)	31.9	74.6	30.7	61.2

Dissipation is slow ($T_p << \tau_{dis}$),

so the polhode motion of GP-B gyros is quasi-adiabatic

2. Polhode phase and angle for the whole mission for each gyro (not perfectly accurate, but enough to start science analysis and TFM)

Outline

- 1. Gyro Polhode Motion, Trapped Flux, and GP-B Readout
- 2. Changing Polhode Period and Path: Energy Dissipation
- 3. Trapped Flux Mapping (TFM): Concept, Products, Importance
- 4. TFM: How It Is Done 3 Levels of Analysis
 - A. Polhode phase & angle
 - **B.** Spin phase
 - **C. Magnetic potential**
- 5. TFM: Results
- 6. Conclusion. Future Work

3.1 Trapped Flux Mapping (TFM): Concept

- Trapped Flux Mapping: finding distribution of trapped magnetic field and characteristics of gyro motion from odd spin harmonics of HF SQUID signal by fitting to their theoretical model
- Scalar magnetic potential in the body-fixed frame is

$$\Psi^{TF}(r,\theta,\phi) = \frac{\Phi_0}{2r_g} \sum_{l=1}^{\infty} \left(\frac{r_g}{r}\right)^{l+1} \frac{1}{l+1} \sum_{m=-l}^{l} A_{lm} Y_{lm}(\theta,\phi)$$
$$A_{lm} = \sum_{l=1}^{K} \left[Y_{lm}(\theta_k^+,\phi_k^+) - Y_{lm}^*(\theta_k^-,\phi_k^-)\right]$$

 If fluxon number and positions were known, then coefficients A_{lm} are found uniquely by this formula; in reality, coefficients A_{lm} to be estimated by TFM

3.2.TFM Concept: Key Points

• HF SQUID signal and its preparation for TFM

measured
$$\rightarrow (z^{HF}(t)) = \sum_{n=-\infty}^{\infty} (H_n(t)) e^{-in(\phi_s + \phi_r)}$$

• TFM is *linear* fit of A_{lm} coefficients to *odd* spin harmonics using their theoretical expressions

$$H_n(t) = \frac{\Phi_0}{2} \sum_{\substack{l=|n|\\l \text{ odd}}}^{\infty} \left(\frac{r_g}{b}\right)^l \sum_{m=-l}^l A_{lm} d_{n0}^l \left(\frac{\pi}{2}\right) d_{mn}^l \gamma_p e^{in\phi_p} I_l \text{, } n \text{ odd}$$

• Knowing A_{lm} , ϕ_p & γ_p , can predict scale factor due to TF $C_g^{TF}(t) = \frac{\partial H_0(t)}{\partial \beta}\Big|_{\beta=0} = \frac{\Phi_0}{2} \sum_{\substack{l=|n|\\l \text{ odd}}}^{\infty} \left(\frac{r_g}{b}\right)^l \sum_{m=-l}^l A_{lm} \, l \, P_{l-1}(0) \, d_{m0}^l(\gamma_p) \, e^{im\phi_p} I_l$

measured data nonlinear parameters linear parameters

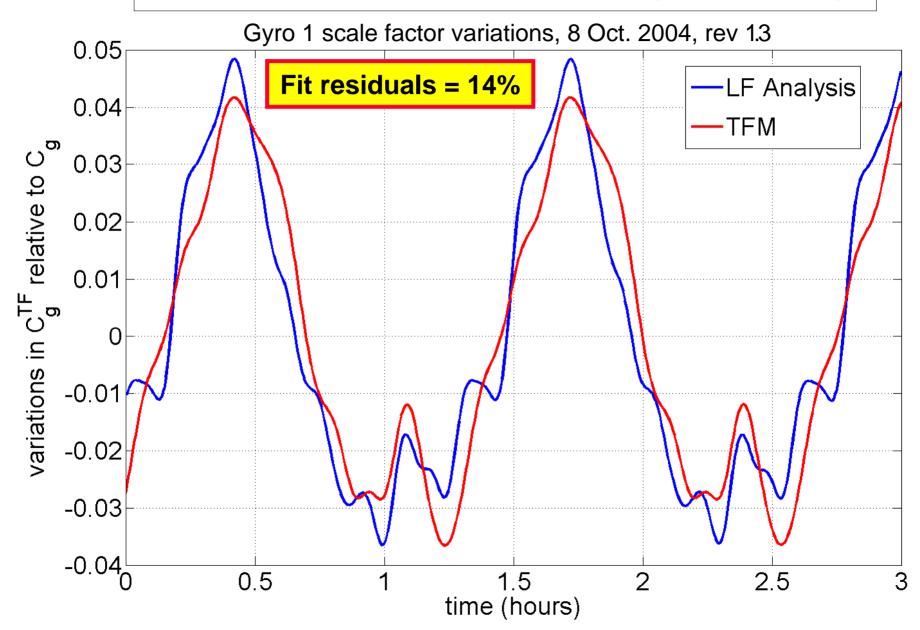
3.3 TFM: Products

• For each gyro/entire mission, TFM provides:

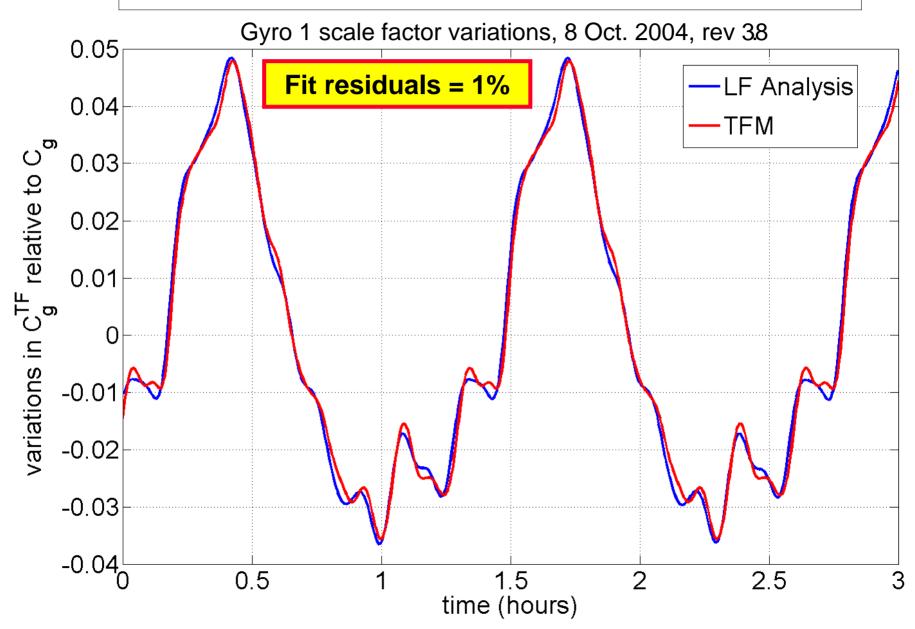
- Rotor spin speed to ~ 10 nHz
- Rotor spin down rate to ~ 1 pHz/s
- Rotor spin phase to ~ 0.05 rad
- Rotor asymmetry parameter Q²
- Polhode phase to $\sim 0.02 \text{ rad} (1^{\circ})$
- Polhode angle to ~ 0.01 0.1 rad
- Polhode variations of SQUID scale factor [i.e., Trapped Flux scale factor, $C_g^{TF}(t)$]

17

3.4 Scale Factor Variations (Nov. 2007)



3.5 Scale Factor Variations (Aug. 2008)



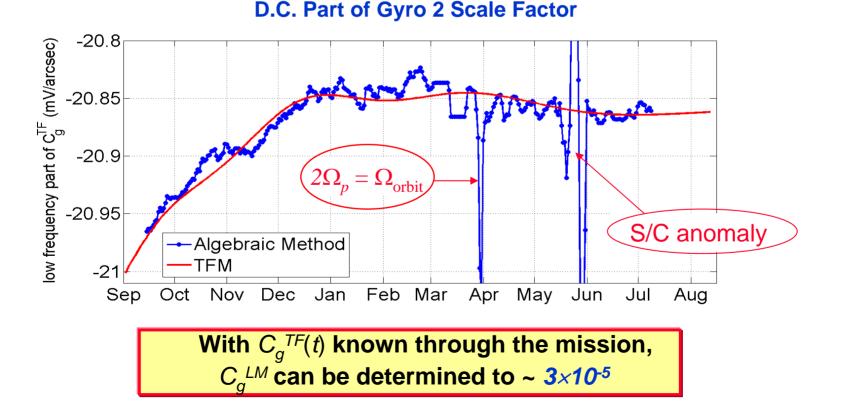
3.6 TFM: Importance – Scale Factor & Torque

- LF science signal analysis cannot be done w/o accurate polhode phase and angle from TFM (determination of scale factor polhode variations)
- Patch effect torque modeling also cannot be done w/o accurate polhode phase and angle from TFM (all the torque coefficients are modulated by polhode frequency harmonics, same as the scale factor is)
- TFM produces those polhode variations of scale factor from HF SQUID data (independent of LF science analysis)
 - Allows for separate determination of the London Moment scale factor and D.C. part of Trapped Flux scale factor slowly varying due to energy dissipation (next slide)
 - When used in LF science analysis, simplifies it significantly (dramatically reduces the number of estimated parameter, makes the fit linear)

3.7 TFM Importance: D.C. Part of Scale Factor

• SQUID Scale Factor, $C_g(t) = C_g^{LM} + C_g^{TF}(t)$

 $C_{g}^{TF}(t)$ contains polhode harmonics & D.C. part



GP-B Polhode/TFM Task Team

Dan DeBra

Mac Keiser

Paul Worden

Alex Silbergleit

David Santiago

Michael Salomon

Jonathan Kozaczuk

with advising and participation of:

Michael Heifetz

John Turneaure

Vladimir Solomonik

Outline

- 1. Gyro Polhode Motion, Trapped Flux, and GP-B Readout
- 2. Changing Polhode Period and Path: Energy Dissipation
- 3. Trapped Flux Mapping (TFM): Concept, Products, Importance

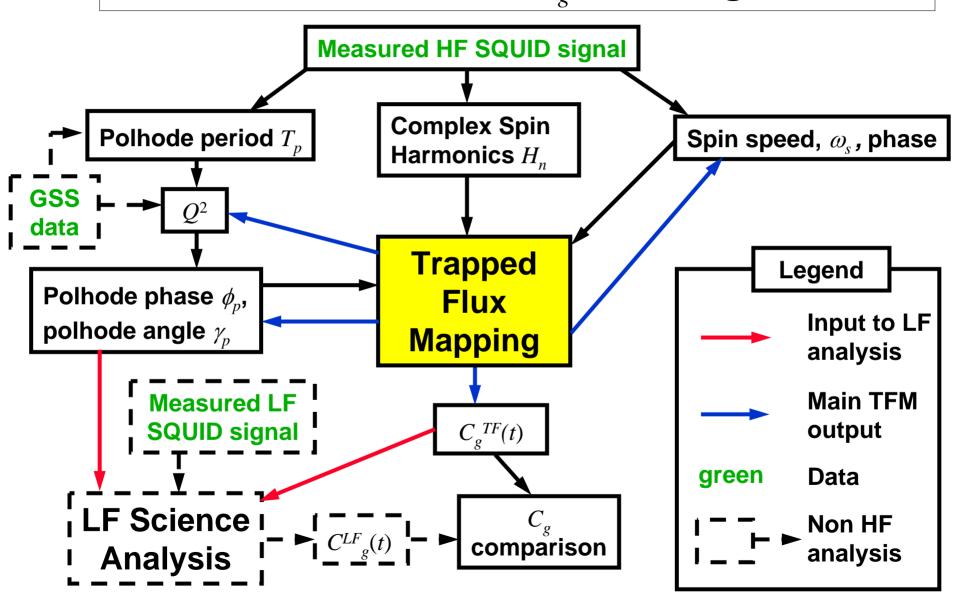
4. TFM: How It Is Done. 3 Levels of Analysis

- A. Polhode phase & angle
- B. Spin phase
- C. Magnetic potential

5. TFM: Results

6. Conclusion. Future Work

4.1 TFM & Scale Factor C_g Modeling Overview



4.2 TFM Methodology

- Expand scalar magnetic potential in spherical harmonics
- Fit theoretical model to odd harmonics of spin, accounting for polhode & spin phase
- 3 Level approach
 - Level A Independent day-to-day fits, determine best polhode phase ϕ_p & angle γ_p (nonlinear)
 - Level B Consistent best fit polhode phase & angle, independent day-to-day fits for spin phase ϕ_s (nonlinear)
 - Level C With best fit polhode phase, angle & spin phase, fit single set of A_{lm} s to long stretches of data (linear)
 - » Compare spin harmonics to fit over year, refine polhode phase

Iterative refinement of polhode phase & A_{lm}s

4.3 Level A: Polhode Phase ϕ_p & Angle γ_p

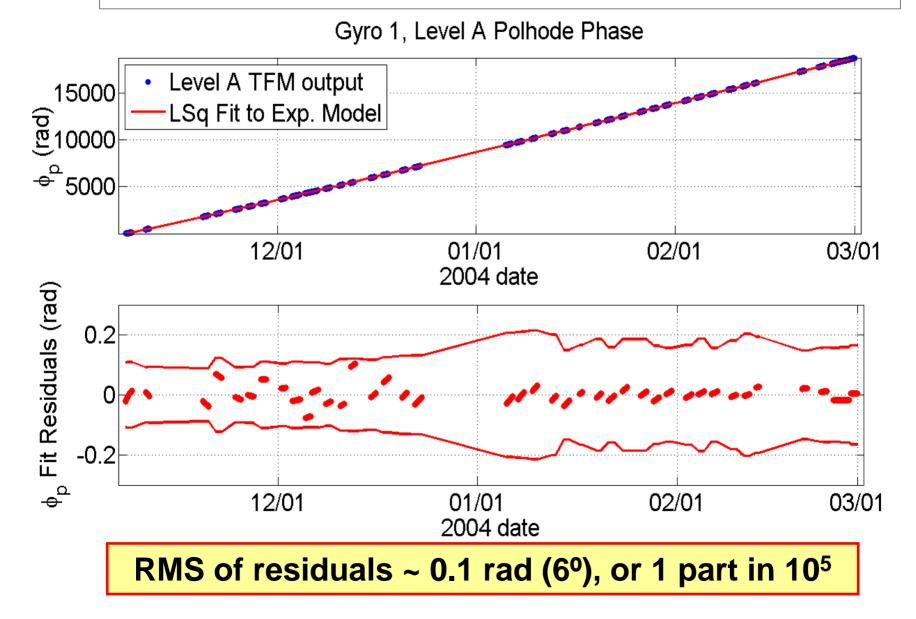
- Level A input:
 - Measured spin harmonics H_n from HF SQUID signal (*n* odd)
 - Measured polhode frequency
 - Measured spin speed
- Fit 1-day batch ⇒ initial polhode phase for each batch
- Build 'piecewise' polhode phase for the entire mission, accounting for 2π ambiguities
- Fit exponential model to polhode phase & compute angle

from dissipation model $\phi_p(t) = \phi_{p0} + \Omega_{pa}(t - t_{ref}) - \sum_{m=1}^{M} D_m \frac{\tau_{dis}}{m} e^{-m\frac{t - t_{ref}}{\tau_{dis}}} + \Delta \phi_p(t, Q^2)$ zero when Q²=0

• Level A output:

- consistent polhode phase & angle for entire mission

4.4 Polhode Phase Determination, Level A



4.5 Level B: Spin Phase ϕ_s **Estimation**

- Level B input:
 - Best-fit, consistent polhode phase & angle from Level A
 - Measured spin harmonics H_n (n odd) from HF SQUID signal
 - Measured spin speed
- Fit quadratic model for spin phase, once per batch

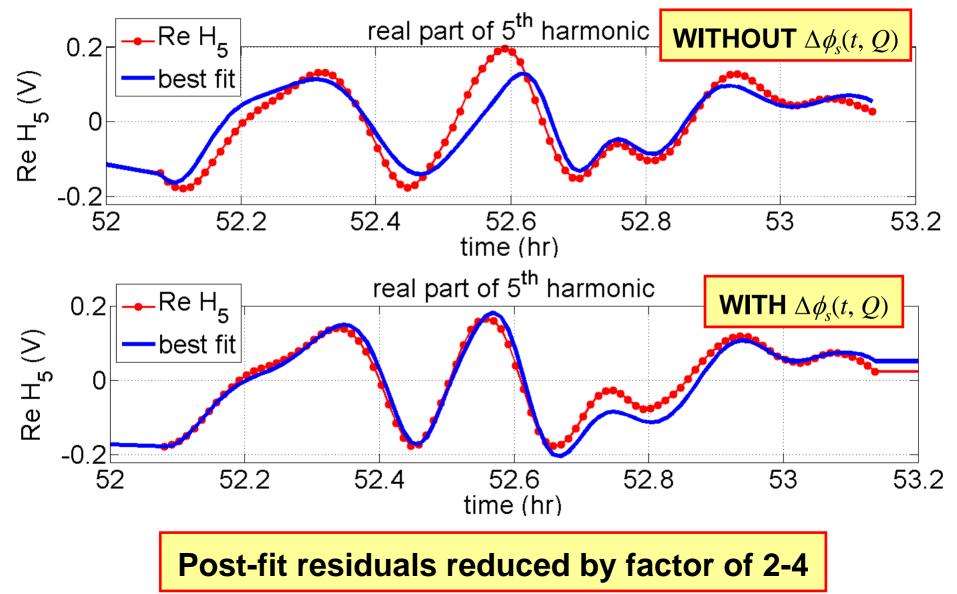
$$\phi_s(t) = \phi_{si} + \omega_i(t - t_i) + \frac{1}{2} d\omega(t - t_i)^2 + \phi_p(t, Q^2 = 0) + \Delta\phi_s(t, Q^2)$$

• Level B output:

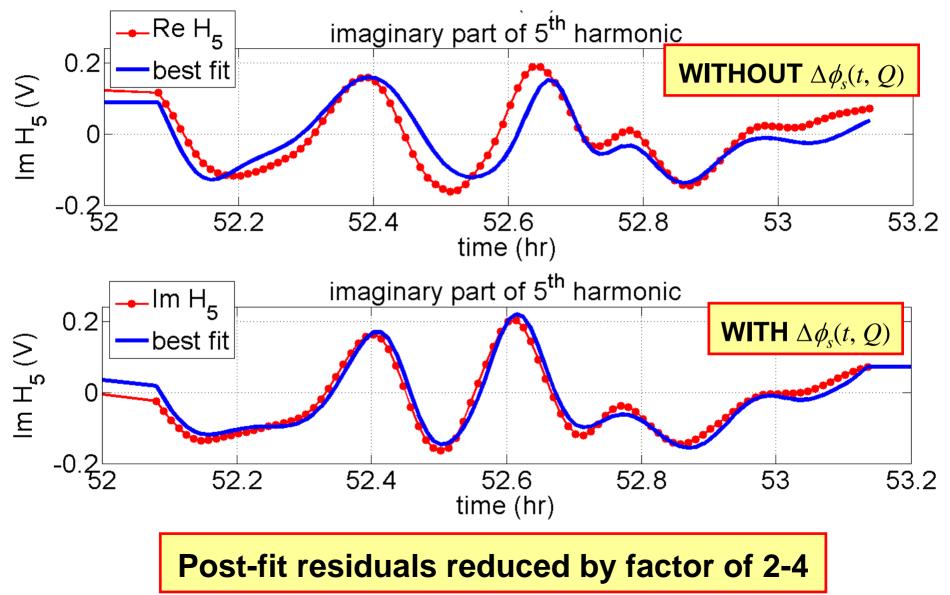
polhode phase w/o asymmetry correction

- Rotor spin speed to ~ 10 nHz
- Rotor spin-down rate to ~ 1 pHz/s
- Rotor spin phase to ~ 0.05 rad (3°)

4.6 Gyro 1 Fit to H_5 with & without Extra Term



4.7 Gyro 1 Fit to *H*₅ with & without Extra Term



4.8 Level C: A_{Im} & Polhode Phase Refinement

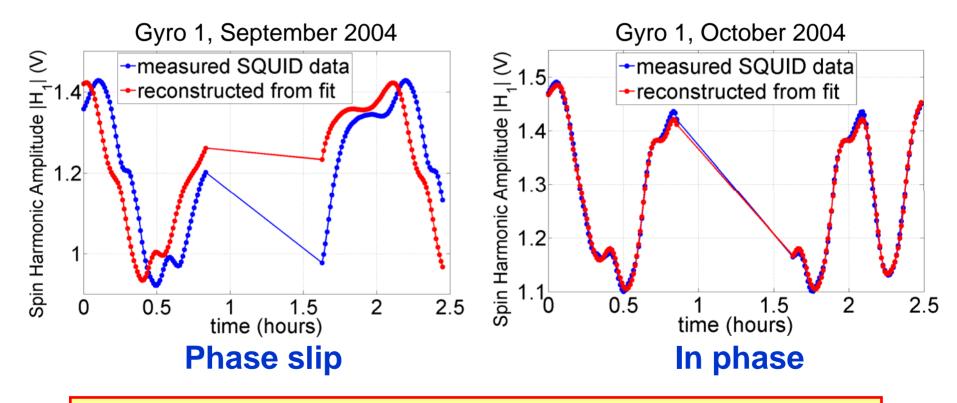
- Level C input:
 - Best-fit, consistent polhode phase & angle, Q² from Level A
 - Spin phase from Level B
 - Measured spin harmonics H_n from HF SQUID signal (*n* odd)
- Linear LSQ fit over entire mission $\Rightarrow A_{lm}$'s
- Level C output:
 - Coefficients of magnetic potential expansion, A_{lm}
 - Refined polhode phase & angle
- Polhode phase refinement
 - Complex H_n , accounting for elapsed spin phase, required for *linear* fit
 - Amplitude of spin harmonics $|H_1|$ unaffected by spin phase errors

 \Rightarrow |*H*₁| most reliable, only contains *A*_{*lm*}'s & polhode phase ϕ_p

- Assume A_{lm} 's correct, adjust polhode phase to match data & iterate

4.9 Polhode Phase Refinement (Level C)

- 1. Compare amplitude of spin harmonic $|H_1|$ to reconstructed version from best-fit parameters
- 2. Adjust polhode phase to match



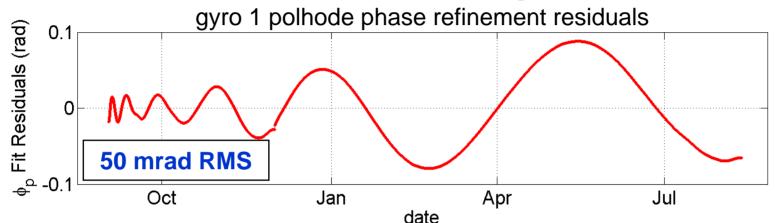
Provides most accurate estimate of polhode phase

4.10 Iterative Polhode Phase Refinement

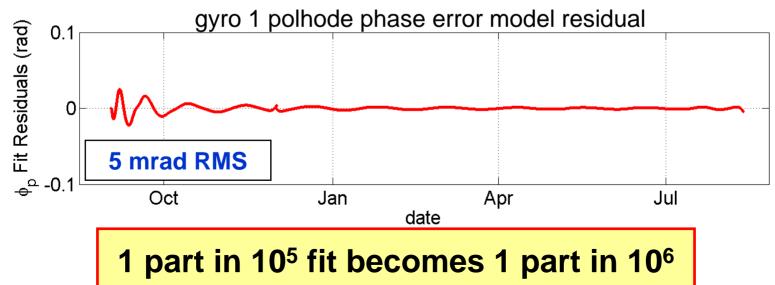
• With new polhode phase, re-compute spin phase, A_{lm} 's, Gyro 3 polhode phase refinement 0.4 iteration 0 iteration 1 0.2 polhode phase error (rad) iteration 2 0 -0.2 -0.4 -0.6 -0.8∟_ Sep Oct Feb Nov Jan Dec Mar Apr May Jul Jun Aug Successive iterations show convergence

4.11 Polhode Phase Error Model (Level C)

• Polhode phase correction (from $|H_1|$) fit to exp. model



Post-fit residuals fit to Fourier expansion



Outline

- 1. Gyro Polhode Motion, Trapped Flux, and GP-B Readout
- 2. Changing Polhode Period and Path: Energy Dissipation
- 3. Trapped Flux Mapping (TFM): Concept, Products, Importance
- 4. TFM: How It Is Done. 3 Levels of Analysis
 - A. Polhode phase & angle
 - **B.** Spin phase
 - C. Magnetic potential

5. TFM: Results

6. Conclusion. Future Work

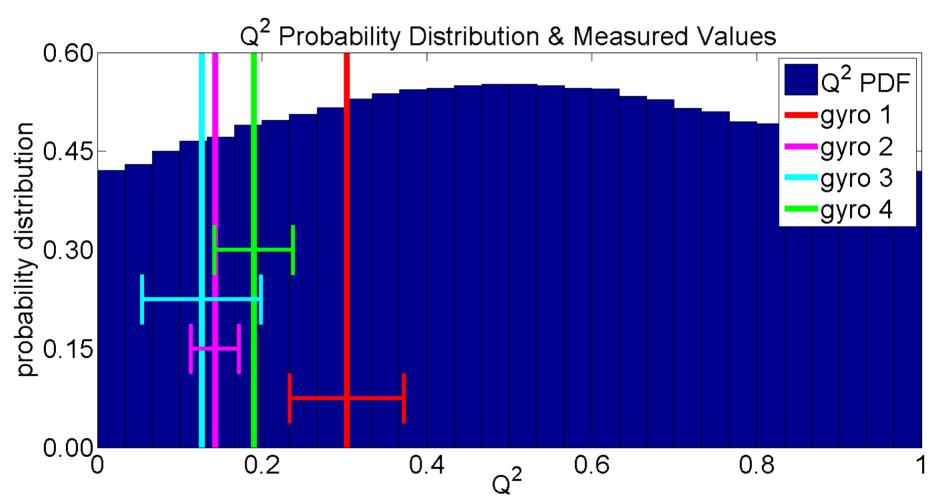
5.1 Rotor Asymmetry Parameter Q^2 (from Level A)

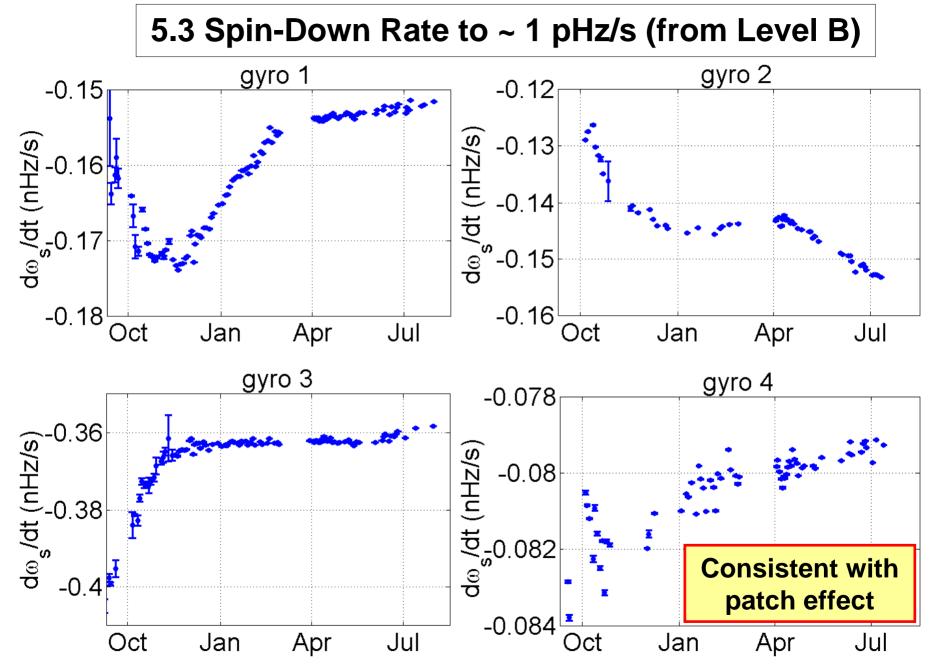
Method	Gyro 1	Gyro 2	Gyro 3	Gyro 4
TFM	0.303 ± 0.069	0.143 ± 0.029	0.127 ± 0.072	0.190 ± 0.048
Previous work	0.33 (0.29 – 0.38)	0.36 (0.14 – 0.43)	~ 0	0.32 (0.30 – 0.40)

- C_{g}^{TF} and H_{n} are relatively insensitive to Q^{2}
 - Q^2 estimation accurate to ~ 20%
 - Adequate for TFM

5.2 *Q*² Results & Probability Distribution Function

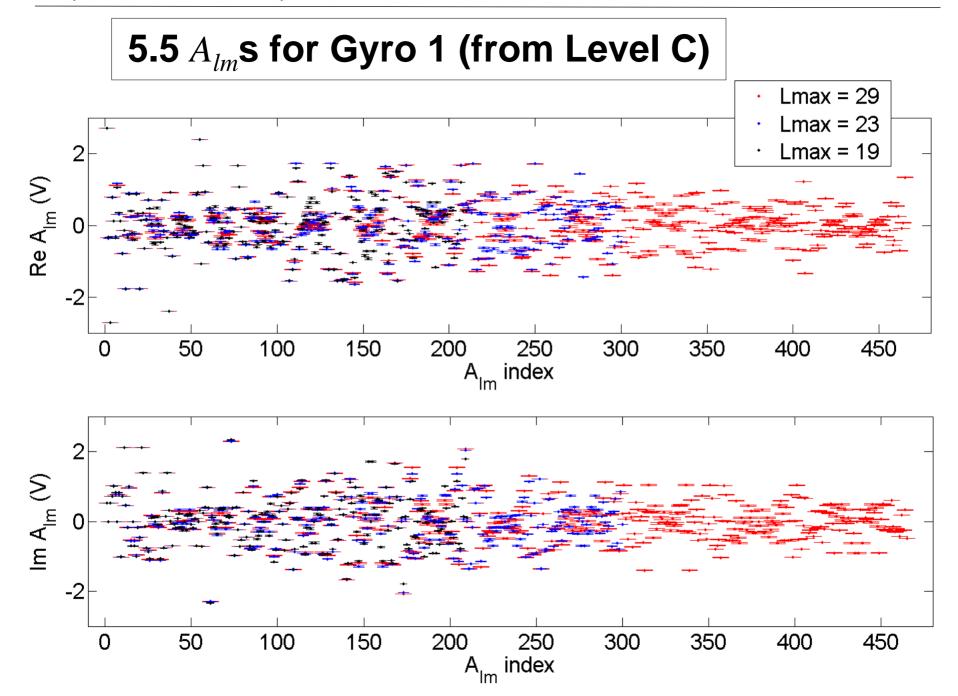
• **Observation:** $0.12 < Q^2 < 0.31$ all gyros

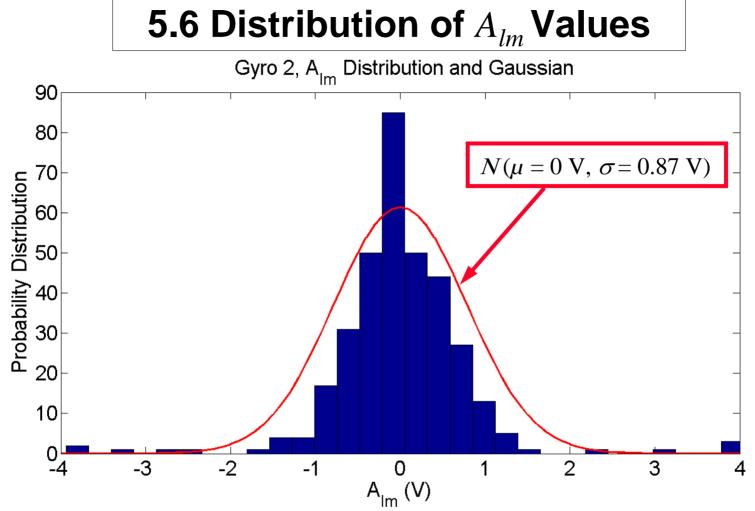




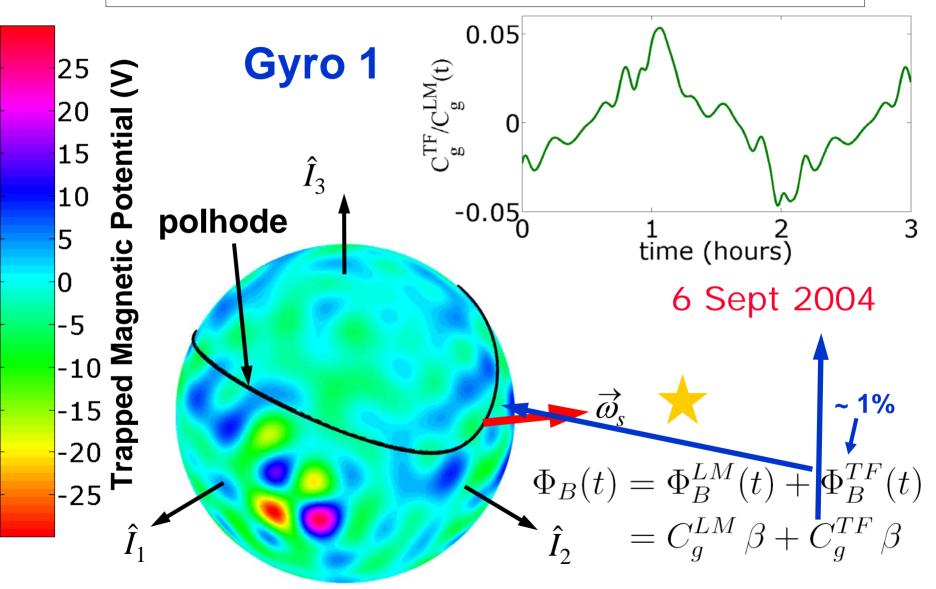
5.4 Spin Speed and Spin-Down Time (from Level B)

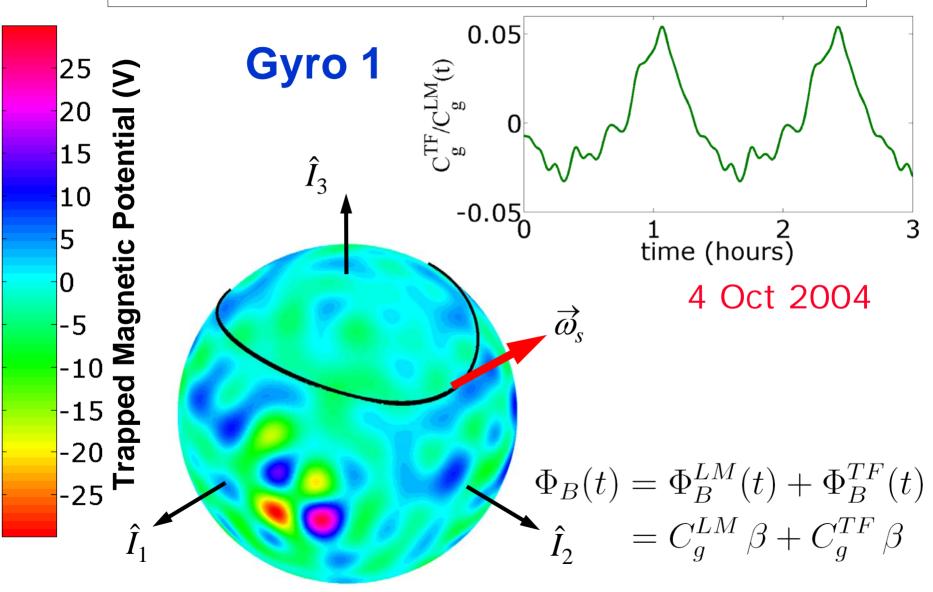
Parameter	Gyro 1	Gyro 2	Gyro 3	Gyro 4
f _s (Hz)	79.40	61.81	82.11	64.84
τ _{sd} (yrs)	15,800	13,400	7,000	25,700

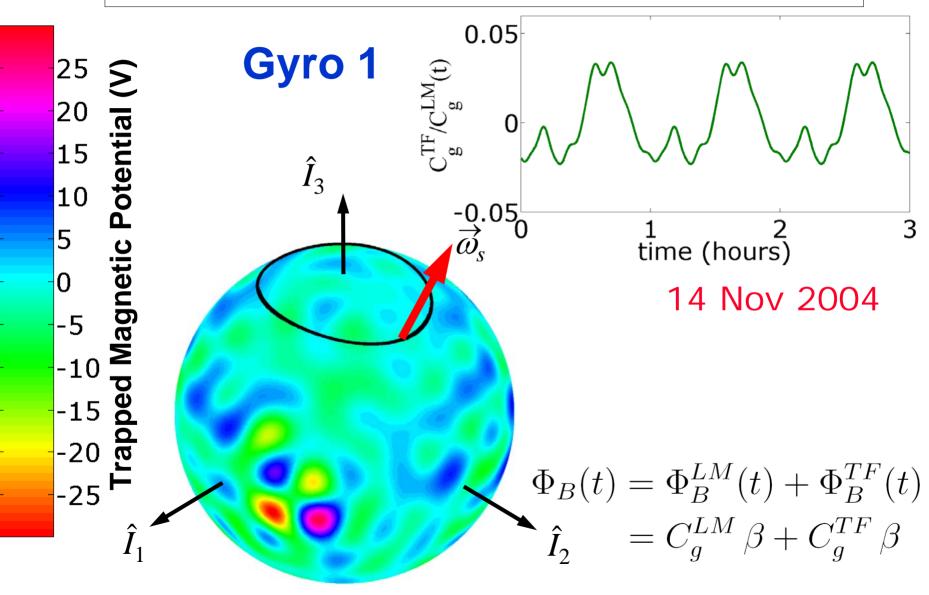


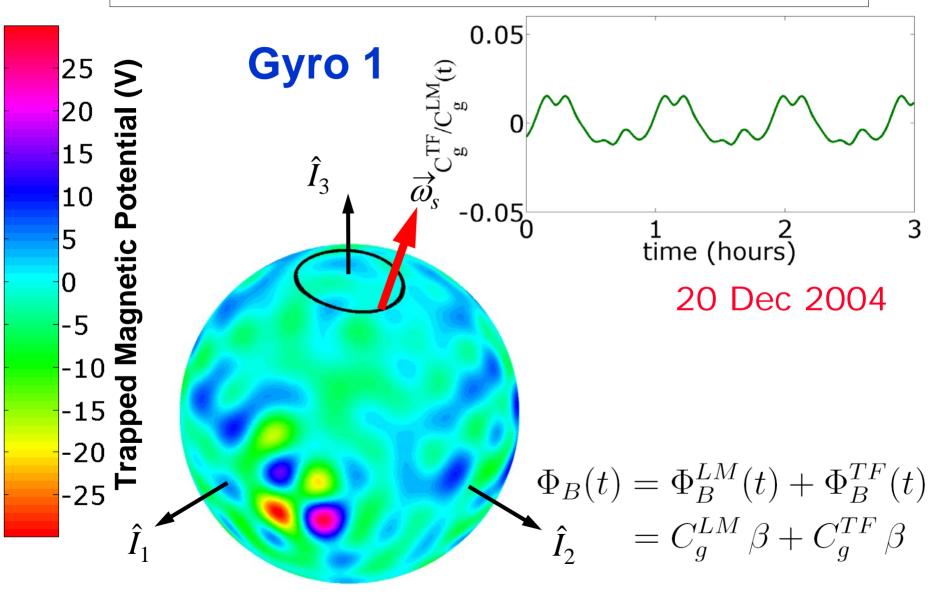


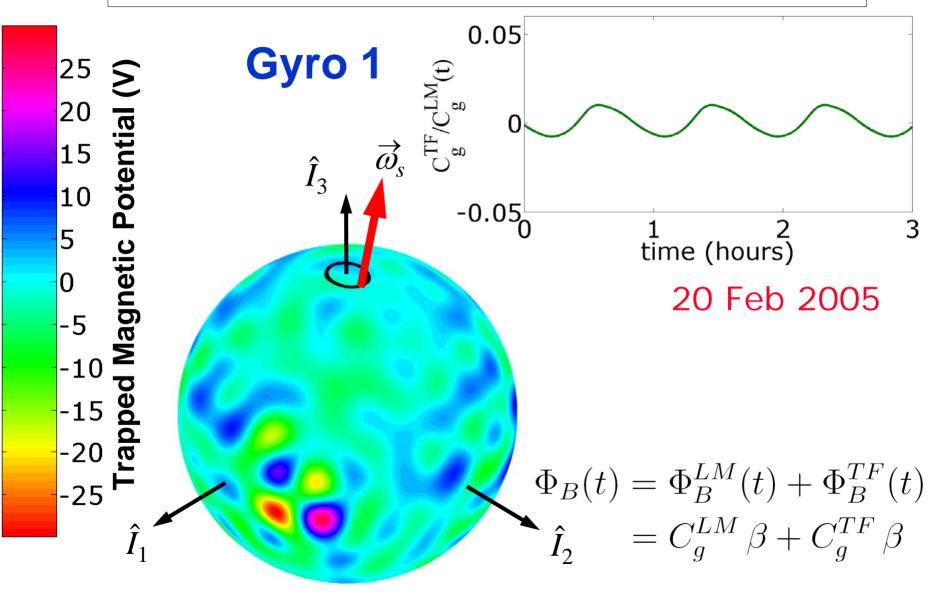
- Fits indicate A_{lm}s follow zero mean Gaussian distribution, that also agrees with physical understanding of trapped flux
- Assuming A_{lm}s normally distributed about zero allowed for more accurate estimates of coefficients with higher indices

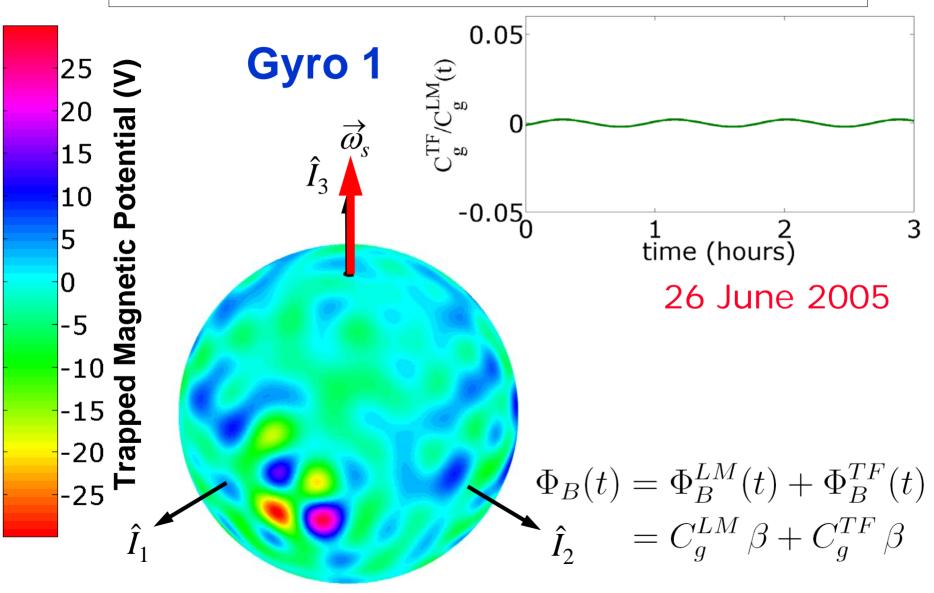










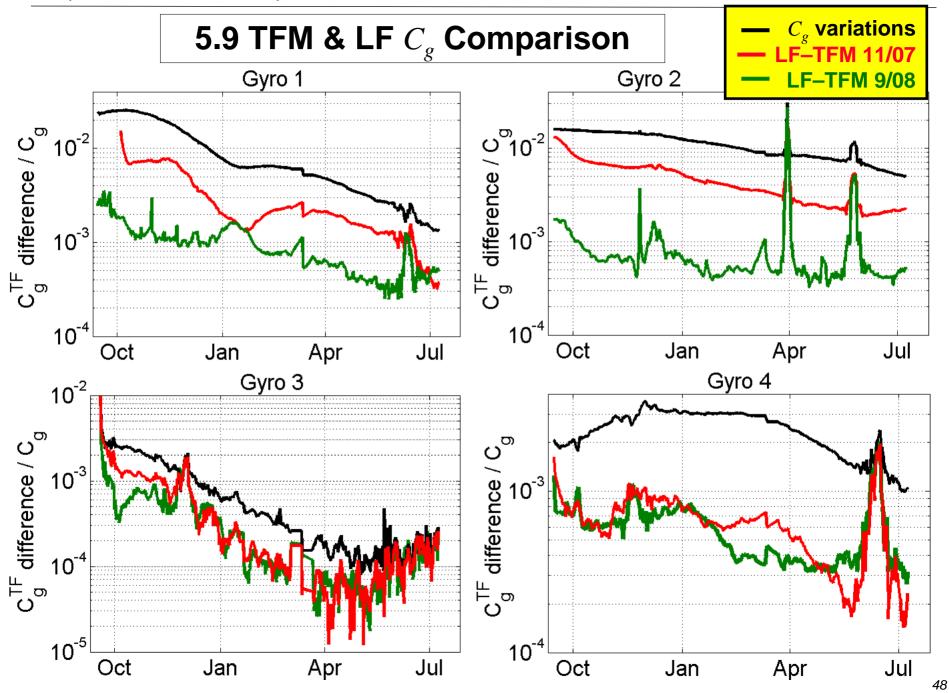


5.8 Scale Factor Results, Nov. '07 vs. Aug. '08

Gyro	Data Used	Relative residuals (rms)	Number of Harmonics	Relative Amplitude of Variations	C_g^{TF} Error Relative to C_g (formal sigmas)
1	Oct.	14%	11		0.6 ×10 ⁻² - 2×10 ⁻²
	full year	1.1%	21	3% to 0.2%	1.5×10 ⁻⁴ - 7.0×10 ⁻⁵
2	Sept Dec.	15%	17	1.5% to 0.5%	3×10 ⁻⁴ - 6×10 ⁻⁴
	full year	1.5%	25		6.0×10⁻⁵ - 3.0×10⁻⁵
3	Sept Dec.	6%	5	1% to 0.01%	3×10⁻³ - 4×10⁻³
	full year	2.6%	21		2.0×10 ⁻⁴ - 1.6×10 ⁻⁴
4	Oct Dec.	17%	9	0.3% to 0.1%	3×10⁻³ - 7×10⁻³
	full year	2.8%	21		8.5×10 ⁻⁵ - 6.5×10 ⁻⁵

July 8, 2009 • Stanford University

HEPL Seminar



6. Conclusion. Future Work

- Polhode period and path change observed on orbit are explained by rotation energy loss and properly analyzed, laying ground for Trapped Flux Mapping
- The results of Trapped Flux Mapping based on odd harmonics of HF SQUID signal are crucial for getting the best measurement of relativistic drift rate (determining LF scale factor variations and patch effect torque in science analysis)
- Future work on examining even HF harmonics might lead to new important results, such as:
 - Estimation of SQUID signal nonlinearity coefficients
 - Alternative science signal, i. e., independent determination of spin-to-pick-up loop misalignment time history

GP-B Polhode/TFM Task Team

Dan DeBra

Mac Keiser

Paul Worden

Alex Silbergleit

David Santiago

Michael Dolphin

Jonathan Kozaczuk

with advising and participation of:

Michael Heifetz

John Turneaure

Michael Salomon

John Conklin

Tom Holmes

Backup slides ...

Elliptic Functions and Parameters in Free Gyro Motion

Exact solution for a free motion of an **asymmetric** rotor is more complicated, since it involves elliptical functions.

Definitions of the relevant elliptical functions:

$$\begin{split} K(k) &= \int_{0}^{1} \frac{ds}{\sqrt{(1-s^2)(1-k^2s^2)}}; & \pi/2 = K(0) < K(k) \nearrow K(1) = \infty, \quad 0 < k < 1 \\ \phi &= \int_{0}^{\operatorname{sn}(\phi,k)} \frac{ds}{\sqrt{(1-s^2)(1-k^2s^2)}} & \text{[transcendental eq. for sn}(\phi,k), \text{ given } \phi \text{ and } k] \\ & \text{(if } k = 0, \quad \text{then} \quad \operatorname{sn}(\phi,0) = \sin \phi) \end{split}$$

 $\mathrm{cn}(\phi,k)=\pm\sqrt{1-\mathrm{sn}^2(\phi,k)},\qquad\mathrm{dn}(\phi,k)=\sqrt{1-k^2\,\mathrm{sn}^2(\phi,k)}$

 $\operatorname{tn}(\phi,k) = \operatorname{sn}(\phi,k)/\operatorname{cn}(\phi,k)$

$$k^{2} = \frac{(I_{2} - I_{1})(I_{3} - I)}{(I_{3} - I_{2})(I - I_{1})} = \frac{Q^{2}}{1 - Q^{2}} \frac{(I_{3} - I)}{(I - I_{1})}, \qquad I = \frac{L^{2}}{2E}$$
$$T_{p} = \frac{4K(k)}{\omega_{l}} \sqrt{\frac{I_{1}I_{2}I_{3}}{I(I_{3} - I_{2})(I - I_{1})}}, \qquad \omega_{l} = \frac{2E}{L} = \frac{\vec{\omega} \cdot \vec{L}}{L} = \frac{L}{I}$$

Dissipation Model

• Euler equation modified for dissipation (unique up to a factor μ):

$$\frac{d\vec{L}}{dt} + \vec{\omega} \times \vec{L} = -\mu(\omega, E) \, \frac{(\vec{L} \times \vec{\omega}) \times \vec{L}}{L}, \quad \mu > 0$$

• Dot product with L and $\vec{\omega}$ gives, respectively, the angular momentum conservation and the energy evolution equation:

$$\frac{dE}{dt} = -\mu \left(\omega^2 L^2 - 4E^2\right) \le 0, \quad 2E = \vec{L} \cdot \vec{\omega}$$

 For GP-B gyros variation of both frequency and energy is very small, so

$$\mu(\omega, E) = \mu_0 + \mu_{1\,\omega}(\omega - \omega_0) + \mu_{1\,E}(E - E_0) + \ldots \approx \mu_0 = \text{constant}$$

with parameter μ_0 to be estimated from the measured data (e.g., polhode period time history)

