Technology Outreach

John Mester
GP-B Technology Outreach

- Task Group on GP-B, Space Studies Board NRC, 1995
 - Concluding Observation: Technology Transfer
 - “The task group strongly urges that the technology developed during NASA’s support of GP-B be reported soon in the open literature for the benefit of the entire scientific community”

- Task Group’s charge is as yet only partially fulfilled
Successful Technology Transfer

Porous Plug Device - HeII Phase Separation In Space

Developed for GP-B, flown on COBE, IRAS, Spitzer(SIRTF)

Hydroxide catalyzed bonding - Optobond™

Licensed by Schott and other optics cos
Applied in Ground-based, (LIGO & GEO 600)
and SPACE based gravitational wave Detectors, (LISA)

Real-time Kinematic GPS - Novariant Inc,

Spacecraft Attitude Determination
AutoFarm, mining, automated landing
Post Launch Technology Publications 1

Spacecraft and Payload

http://einstein.stanford.edu/content.final_report/GPB_FinalPFAR-091907-scrn.pdf,

Telescope System

Post Launch Technology Publications 2

- **Space Cryogenics**

 Advances in Cryogenic Engineering: 1303 (12) 2006

- **GPS Applications**

 Gravity Probe B GPS Receivers, P. Shestople, J. Li, A. Ndili and K. Schrock, Proceedings
 of the 17th International Technical Meeting of the Satellite Division of the Institute of
 Navigation ION GNSS 2004

 Attitude Determination of the Gravity Probe B Spacecraft Using GPS Receivers P.
 Shestople, J. Li, A. Ndili, A. Parchuri and N. Vora, Proceedings of the 18th International
 Technical Meeting of the Satellite Division, Institute of Navigation ION GNSS 2005

 Time Transfer Between UTC and Local Vehicle Time for the Gravity Probe B Relativity
 Jie Li, George M. Keiser, James M. Lockhart and Paul Shestople, Proceedings of the 60th
 Annual Meeting ION GNSS Institute of Navigation, p. 560 – 570 2004

 Gravity Probe B GPS Orbit Determination with Verification by Satellite Laser Ranging
 G. Hanuschak, H. Small, D. DeBra, K. Galal, A. Ndili and P. Shestople
 Proceedings of the 18th International Technical Meeting of the Satellite Division of the
 Institute of Navigation ION GNSS 2005
Post Launch Technology Publications 3

- **Attitude and Translation Control**

 On-Orbit Performance of the Gravity Probe B Drag-Free Translation Control System

Post Launch Technology Publications 4

APS 2007 April Meeting Posters http://einstein.stanford.edu/highlights/hl_041407.html#poster

* L1.00013: "The 'Core' of the Quasar 3C454.3 as the Extragalactic Reference for the Proper Motion of the Gravity Probe B Guide Star" Norbert Bartel, Ryan Ransom, Michael Bietenholz, Jerusha Lederman, Daniel Lebach, Michael Ratner, Irwin Shapiro, Leonid Petrov
* L1.00015: "Gravity Probe B Timing System and Roll Phase Determination" by Jie Li, Jeffery Kolodzieczak
* L1.00016: "The Gravity Probe B SQUID Readout Detector" by Barry Muhlfelder, Bruce Clarke, Gregory Gutt, James Lockhart, Ming Luo
* L1.00017: "SQUID Control, Temperature Regulation, and Signal Processing Electronics for Gravity Probe B" by James Lockhart, Barry Muhlfelder, Jie Li, Bruce Clarke, Terry McGinnis, Peter Boretsky, Gregory Gutt
* L1.00018: "Gravity Probe B Science Instrument Assembly (SIA)" by Saps Buchman, Barry Muhlfelder, John Turneaure
* L1.00019: "Polhode Motion of the Gravity Probe-B Gyroscopes" by M. Dolphin, A. Silbergleit, M. Salomon, P. Worden, D.DeBra
* L1.00020: "Evidence for Patch Effect Forces on the Gravity Probe B Gyroscopes" by D. Gill, S. Buchman
* L1.00021: "Gravity Probe B Orbit Determination" by Paul Shestople, Huntington Small
* L1.00023: "Achievement of the Magnetic Environment Requirements for Gravity Probe B" by J. Mester, J. Lockhart, M.I Taber
* L1.00025: "Gravity Probe B Gyroscope Electrostatic Suspension System (GSS)" W. Bencze, Hipkins, Holmes, Buchman, Brumley
* L1.00027: "Gravity Probe B Experiment Error" by Barry Muhlfelder, G. Mac Keiser, John Turneaure
* L1.00029: "Performance of the Gravity Probe B Cryogenic Sub-System" by Michael Taber, David Murray
* L1.00030: "The Gravity Probe B Drag-free and Attitude Control System" by Michael Adams, Daniel DeBra
* L1.00031: "Features of the Gravity Probe B Space Vehicle" by William Reeve, Gaylord Green
* L1.00032: "Classical Torques on Gravity Probe B Gyroscopes" by Alex Silbergleit, G. Mac Keiser, Yoshimi Ohshima
Work in Progress

• Key Technologies of GP-B Impact Future Missions

• Important to examine both technologies that worked as designed and those that had issues

• Areas undergoing studies
 – Charge Control
 – Patch Effect
 – Precision Attitude and Drag Free Control
UV Charge Control

- Rotor charge controlled via UV excited electrons
- Charge rates ~ 0.1 mV/day
- Continuous measurement at the 0.1 mV level
- Control requirement: 15 mV

Discharge of GP-B Gyro1

Worked as designed: Charge controlled to < 5 mV
LED Deep UV Source for Charge Management

UV LED System Developed By SU LISA Team
- Light weight
- Low electrical power
- Compact, robust
- Fast modulation \(\Rightarrow\) enables novel operation

Total UV power 0.144 mW
The Patch Effect

- Spatial variations in surface potential root cause of GP-B Issues
 - Polhode damping, misalignment torques, resonance torques

- Paper detailing GP-B patch analysis and evaluating trades for future Missions is undergoing internal review
 - Lead Author Sasha Buchman

- Analytic Model of Electrostatic Interaction of STEP Test Masses (Valerio Ferroni & Alex Silbergleit)
 - Patch Effect–Drag Free Performance Connection
Kelvin Probe Patch Measurements

- In addition to flight data analysis ground measurements program initiated
- Kelvin Probe measures contact potential between a conducting specimen and a vibrating probe tip
 - non-contact, non-destructive vibrating capacitor device

View of probe (diameter 3mm) sitting above samples
Kelvin’s original apparatus
Examples of Spatial Scans

Gold-niobium on alumina (p-to-p 13 mV) Diamond-like carbon on beryllia (p-to-p 22 mV)

Indium tin oxide on titanium (p-to-p 6 mV) Titanium carbide on titanium (p-to-p 6 mV)

Contact potential difference in volts over 10 mm by 10 mm area (400 data points).
Drag Free Control

Drag-Free Satellite History

- TRIAD I: DISCOS - Disturbance Compensation System
 - 3 axis translation control PI, Dan DeBra, Stanford,
 Navy Transit Navigation Program, JHU APL
 - Launched September 2, 1972, Polar Orbit at 750 km

- TIPs & NOVA One axis translation control
 - Transit Program 1975-1984 JHU APL & RCA
 - Paul Worden, Stanford Consultant

- And Now Also GP-B
 - 3 axis translation control
 - 3 axis active attitude control
Drag Free Control Lessons Learned

Initial Orbit Checkout (IOC), successful but challenging

- 4 month duration, 2 months planned
- >10,000 commands sent

Performance Requirements Ultimately Achieved

High fidelity integrated payload/spacecraft simulator is valuable on orbit. Advantage in use of simulators early in mission development life cycle.
Future Mission Drag Free Control Requirements

- Requirements more stringent than GP-B
- Communication Challenges for non-LEO missions impact in-flight tuning
- More complex inertial sensors, multiple, non-spherical
Ongoing Attitude and Translation Control Work

- Analysis of ATC Engineering Data
 - ATC Simulator Development for Future Missions
 - Use GP-B data to validate simulator
 - Inertial Sensor Modelling

- Collaborating Institutions
 - ZARM ‘First Look’ Program
 - ZARM, University of Bremen, Matthias Matt, Ivanka Pelivan, Stefan Theil
 - Institute of Astronomy, Cambridge University, GAIA group
 - University of Rome “la Sapienza”, Valerio Ferroni
 - KACST, Badr Alsuwaidan
ATC Future Work

- Develop fully integrated sensor-controller-actuator simulations operating across the payload/spacecraft interface

- Exploit modular architecture to enable exchange of software models for hardware units for hardware-in-the-loop verification

- Use high fidelity spacecraft bus and flight CPU to enable flight software validation and verification with the science payload

- Integrate Mission Operations consoles for command generation and verification - anticipate in-flight tuning
GP-B Technology: AA255 Course

- Stanford Aero/Astro Department Sponsoring 3 Unit Course on Space Systems
 - Gravity Probe B to be Used as a Case Study

AA255 - Space Systems Engineering and Design

Systemized approaches to design, fabrication, integration, and testing of flight hardware from the component level through functional systems. The development of systems level requirements based on flow-down from mission requirements and goals. Comparison of systems engineering techniques related to requirements development, tracking, validation, and verification. An examination of risk tracking and mitigation. The development of the Gravity Probe B Relativity Mission will be used as a case study to illustrate key principles.
William Fairbank International Workshop

The marriage of applied physics and aerospace engineering, enabling fundamental physics experiments to be performed in space.

Who Should Attend?
- Experimental physicists, aerospace engineers, industrial leaders, university and governmental managers and policy makers.

Dedicated workshop sessions will include:
- Proposed missions. Physical foundations, core technical requirements, technology needs.
- Technologies. Breakthrough technologies, sensors, techniques, materials.
- Project management and operations. Simulation, testing/verification, operations tools, training, risk management, requirements specification and control.
- Lessons Learned. Instrument design and operation, data analysis, system-level interactions, modeling, environment.

Web Site: http://einstein.stanford.edu/fb_workshop
Email: fb_workshop@relgyro.stanford.edu

This conference is named in honor of William Fairbank. In an extremely productive career, Professor Fairbank demonstrated a powerful ability to bring physicists and engineers into creative exchange. His pioneering efforts were essential to many of the first generation of fundamental physics in space experiments. These missions include Gravity Probe A, Gravity Probe B, Lambda Point, CHex and AMS. All were innovations, not only in technology, but in management and engineering approaches.