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Payload Electronics

• Overview
• Telescope Readout Electronics
• Experiment Control Unit
• Global Positioning System Receivers
• Proton Monitor
• ATC
• SQUID Readout Electronics
• Gyroscope Suspension System
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Payload Electronics Functions

• Telescope Readout Electronics (TRE) - 2 Fwd boxes.
– Measures orientation of space vehicle boresight relative to guide star.

• Experiment Control Unit (ECU) - 1 Aft + 1 Fwd box.
– Measures payload temperatures and status signals.
– Controls heaters and valves:  payload instrument interfaces.

• GPS Receiver (GPS) - 2 Aft boxes + 8 antennas.
– Provides ephemeris position, velocity and time data for orbit trim and

science data reduction.  Time transfer.
• Proton Monitor (PM) - 1 Aft box.

– Provides on-orbit radiation data; correlates with gyroscope heating,
charging.

• Attitude Control Electronics (ATC) - 2 boxes 19 boards
– magnetic torquer drivers, star tracker readout, magnetometer readout,

thruster driver, RAV valve driver, power supply, 1553 Board
– Payload/Spacecraft integrated functions.

• SQUID Readout Electronics (SRE) - 2 Aft + 2 Fwd boxes.
– Measures gyro spin speed and orientation.

• Gyroscope Suspension System (GSS) - 4 Aft + 4 Fwd boxes.
– Suspends and maintains precise centering of gyroscope rotors in their

housings.
– Provides backup analog control in the event of a GSS computer failure.
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Spacecraft Bus and CPU

• Payload and Spacecraft Controlled by RAD6000 Spacecraft CPU driving 1553B
Bus (2 for redundancy A and B sides)

• RAD6000 radiation-hardened 32bit single board computer, based on the IBM
RISC Single Chip CPU,  .

• > 200 RAD6000 processors in space on a variety of NASA, United States
Department of Defense and commercial spacecraft, including:

    * Spirit and Opportunity Mars rovers
    * Mars Pathfinder lander
    *  Deep Space 1 probe
    * Mars Polar Lander and Mars Climate Orbiter
    * Mars Odyssey orbiter
    * Spitzer Infrared Telescope Facility
    * MESSENGER probe to Mercury
    * STEREO Spacecraft
    * IMAGE/Explorer 78 MIDEX spacecraft
    * Genesis and Stardust sample return missions
    * Phoenix Mars Polar Lander
    * DAWN Mission to the asteroid belt using ion propulsion

Payload Boxes SRE and GSS contain 6 RAD6000s
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TRE Flight Unit (1 of 2 units)

TRE

• Reads out Cryogenic Detectors

Detector
Cold Warm
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ECU Aft Unit

ECU

• GP-B ECU has 29 boards to control and monitor experiment
functions such as dewar and probe temperature controls, Gas
Management and probe pump-out,

• UV Light source lamps (2) and drivers for 8 fiber optic switches for
Charge Control

ECU Fwd Unit
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GPS Pathfinder unit with antenna array

GPS

2 redundant sets.  Each  composed of a Trimble TANS Vector III GPS
receiver and four matching Trimble antennas, modified for space use by
Stanford

•Orbit determination for ephemeris and science data analysis
•Time Transfer via a pulse per second (PPS) signal output by the
receiver reconciling vehicle time (Vt) with Coordinated Universal Time
(UTC).

Position accuracy: 2.5 m (rms)
Velocity accuracy: 2.2 mm/s (rms)
Time transfer accuracy: 2 micro-s.
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1 of 2 Proton Monitors, ready for spacecraft
integration.

Proton Monitor

• Integrated with spacecraft and aft
ECU.

50Mev-1Gev Protons from
• Cosmic Rays
• South Atlantic Anomaly
• Solar Flares

Correlates w/ telescope detectors hits
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GSS Forward flight-equivalent unit with
HV Amp/Bridge assembly

GSS

• 4 Forward and 4 Aft Boxes
• Provides gyro position sensing and

centering (nm)
• Sensor for Drag-free control
• Charge measurement
• Special modes for gyro spinup and

spin axis allignment
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Suspension System Design Drivers

Minimize Torques
“Do Nothing”

• Slow response/bandwidth
• Low suspension voltages/forces
• SQUID compatible – minimal EMI.
• Science-tuned controller.
• “Zero force” drag free control.

Protect the Rotor
“DO NOT let the rotor crash”

• Fast response/bandwidth.
• High suspension voltages/forces.
• High position bridge SNR

(amplitude/frequency).
• Robust control algorithm.
• Ground test and spinup control.

Spaceflight compatible
• Implement with slow computing resources  and electronics.
• Endure vibration, shock, EMI, radiation, thermal, vacuum environment
• Operate semi-autonomously with low drift and tight power budget.

Many conflicting requirements
makes for a challenging design!
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Gyro Suspension System Modes

♠ Suspension forces
span 8 orders of
magnitude

♠ All modes tested on
high fidelity simulator
prior to launch.

♠ Sequenced bring up of
controller on orbit to
confirm performance
and protect gyroscope.

♠ All primary and backup
modes tested and
function well on orbit.
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Control System Hardware
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Initial “Backup” Suspension on Orbit
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Gyro2 Position Snapshot, VT=135835310.3 • Gyro first suspended with high
science level analog backup
controller (PD architecture)

• Suspended for 5 seconds then
released.

• “Fall” trajectory and subsequent
bounces clearly seen in position data
(~1 µg acceleration)

• Robust backup system
• 3 sets of of PD controllers
• Computer health monitor.
• 5 µm safety radius around center.
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Position Measurement Performance

0 500 1000 1500 2000 2500 3000
-6

-4

-2

0

2

4

G
3 

X 
po

s 
(n

m
)

seconds

Rep. position profile in science mode (not drag free), GP-B Gyro3 (VT=142,391,500)

0 0.05 0.1 0.15 0.2 0.25
10-12

10-11

10-10

10-9

10-8

M
ag

 (n
m

)

Freq (Hz)

Single sided FFT, GP-B Gyro3 (VT=142,391,500)

Measurement
noise 0.45 nm rms

Representative
gyro position trace
showing non drag-
free gravity gradient
effects in Science
Mission Mode

Noise floor



1717

Variable Authority Control for Low Torque
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• High control authority        High voltages        High torques
• Nominal Operations: Low authority/voltage used when rotor is centered.
• Fast attack adaptation as rotor moves away from center

• Respond to micrometeoroid impacts, etc.
• Adapts based on estimates of position and velocity.

• Authority decays after rotor is re-centered and transients die away
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• Disturbance-dependent control authority
keeps the gyro safe while minimizing torques.
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Amplifying Torques for Spin Axis Alignment
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Spin axis trajectory boresight plot - Gyro3

Coarse Alignment Rate:  2.0 arc-sec/hr

Telescope Boresight Plot - Actual

• Residual suspension torques on rotor
shape used to effect alignment.

• Provides an early calibration of a primary
error source – found to be 20% of pre-
launch predicts!

Demonstrated performance: final
alignment to within 10 arc-sec of goal.
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UV Charge Control
System Components:  UV Light source, fiber optic, and bias electrode
GSS Charge Measurement

GP-B UV fiber optic fixture

 GP-B on Orbit operation 

Discharge of GP-B Gyro1
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Assembled SRE Fwd Unit - 1 of 2 units

SRE

• Readout system overview
– Magnetic signal generated by gyroscope
– Gyroscope signal coupled to pickup loop
– Signal inductively coupled to SQUID
– SRE operates SQUID as null detector

• SRE provides a voltage readout (V) of
feedback effort required to null gyro
signal

• Primary Gyro Readout  - London Moment
• Snapshot data to 2200 Hz
• Bandwidth sufficient to resolve trapped flux at 1-

10 harmonics of spin
• => yields measure of instantaneous spin

direction and trapped flux fixed to gyro body.
Enables trapped flux mapping

Assembled SRE aft unit - 1 of 2 units

•
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SQUID

Superconducting Quantum Interference Device

DC SQUID – 2 Josephson Junctions

Current bias -–> Voltage periodic in Φ0

Analog of 2 slit interference in optics

Φ0 = h/2e = 2.067 833 636×10－15 Wb
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The SQUID Amplifier

Lin

Sv

Si

•

 •

SQUID Current Amplifier
Noise Model

Lin: Input inductance of SQUID (~ 2 µH for GPB)
       
SQUID Voltage Noise Sv    [typical 10–34 - 10–36 V2/Hz]

SQUID Current Noise Si [typical 10–24 - 10–25 V2/Hz]

Noise Temperature, Tn  = Pn/kBBw

SQUID Noise Temperature Tn (best measure of noise performance)

     Tn = (SiSv)0.5/2kB        kB is Boltzmann’s constant

     Tn(SQUIDs) < 10-6 K   for optimally designed circuits (GP-B) white noise)

     Tn for best room temperature semiconductor amplifiers ~ 1 K

SQUIDs can have 106 lower noise than best room temperature amplifier
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London Moment Readout

0.005470.2Gyro 4
0.014590.8Gyro 3
0.029441.3Gyro 2
0.055573.1Gyro 1

Trapped field
London Moment

London Moment Equiv.
field  (µG)

Trapped field  (µG)

1marcsec in 10 hr integration (2x10–13 Gauss)
<8x10–29J/Hz  (50µΦ0/Hz)
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SQUID
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dc SQUID
mounted
within a
niobium
package

Quartz gyro housing with
niobium pick-up loop and
ribbon cable connection

Cryogenic Components
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Ultra-low Magnetic Field

• Magnetic fields are kept from
gyroscopes and SQUIDs using a
superconducting lead (Pb) bag
– Mag flux = field x area.
– Successive expansions of four

folded superconducting bags give
stable field levels at ~ 10-7 G.

• AC shielding at 10-12 [ =120 dB! ] from
a  combination of cryoperm, lead bag,
local superconducting shields &
symmetry.

Lead bag in Dewar

Expanded
lead bag

On Orbit Performance Met Requirements
Trapped field: Gyro 1  3.0 MicroGauss

 Gyro 2  1.3 MicroGauss
Gyro 3  0.8 MicroGauss
Gyro 4  0.2 MicroGauss
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Ultra-low Magnetic Field

Lead bag in Dewar

Expanded
lead bag
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SQUID Control Electronics Features

•  Very low noise figure (<2 dB)
•  Low drift; low temperature sensitivity
•  High linearity to deal with gyro spin-frequency signals
•  Provisions for flux-quantum-slipping fundamental calibration
•  High bandwidth/EMI immunity to on-board interference sources
•  Compatibility w/  space environment -- particle radiation

• Preamp: Cascode FET, < 1 nV/ÖHz at 409 kHz flux mod. freq.
• Demodulator: Balanced FET switches
• Single pole integrator; 100 kHz bandwidth w/35 kHz peaking response
• Feedback current sent to flux transformer in SQUID  input circuit
• Calibration Signals [ROM-table sine waves; precision multiplying D-A

converter with stable reference voltage; injected into SQUID input.
• Active integral temperature control of critical SQUID electronics circuits
• RAD6000 CPU for digital filtering, digital PID SQUID temperature control,

timing synchronization
• Oven-controlled swept-quartz crystal oscillator for master clock
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SQUID FLL & Temperature Control Electronics
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Timing System
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SRE – GSS Compatibility
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Temperature Control Requirement

Temperature Coef => Control Requirement <5µK at roll
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Temperature Control Electronics

•Analog  ac resistance bridges (55 Hz)  with phase-sensitive detection
•Sensor excitation < 1 nW
•Bridge output compared to output of a setpoint DAC;  difference signal digitized to
drive precision digital temperature controller.
•Digital temperature controller implemented in RAD6000 computer; control law
incorporates gain peaking at satellite roll frequency. Provision to optimize the control
law on orbit.
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On-orbit SQUID Bracket Temperatures

(sensor 1 in feedback loop, sensor 2 observer)
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Power Spectral Density of SQUID Temperature

SQUID Bracket Temperature Control < 2 µK in 3 mHz BW about Roll



3838

Requirement 10-4

SRE Ground Test Results: Linearity
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SRE Flight Data

Peak to peak ~ 24 arc-sec
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On-Orbit Performance

On-orbit verifications included measurements of noise, thermal control and scale
factor stability. The output of each SQUID is scaled into equivalent pointing (arc-
sec) using the orbital aberration as a calibrator.  3 of the  4 gyroscopes met the
pre-launch on-orbit pointing noise specification of 190 marc-sec/√ Hz at the
satellite roll frequency (12.9 mHz), a measurement resolution of 1.0 marc-sec in
10 hours of integration time. See table to right.

Using the measured gyro pointing noise and the full covariant analysis for the
experiment (error tree), the SQUID readout noise limit on the overall experiment
error is:

Gyro 1                          0.189 marc-sec/yr

Gyro 2                          0.176 marc-sec/yr

Gyro 3                          0.158 marc-sec/yr

Gyro 4                          0.347 marc-sec/yr

Based on 365 days of integration time.
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