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Geodetic Effect
Space-time curvature ("the missing inch")

Frame-dragging Effect
Rotating matter drags space-time ("space-time as a viscous fluid")

The Relativity Mission Concept
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 Launch:  April 20, 2004 – 09:57:24

Stanford Mission Operations Center
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Quartz Block

Measurement of Gyroscope Orientation 
Relative to Position of Guide Star

Gyro

Gyro Electronics Telescope
Electronics
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Telescope

Roll Star 
Reference
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Roll: 
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Probe
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Guide
Star

Dewar

Bill Fairbank– “It’s just a star, a 

telescope, & a spinning sphere”

spin axis
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Space
- reduced support force, "drag-free" 
- roll about line of sight to star

Cryogenics
- magnetic readout & shielding
- thermal & mechanical stability
- ultra-high vacuum technology

The GP-B Challenge
Gyroscope (G)      107 times better than best 'modeled' inertial navigation gyros
Telescope (T)        103 times better than best prior star trackers
Gyro Readout                 calibrated to parts in 105

G – T                              <1 marc-s subtraction within pointing range

Basis for 107 advance
in gyro performance
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 The GP-B Gyroscope  

• Electrical Suspension 

• Gas Spin-up  

• Magnetic Readout

• Cryogenic Operation
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Seven Near Zeros

• "Drag-free" (cross track) < 10-11 g met     

• Rotor inhomogeneities < 10-6 met

• Rotor asphericity < 10 nm met

• Magnetic field < 10-6 gauss met

• Pressure < 10-12 torr met

• Electric charge < 108 electrons met

• Electric dipole moment 0.1 V-m issue

Challenge 1:  < 10-11 deg/hr Classical Drift
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 GP-B Performance

Space improves gyro accuracy
by > 50,000,000!

Why go to space?

Gyroscope drift  
≤ 0.05 marcsec/yr

Readout error effect
≤ 0.08 marcsec/yr

Guide star uncertainty
≤ 0.09 marcsec/yr
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~ 5 x 10-7

drift-rate for the 
drag-free GP-B
< 0.01 marc-s/yr

Drift-rate
Torque
Moment of Inertia

Ω = T / Iωs

T = M ƒ δr
I = 2/5 Mr2

ƒ

δr

requirement Ω < Ω0  ~ 0.1 marc-s/yr

δr
r ƒ <     vs Ω0

2
5

vs = ωsr = 950 cm/s  (80 Hz)

(1.54 x 10-17 rad/s)    

On Earth (ƒ = g)

Standard satellite  (ƒ ~ 10-8 g)

GP-B  drag-free  (ƒ ~ 10-12 g
cross- track average)

< 5.8 x 10-18

< 5.8 x 10-10

< 5.8 X 10-6δr
r    

δr
r    

δr
r    

δr
r    

Drag-free eliminates mass-unbalance torque -- and key to 
understanding/quantification of other support torques  

(ridiculous) 

(unlikely) 

(straightforward) 

Mass-Unbalance & Drag-Free

All GP-B rotors mass unbalance 
< 10 nm (2 cm radius) or  
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Mass Unbalance & Drag Free 
On-orbit Results
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 Challenge 2: Sub-milliarc-s Star Tracker

Detector 
Package  

Dual Si Diode 
Detector  
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Telescope Detector Signals 
from IM Peg Divided by Rooftop Prism
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Star Tracking Telescope:  On-Orbit

Feedback control maintains 
spacecraft pointing at balance pt

(~20 marcsec inertially). 
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 Challenge 3: Gyro Readout

SQUID noise 190 marc-s/√Hz
Centering stability < 50 nm
DC trapped flux < 10-6 gauss
AC shielding > ~ 1012

Requirement

“SQUID” 1 marc-s in 5 hours 

4 Requirements/Goals

☼



Page 14 GPB Overview HEPL Seminar, June 17, 2009

 
Challenge 3: Gyro Readout Calibration

Peak to peak ~ 24 arc-sec

Aberration

Measurement System

Aberration: A Natural Calibration

Orbital motion        varying apparent position of star 
Cause: transverse velocity of telescope to starlight 

(vorbit/c + special relativity correction)

S/V around Earth -- 5.1856 arc-s @ 97.5-min period
Earth around Sun -- 20.4958 arc-s @ 1-year period

zero aberration pt.

max. aberration



Page 15 GPB Overview HEPL Seminar, June 17, 2009

 

G – T                              <1 marc-s subtraction within pointing range

gyro output

scale factors matched for accurate subtraction

telescope output

Dither -- Slow 60 marc-s oscillations injected into pointing system

Challenge 4: Gyro-Telescope Matching 

{

How do we subtract imperfect telescope pointing from the gyro signal?

Scale factor matching allows G-T subtraction to < 1 marcsec 
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 Actualities of GP-B

gyroscopes
105 times better than best 
inertial navigation gyroscopes

SQUID noise < expected

Trapped magnetic flux meets spec

excellent charge control & 
centering stability

τ's ~ 7200 to 26,100 years

telescope
superb overall performance

dewar
beats design hold time

orbit within 100 m of ideal

polhode rate variation

misalignment torque

resonance torque

Less than idealGood

segmented data

interference from ECU

out-of-spec pointing

Systematics & 
data grading

New Challenge
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A.  Polhode rate variations affect 
scale factor (Cg) determinations

Discovered in early science phase
Alex Silbergleit talk July 1

B. Misalignment torques
Discovered in post-science 

calibration phase
Mac Keiser talk next week

C.  Roll-polhode resonance torques
Discovered during data reduction phase
Mac Keiser talk next week
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Challenge 5: Data Analysis Subtleties

All due to one physical cause (patch effect)

Blue - Worden

Red - Santiago & 
Salomon

Polhode Period (hours)

Misalignment

Misalignment torque structure

Roll-polhode resonance path
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 Evolving Polhode Impact on
Actual London Moment Readout

Trapped fields

London field at 80 Hz:  57.2 μG

Gyro 1    3.0 μG

Gyro 2    1.3 μG

Gyro 3    0.8 μG

Gyro 4    0.2 μG

Trapped flux contributes to readout scale factor
• Expected prior to launch
• Adds to London Moment scale factor
• Trapped flux scale factor modulated by body dynamics (polhode)
• Evolving polhode prevents averaging or other simple analysis technique

Trapped Flux 
Moment

ML
MT

Gyro
Dynamics
(spin & polhode)
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 Trapped Flux Mapping: Cg Determination
I3

I2I1

ωs
→

ωs
→

6 Sept 
2004

14 Nov 
2004

polhode
TFM determines evolving polhode

phase to 1° over the full mission
Fully resolves gyro scale factor
Crucial input for torque analysis

Nov. 2007, Gyro 1, Fit residuals = 14% Aug. 2008, Gyro 1, Fit residuals = 1%

Alex Silbergleit John Conklin                   Mac Keiser
(Ballhaus AA award)
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Pre-launch investigation
Rotor electric dipole moment + field gradient in housing
100 mV contact potentials mitigated by minute grain size,

0.1 μm << 30 μm rotor-electrode gap

Kelvin probe measurements on flat samples

On-orbit discoveries (Sasha Buchman talk next week)
Polhode damping (July 2004)
Drag-free z acceleration ( Sept. 2004)
Spin down rate > gas damping (Feb. 2005)
Misalignment torques (Aug. 2005)

Roll-polhode resonance torques (Jan. 2007)

Post-launch ground-based investigations
Work function profile via UV photoemission 
Detailed analytical modeling

SEM image of rotor Nb film   
average grain size 0.1 μm
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Origin of Misalignment & 
Resonance Torque

1. Expand rotor & housing potentials
• Using spherical harmonics

2. Derive stored energy
• Laplace’s equation 
• Between rotor & housing

3. Find torque: Derivative of the energy 
• WRT angles defining the spin orientation
• Spin average

Roll ave. torque proportional & perpendicular to misalignment
Non roll averaged torque when polhode harmonic = roll freq.

These torques follow directly from randomly distributed patch potentials
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Misalignment

Misalignment torque structure

Roll-polhode resonance path
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 Treating Misalignment Torque
The 2 Methods

Algebraic: Filtering machinery to explicitly model torques 
provides separation from relativity

Geometric: Plot rates against misalignment phase Φ
component of relativity free of misalignment torques

• Drift rate free of torque parallel to  
misalignment  

• Annual aberration alters torque direction
• Over time provides geodetic & FD measurement

• A truly physical modeling process

A Geometrical Insight

Mac Keiser 

.

Unperturbed
NS drift geodetic Unperturbed

linear combination

Unperturbed
EW drift (FD)Φ

Gyro misalignment & unperturbed relativity measurement
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• Required to remove effect of misalignment torque 

• Science gyroscopes provide precision misalignment 
information when guide star occulted

Continuous Guide-Star Valid / Guide-Star Invalid misalignment history

Obtaining Continuous Misalignment History
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 Early Methods for treating 
Resonance Torque
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Gyro #2 West/East Drift Rates

Blue: Resonances not mitigated (SAC 15)
Red: Resonances mitigated (SAC 16)     
Vertical dotted: Resonance times       

1. Excise data during resonances
Blue curve shows large drift 
during resonances
Red curve eliminates spikes by 
excising data

2. Model drift during resonances
A unique drift rate during each
A separate drift rate elsewhere
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Gyro 3

Gyro 4

Gyro 1

Gyros 1, 3, 4 
combined

GR prediction

Early Results [Nov ’07]

GR prediction

Gyro 3

Gyro 4

Gyro 1

Gyros 1, 3, 4 
combined
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 Resonance Torque Modeling Limitations
Issue: High sensitivity for resonance torque modeling (2007)

• Leading term in experiment error (relativity rate scatter)

First result based upon excluding data within resonance periods

Second result: 3x smaller (but still large) sensitivity by linear fit during resonance periods
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 Improved Resonance Torque Modeling

Path predicted from rotor & housing potentials
• Roll averaging fails when ωr = nωp

• Orientations follow Cornu spiral

• Magnitude & direction depend on patch 
distribution, roll & polhode phases
at resonance

Example:  Gyro 2, Resonance 277 – Oct 25, ’04
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Jeff Kolodziejczak Alex SilbergleitMac Keiser Michael Heifetz Vladimir Solomonik



Page 28 GPB Overview HEPL Seminar, June 17, 2009

 The Science Equations [Aug  2008]

Treatment of roll-polhode term hinges on TFM

• Add resonance torque model to equations of motion
• Follows directly from randomly distributed patch potentials

Resonance torqueMisalignment torqueRelativity

• Resonance condition
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Resonance Torque 
Modeling Implementation

Torque coefficients tied to gyro body

TFM provides accurate body dynamics profile
• γp φp (in addition to readout scale factor)

• TFM: body fixed trapped flux as marker

• Torque model uses TFM polhode

• Requires accuracy for tracking high order polhode harmonics

Body dynamics determined from TFM is KEY
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N-S (Geodetic) E-W (Frame-dragging)

G1

G2

G3

G4

(note: different y-axis scale for N-S vs. E-W)

Full Model Results as of Dec ’08
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 Full Model Results as of Dec ’08
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 Full Model Results as of Dec ’08 - II

Requires incorporation of systematic uncertainty evaluation
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RNS & RWE – Gyro #4

Gravitational deflection of light

24.6487-day guide star orbital motion
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 Advanced Investigations of Systematics

• Improved science modeling
• Exact treatment of readout nonlinearities 

• Thermal correlations

• 2-sec processing

• Detailed gyro-to-gyro comparisons
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 Are we done?
• Current ‘2 floor’ 4-gyro result  ~ 5 marcs/yr (statistical uncertainty) 

once-per-orbit time step
3 out of 10 segments (158 days vs. 333 days)limited by {

• Fundamental & operational limits
SQUID noise 0.14 – 0.35 marcs/yr (gyro dependent)
Covariance ~ 1-2 marcs/yr (4 gyros combined)

Accurate integration requires time step << 1 orbit parallel processing

9 marcs p-p

variation

Gyro 2: Orientation EW (worst case example)

Note: noiseless trajectory shown.

Noise must be added for complete evaluation
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 Advanced (2-sec) Filter Development

Serial processing accuracyaccuracy
built on 4-years’ experience with 2-floor (once per orbit) filter
accurately models the physical phenomena
has passed truth test

Parallel processing speedspeed
~ 10x faster (3 day analysis → overnight)
requires computer cluster
~ 10% modified/additional code

Talk by Michael Heifetz July 29

Two simultaneous development activities

1

2

Co-PI  Charbel Farhat

Michael Heifetz      Badr Alsuwaidan Majid Almeshari John Conklin       Vladimir Solomonik
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 Upcoming GPB Talks

June 24 Sasha Buchman Evidence for patch effect
Mac Keiser Torques & analysis treatment

July 1 Alex Silbergleit Trapped flux mapping

July 29 Michael Heifetz Data Analysis Past, Journey
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Serial 2-sec processing (applied to data subset)   Aug ’09

Complete transition to parallel processing Oct ’09

Extension from 5, 6, 9 (applied to full data set) Dec ’09

Complete treatment of systematics Jan ’10

Blind test against SAO guide star orbital motion Feb ’10

Grand synthesis of Geometric & Algebraic results
approach ~ 1-2 marcs/yr 4-gyro limit Jun ’10

Path to Completion

Final results to be announced at Fairbank Workshop on
Fundamental Physics & Innovative Engineering in Space Aug ’10
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